74AUP1G240

Low-power inverting buffer/line driver; 3-state Rev. 4 — 29 June 2012

Product data sheet

General description 1.

The 74AUP1G240 provides the single inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (OE). A HIGH level at pin OE causes the output to assume a high-impedance OFF-state.

This device has the input-disable feature, which allows floating input signals. The inputs are disabled when the output enable input OE is HIGH.

Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial Power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

Features and benefits 2.

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - ◆ JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- Input-disable feature allows floating input conditions
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AUP1G240GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1
74AUP1G240GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886
74AUP1G240GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891
74AUP1G240GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115
74AUP1G240GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 \times 1.0 \times 0.35 mm	SOT1202
74AUP1G240GX	−40 °C to +125 °C	X2SON5	X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body $0.8 \times 0.8 \times 0.35$ mm	SOT1226

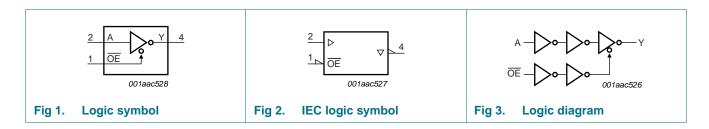

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74AUP1G240GW	p2
74AUP1G240GM	p2
74AUP1G240GF	p2
74AUP1G240GN	p2
74AUP1G240GS	p2
74AUP1G240GX	p2

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description		
	TSSOP5 and X2SON5	XSON6			
ŌĒ	1	1	output enable input		
A	2	2	data input		
GND	3	3	ground (0 V)		
Υ	4	4	data output		
n.c.	-	5	not connected		
V_{CC}	5	6	supply voltage		

7. Functional description

Table 4. Function table[1]

Input OE		Output
OE	A	Υ
L	L	Н
L	Н	L
Н	X	Z

^[1] H = HIGH voltage level;

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±20	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	0	200	ns/V

74AUP1G240

All information provided in this document is subject to legal disclaimers.

L = LOW voltage level;

X = Don't care;

Z = high-impedance OFF-state.

^[2] For TSSOP5 packages: above 87.5 $^{\circ}$ C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 and X2SON5 packages: above 118 $^{\circ}$ C the value of P_{tot} derates linearly with 7.8 mW/K.

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V}$ to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_O = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.31	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
I _I	input leakage current	$V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μΑ
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.1	μΑ
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.2	μΑ
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.2	μА
I _{CC}	supply current	V _I = GND or V _{CC} ; I _O = 0 A; V _{CC} = 0.8 V to 3.6 V	-	-	0.5	μΑ

© NXP B.V. 2012. All rights reserved.

74AUP1G240

Low-power inverting buffer/line driver; 3-state

Static characteristics ...continued Table 7. At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Δl _{CC}	additional supply current	data input; V_I = V_{CC} – 0.6 V; I_O = 0 A; V_{CC} = 3.3 V	[1] -	-	40	μΑ
		$\overline{\text{OE}}$ input; $V_{I} = V_{CC} - 0.6 \text{ V}$; $I_{O} = 0 \text{ A}$; $V_{CC} = 3.3 \text{ V}$	[1] -	-	110	μΑ
		all inputs; $V_I = GND$ to 3.6 V; $\overline{OE} = V_{CC}$; $V_{CC} = 0.8$ V to 3.6 V	[2] -	-	1	μΑ
Cı	input capacitance	V_{CC} = 0 V to 3.6 V; V_{I} = GND or V_{CC}	-	8.0	-	pF
Co	output capacitance					
	output enabled	$V_O = GND; V_{CC} = 0 V$	-	1.7	-	pF
	output disabled	V_{CC} = 0 V to 3.6 V; V_{O} = GND or V_{CC}	-	1.5	-	pF
T _{amb} = -	40 °C to +85 °C					
V_{IH}	HIGH-level input voltage	$V_{CC} = 0.8 \text{ V}$	$0.70 \times V_{C}$	c -	-	V
		$V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_C$	c -	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	V _{CC} - 0.1	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		$I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.35	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.33	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
l _I	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
l _{oz}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.5	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$	-	_	±0.5	μΑ

