

DATA SHEET

CURRENT SENSOR - LOW TCR

PT series 5%, 2%, 1% sizes 0402/0603/0805/1206/0815/2010/2512 RoHS compliant & Halogen free

Chip Resistor Surface Mount PT SERIES

8

<u>SCOPE</u>

This specification describes PT series current sensor - low TCR with lead-free terminations made by thick film process.

APPLICATIONS

- Converters
- Printer equipment
- Server board
- Telecom
- Consumer

FEATURES

- Halogen Free Epoxy
- RoHS compliant
 - Products with lead free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous wastes
- High component and equipment reliability
- None forbidden-materials used in products/production
- Low resistances applied to current sensing

ORDERING INFORMATION - GLOBAL PART NUMBER

Part numbers is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

PT XXXX X X X XX XXXX L

(1)	(2) ((3)	(4)	(5)	(6)	(7)

(I) SIZE

0402 / 0603 / 0805 / 1206 / 0815 / 2010 / 2512

(2) TOLERANCE

 $F = \pm 1\%$

 $G = \pm 2\%$ $J = \pm 5\%$

(3) PACKAGING TYPE

- R = Paper taping reel
- K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia. Reel

(6) RESISTANCE VALUE

There are $3\sim5$ digits indicated the resistor value. Letter R is decimal point, no need to mention the last zero after R.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for order only ^(Note)

Resistance rule of	global part	ORDERING EXAMPLE
number Resistance code rule	Example	The ordering code of a PT0603 chip resistor, value 0.56 Ω with
	0R025 = 25 mΩ	±1% tolerance, supplied in 7-inch
(25 to 910 mO)	$0RI = 100 \text{ m}\Omega$	
(20 00 / 10 1132)	$0R91 = 910 \text{ m}\Omega$	

YAGEO	Phicomp							Product specification 3
	Chip Resistor	Surface Mount	PT	SERIES	0402/0603/	0805/1206/081	5/2010/251	2
MARKING								
F10013								
R	025	E-24 series / Nor	-E ser	ies (R=	25/40/50 m	Ω): 4 digits		
Fig. I Val	ue = 25 mΩ	The "R" is used a	s a de	cimal po	oint; the oth	er 3 digits ar	e significa	nt.
PT0805 / PT1	206 / PT2010 / PT2	2512						
R	חכק	E-24 series / Nor	-E ser	ies (R=	250/400/50	0 mΩ): 4 digi	ts	
Fig. 2 Val	$rac{1}{2}$ ue = 220 m Ω	The "R" is used a	s a de	cimal po	oint; the oth	er 3 digits ar	e significa	nt.
PT0603								
			_					
	R22	E-24 series / Nor	i-E ser	ies (R=	250/400/50	0 mΩ): 3 digi	ts	
Fig. 3 Valu	e = 220 mΩ	The "R" is used a	s a de	cimal po	oint; the oth	er 2 digits ar	e significa	nt.
PT0402								
	yead	No marking						
Fig. 4								

For further marking information, please refer to data sheet "Chip resistors marking".

8

CONSTRUCTION

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximately required resistance and laser cutting of this resistive layer that achieves tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the three external terminations (Cu/Ni/matte tin) are added, as shown in Fig.5.

OUTLINES

SERIES

DIMENSIONS

Table I TYPE L (mm) W (mm) H (mm) I_{\perp} (mm) l₂ (mm) PT0402 1.00 ±0.10 0.50 ±0.05 0.35 ±0.05 0.20 ±0.10 0.25 ±0.10 PT0603 1.60 ±0.10 0.80 ±0.10 0.45 ±0.10 0.25 ±0.15 0.25 ±0.15 PT0805 2.00 ±0.10 1.25 ±0.10 0.55 ±0.10 0.35 ±0.20 0.35 ±0.20 PT1206 3.10 ±0.10 1.60 ±0.10 0.55 ±0.10 0.45 ±0.20 0.45 ±0.20 PT0815 2.00 ±0.10 3.70 ±0.10 0.50 ±0.10 0.35 ±0.20 0.40 ±0.20 PT2010 5.00 ±0.10 2.50 ±0.15 0.55 ±0.10 0.60 ±0.20 0.50 ±0.20 PT2512 6.35 ±0.10 3.20 ±0.15 0.55 ±0.10 0.60 ±0.20 0.50 ±0.20

ELECTRICAL CHARACTERISTICS

Table 2					
Туре	Power	Resistance Range	Tolerance	Temperature Coefficient	of Resistance
PT0402	1/16 W				1200
PT0603	1/10 W				±200 ppm/ C
PT0805	1/8 W	$100 \text{ m}\Omega \leq \text{R} < 1 \Omega$			±100 ppm/°C
PTION				100 mΩ	±100 ppm/°C
F11206	1/4 VV		±170, ±270, ±370	$100 \text{ m}\Omega < \text{R} < 1 \Omega$	±75 ppm/°C
PT0815	1/2 W	25 m $\Omega \le$ R < 50 m Ω			±100 ppm/°C
PT2010	3/4 W			100 mΩ	±100 ppm/°C
PT2512	I W	$100 \text{ m}\Omega \leq \text{K} \leq 1 \Omega$		$100 \text{ m}\Omega < \text{R} < 1 \Omega$	±75 ppm/°C

