DATA SHEET **ARRAY CHIP RESISTORS** YC248 (16Pin/8R) 5%, 1% sizes 0616 **RoHS** compliant **YAGEO Phicomp** 8 ## SCOPE This specification describes YC248 series chip resistor arrays with lead-free terminations made by thick film process. #### **APPLICATIONS** - Terminal for SDRAM and **DDRAM** - Computer applications: laptop computer, desktop computer - Consume electronic equipment: PDAs, PNDs - Mobile phone, telecom... #### **FEATURES** - RoHS compliant - Products with lead free terminations meet RoHS requirements - Pb-glass contained in electrodes - Resistor element and glass are exempted by RoHS - Reducing environmentally hazardous wastes - High component and equipment reliability - Saving of PCB space - None forbidden-materials used in products/production - Halogen Free Epoxy #### ORDERING INFORMATION - GLOBAL PART NUMBER Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value. #### YAGEO BRAND ordering code #### **GLOBAL PART NUMBER (PREFERRED)** #### YC248 - X X X XX XXXX L (1) (2) (3) (4) #### (I) TOLERANCE $F = \pm 1\%$ $J = \pm 5\%$ (for Jumper ordering, use code of J) #### (2) PACKAGING TYPE R = Paper taping reel K = Embossed taping reel #### (3) TEMPERATURE COEFFICIENT OF RESISTANCE - = Base on spec #### (4) TAPING REEL 07 = 7 inch dia, Reel #### (5) RESISTANCE VALUE There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20. Detailed resistance rules show in table of "Resistance rule of global part number". #### (6) OPTIONAL CODE L = optional symbol (Note) #### Resistance rule of global part number | Resistance code ru | le Example | |------------------------|---| | OR | 0R = Jumper | | XRXX
(1 to 9.76 Ω) | IR = I Ω
IR5 = I.5 Ω
9R76 = 9.76 Ω | | XXRX
(10 to 97.6 Ω) | $10R = 10 \Omega$
$97R6 = 97.6 \Omega$ | | XXXR
(100 to 976 Ω) | 100R = 100 Ω | | XKXX
(1 to 9.76 KΩ) | IK = 1,000 Ω
9K76 = 9760 Ω | | XMXX
(1 to 9.76 MΩ) | IM = 1,000,000 Ω
9M76= 9,760,000 Ω | #### **ORDERING EXAMPLE** The ordering code of a YC248 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC248-JR-071K(L). #### NOTE - I. All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process" - 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER ## 8 #### **PHYCOMP BRAND** ordering codes Both GLOBAL PART NUMBER (preferred) and 12NC (traditional) codes are acceptable to order Phycomp brand products. #### **GLOBAL PART NUMBER (PREFERRED)** For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. #### 12NC CODE | 235 | 0 <u>XXX XXXXX</u> L
(2) (3) (4) | | | | |---------------|-------------------------------------|-------------|---------------------|--| | TYPE/
0616 | START
IN ^(I) | TOL.
(%) | RESISTANCE
RANGE | PAPER / PE TAPE ON REEL (units) (2)
5,000 | | ARV381 | 2350 | ±5% | 0 to MΩ | 053 10xxx | | ARV382 | 2350 | ±1% | 10 to 1 $M\Omega$ | 043 Ixxx | | Jumper | 2350 | - | 0 Ω | 053 91001 | - (1) The resistors have a 12-digit ordering code starting with 2350. - (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging. - (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC". - (4) "L" is optional symbol (Note). #### **ORDERING EXAMPLE** The ordering code of a ARV381 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 5,000 units per reel is: 235005310102(L) or YC248-JR-071K(L). | Last digit of 12NC | | |-----------------------|------------| | Resistance decade (3) | Last digi | | 0.01 to 0.0976 Ω | (| | 0.1 to 0.976 Ω | 7 | | I to 9.76 Ω | 8 | | 10 to 97.6 Ω | Ç | | 100 to 976 Ω | 1 | | I to 9.76 KΩ | 2 | | 10 to 97.6 KΩ | 3 | | 100 to 976 KΩ | 2 | | I to 9.76 MΩ | | | 10 to 97.6 MΩ | ϵ | | | | | Example: | 0.02 \Q | = | 0200 or 200 | |----------|---------|---|-------------| | | 0.3 Ω | = | 3007 or 307 | | | ΙΩ | = | 1008 or 108 | | | 33 KΩ | = | 3303 or 333 | | | Ι0 ΜΩ | = | 1006 or 106 | #### NOTE - I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process" - 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request) 8 #### Chip Resistor Surface Mount YC SERIES 248 (RoHS Compliant) #### MARKING #### YC248 I-Digit marking E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros For further marking information, please see special data sheet "Chip resistors marking" #### CONSTRUCTION The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy #### **OUTLINES** coat, finally the two external terminations (matte tin on Ni-barrier) are added. See fig.3 #### **DIMENSIONS** | Table I | | |---------------------|------------| | TYPE | YC248 | | B (mm) | 0.30 ±0.15 | | H (mm) | 0.45 ±0.05 | | P (mm) | 0.50 ±0.05 | | L (mm) | 4.00 ±0.20 | | T (mm) | 0.45 ±0.10 | | W _I (mm) | 0.40 ±0.15 | | W ₂ (mm) | 1.60 ±0.15 | #### **SCHEMATIC** #### **ELECTRICAL CHARACTERISTICS** #### Table 2 | CHARACTERISTICS | YC248 I/I6 W | | | |---------------------------------|-------------------|--------------|--| | Operating Temperature Range | _55 °C to +155 °C | | | | Maximum Working Voltage | | 50 V | | | Maximum Overload Voltage | | 100 V | | | Dielectric Withstanding Voltage | 100 V | | | | Number of Resistors | | 8 | | | | 5% (E24) | 10 Ω to 1 MΩ | | | Resistance Range | 1% (E24/E96) | 10 Ω to 1 ΜΩ | | | | Zero Ohm Jumper | < 0.05 Ω | | | Temperature Coefficient | | ±200 ppm/°C | | | Jumper Criteria | Rated Current | 2.0 A | | | | Maximum Current | 10 A | | ## FOOTPRINT AND SOLDERING PROFILES For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting". #### PACKING STYLE AND PACKAGING QUANTITY Table 3 Packing style and packaging quantity | PRODUCT TYPE | PACKING STYLE | REEL DIMENSION | QUANTITY PER REEL | |--------------|--------------------------|----------------|-------------------| | YC248 | Paper Taping Reel (R) | 7" (178 mm) | 5,000 units | | | Embossed taping reel (K) | 7" (178 mm) | 4,000 units | #### NOTE 1. For Paper/Embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing". #### **FUNCTIONAL DESCRIPTION** #### **POWER RATING** YC 248 rated power at 70 °C is I/I6 W #### **RATED VOLTAGE** The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula: $$V = \sqrt{(P \times R)}$$ or max. working voltage whichever is less #### Where V=Continuous rated DC or AC (rms) working voltage (V) P=Rated power (W) R=Resistance value (Ω) ## Chip Resistor Surface Mount YC SERIES 248 (RoHS Compliant) ## TESTS AND REQUIREMENTS **Table 4** Test condition, procedure and requirements | TEST | TEST METHOD | PROCEDURE | REQUIREMENTS | |--|---|---|--| | Life/
Operational Life/
Endurance | MIL-STD-202G-method 108A
IEC 60115-1 4.25.1
JIS C 5202-7.10 | I,000 hours at 70±5 °C applied RCWV I.5 hours on, 0.5 hour off, still air required | ±(2%+0.05 Ω) | | High Temperature Exposure/ Endurance at upper category temperature | MIL-STD-202G-method 108A
IEC 60115-1 4.25.3
JIS C 5202-7.11 | I,000 hours at maximum operating temperature depending on specification, unpowered No direct impingement of forced air to the parts Tolerances: 155±3 °C | ±(1%+0.05 Ω) | | Moisture
Resistance | MIL-STD-202G-method 106F
IEC 60115-1 4.24.2 | Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered | ±(2%+0.05 Ω) | | | | Parts mounted on test-boards, without condensation on parts | | | | | Measurement at 24±2 hours after test conclusion | | | Thermal Shock | MIL-STD-202G-method 107G | -55/+155 °C | $\pm (0.5\% \pm 0.05~\Omega)$ for 10 K Ω to 10 M Ω | | | | Note: Number of cycles required is 300. Devices unmounted | $\pm (1\% + 0.05 \Omega)$ for others | | | | Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air | | | Short time overload | MIL-R-55342D-para 4.7.5 | 2.5 times RCWV or maximum overload voltage whichever is less for 5 sec at room temperature | ±(2%+0.05 Ω) | | | IEC60115-1 4.13 | | No visible damage | | Board Flex/ | IEC60115-1 4.33 | Device mounted on PCB test board as described, | ±(1%+0.05 Ω) | | Bending | | only I board bending required | No visible damage | | | | 3 mm bending | | | | | Bending time: 60±5 seconds | | | | | Ohmic value checked during bending | | ## Chip Resistor Surface Mount YC SERIES 248 (RoHS Compliant) | TEST | TEST METHOD | PROCEDURE | REQUIREMENTS | |-----------------------------------|--|---|---| | Solderability - Wetting | IPC/JEDECJ-STD-002B test B
IEC 60068-2-58 | Electrical Test not required Magnification 50X SMD conditions: Ist step: method B, aging 4 hours at 155 °C dry heat 2nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds | Well tinned (≥95% covered)
No visible damage | | - Leaching | IPC/JEDECJ-STD-002B test D
IEC 60068-2-58 | Leadfree solder, 260 °C, 30 seconds immersion time | No visible damage | | - Resistance to
Soldering Heat | MIL-STD-202G-method 210F
IEC 60068-2-58 | Condition B, no pre-heat of samples Leadfree solder, 270 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol | ±(1%+0.05 Ω)
No visible damage | ## Chip Resistor Surface Mount YC SERIES 248 (RoHS Compliant) ## REVISION HISTORY | REVISION | DATE | CHANGE NOTIFICATION | DESCRIPTION | |-----------|---------------|---------------------|--| | Version 2 | Oct 31, 2008 | - | - Change to dual brand datasheet that describes YC248 with RoHS compliant | | | | | - Description of "Halogen Free Epoxy" added | | | | | - Define global part number | | Version I | Feb 22, 2005 | - | - New datasheet for 0616 (16Pin/8R) chip resistor arrays 1% and 5% with lead-free terminations | | | | | - Replace the 0616 part of pdf files: ARV381_5_3.pdf and ARV382_1_4.pdf | | | | | - Test method and procedure updated | | Version 0 | Nov. 10, 2003 | - | - First issue of this specification | [&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."