Chip Resistor Surface Mount PT SERIES 0402/0603/0805/1206/0815/2010/2512

8

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PT0402	PT0603	PT0805	PT1206	PT0815	PT2010	PT2512
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	5,000			
	13" (330 mm)	50,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)					4,000	4,000	4,000

ΝΟΤΕ

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATINGTEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: PT0402=1/16 W PT0603=1/10 W PT0805=1/8 W PT1206=1/4 W PT0815=1/2 W PT2010=3/4 W PT2512=1 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{P \times R}$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

 Chip Resistor Surface Mount
 PT
 SERIES
 0402/0603/0805/1206/0815/2010/2512

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST METHOD	PROCEDURE	REQUIREMENTS		
MIL-STD-202 Method-304	At +25/+125 °C	Refer to table 2		
	Formula:			
	T.C.R= $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$			
	Where t ₁ =+25 °C or specified room temperature			
	t_2 =+125 °C test temperature			
	R ₁ =resistance at reference temperature in ohms			
	R_2 =resistance at test temperature in ohms			
IEC 60115-1 4.25.1	I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required	± (1.0%+0.0005 Ω)		
IEC 60068-2-2	I,000 hours at maximum operating temperature depending on specification, unpowered	± (1.0%+0.0005 Ω)		
	No direct impingement of forced air to the parts			
	Tolerances: 155±3 °C			
MIL-STD-202 Method-106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	± (0.5%+0.0005 Ω)		
	Parts mounted on test-boards, without condensation on parts			
	Measurement at 24±2 hours after test conclusion			
MIL-STD-202 Method-107	-55/+125 °C	± (1.0%+0.0005 Ω)		
	Note: Number of cycles required is 300. Devices unmounted			
	Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air			
	TEST METHOD MIL-STD-202 Method-304 IEC 60115-1 4.25.1 IEC 60068-2-2 MIL-STD-202 Method-106 MIL-STD-202 Method-107	TEST METHODPROCEDUREMIL-STD-202 Method-304At $\pm 25/\pm 125 \ ^{\circ}C$ Formula: $T.C.R = \frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 (ppm/^{\circ}C)$ Where $t_1 = \pm 25 \ ^{\circ}C$ or specified room temperature $t_2 = \pm 125 \ ^{\circ}C$ test temperature $t_2 = \pm 125 \ ^{\circ}C$ test temperature R_1 =resistance at reference temperature in ohms R_2 =resistance at test temperature in ohmsR_2 = resistance at test temperature in ohmsIEC 60115-1 4.25.11.000 hours at $70\pm5\ ^{\circ}C$ applied RCWV1.5 hours on, 0.5 hour off, still air requiredIEC 60068-2-21.000 hours at maximum operating temperature depending on specification, unpoweredNo direct impingement of forced air to the parts Tolerances: $155\pm 3\ ^{\circ}C$ MIL-STD-202 Method-106Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with $25\ ^{\circ}C$ / $65\ ^{\circ}C$ 95% RH, without condensation on parts Measurement at 24 ± 2 hours after test conclusionMIL-STD-202 Method-107-55/+125\ ^{\circ}C Note: Number of cycles required is 300. Devices unmounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air		

 Chip Resistor Surface Mount
 PT
 series
 0402/0603/0805/1206/0815/2010/2512

Product specification

7 8

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Short Time Overload	IEC60115-14.13	2.5 times rated power or maximum overload voltage whichever is less for 5 sec at room temperature	± (1.0%+0.0005 Ω) No visible damage
Board Flex/ Bending	IEC 60068-2-21	Device mounted on PCB test board as described, only I board bending required Bending for 0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60±1 seconds Ohmic value checked during bending	± (1.0%+0.0005 Ω) No visible damage
Solderability - Wetting IPC/JEDECJ-STD-002B test B		Electrical Test not required Magnification 50X SMD conditions: I st step: method B, aging 4 hours at 155 °C dry heat 2 nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	IPC/JEDECJ-STD-002B test D	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	IEC 60068-2-58	Condition B, no pre-heat of samples. Leadfree solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	± (0.5%+0.0005 Ω) No visible damage

YAGEO	Phicomp			Product specification	8
	Chip Resistor Surface Mount	PT	SERIES	0402/0603/0805/1206/0815/2010/2512	8

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Apr 06, 2011	-	- PT0805 dimension improvement for better pick and place performance
Version 0	Mar 18, 2011	-	- New datasheet for current sensor - Iow TCR PT series sizes of 0402/0603/0805/1206/0815/2010/2512, 1%, 2%, 5% with lead-free terminations

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