Table 7. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ΔI_{OFF}	additional power-off leakage current	V_{I} or $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V		-	-	±0.6	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V		-	-	0.9	μΑ
Δl _{CC}	additional supply current	data input; V_I = V_{CC} – 0.6 V; I_O = 0 A; V_{CC} = 3.3 V	<u>[1]</u>	-	-	50	μΑ
		$\overline{\text{OE}}$ input; $V_{\text{I}} = V_{\text{CC}} - 0.6 \text{ V}$; $I_{\text{O}} = 0 \text{ A}$; $V_{\text{CC}} = 3.3 \text{ V}$	[1]	-	-	120	μΑ
		all inputs; $V_I = GND$ to 3.6 V; $\overline{OE} = V_{CC}$; $V_{CC} = 0.8$ V to 3.6 V	[2]	-	-	1	μΑ
T _{amb} = -	40 °C to +125 °C						
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V		$0.75 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V		$0.70 \times V_{CC}$	-	-	V
	LOW-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V		2.0	-	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 0.8 V		-	-	$0.25 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V		-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V		-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V}$ to 3.6 V		$V_{CC}-0.11$	-	-	V
		$I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$		$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$		0.93	-	-	V
		$I_O = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$		1.17	-	-	V
		$I_O = -2.3 \text{ mA}$; $V_{CC} = 2.3 \text{ V}$		1.77	-	-	V
		$I_O = -3.1 \text{ mA}$; $V_{CC} = 2.3 \text{ V}$		1.67	-	-	V
		$I_O = -2.7 \text{ mA}$; $V_{CC} = 3.0 \text{ V}$		2.40	-	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$		2.30	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V		-	-	0.11	V
		$I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$		-	-	$0.33 \times V_{CC} \\$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$		-	-	0.41	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$		-	-	0.39	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$		-	-	0.36	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$		-	-	0.50	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$		-	-	0.36	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$		-	-	0.50	V
I _I	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V		-	-	±0.75	μΑ
l _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V		-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V		-	-	±0.75	μΑ

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.75	μΑ
I _{CC}	supply current	$V_1 = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μΑ
ΔI_{CC}	additional supply current	data input; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$; $V_{CC} = 3.3 \text{ V}$	[1] -	-	75	μΑ
		$\overline{\text{OE}}$ input; $V_{\text{I}} = V_{\text{CC}} - 0.6 \text{ V}$; $I_{\text{O}} = 0 \text{ A}$; $V_{\text{CC}} = 3.3 \text{ V}$	[1] -	-	180	μΑ
		all inputs; $V_I = GND$ to 3.6 V; $\overline{OE} = V_{CC}$; $V_{CC} = 0.8$ V to 3.6 V	[2] _	-	1	μΑ

^[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10

Symbol	Parameter	Conditions		25 °C —40 °C to +125 °C				25 °C	Unit	
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F		'			'	•		'	
t _{pd}	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 \text{ V}$		-	22.3	-	-	-	-	ns
	$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.0	5.8	12.6	2.8	14.1	15.5	ns	
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.3	4.0	7.3	2.1	8.5	9.5	ns
	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.0	3.2	5.5	1.9	6.7	7.4	ns	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.8	2.6	4.1	1.5	4.8	5.3	ns
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.4	2.3	3.6	1.3	4.1	4.6	ns	
t _{en}	enable time	OE to Y; see Figure 9	[3]							
		$V_{CC} = 0.8 \text{ V}$		-	70.2	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.1	6.4	14.3	2.8	15.9	17.5	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.5	4.4	8.1	2.2	9.5	10.5	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.1	3.6	6.2	1.9	7.4	8.2	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.8	2.8	4.6	1.7	5.4	6.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.7	2.5	4.0	1.7	4.7	5.3	ns
t _{dis}	disable time	OE to Y; see Figure 9	[4]							
		$V_{CC} = 0.8 \text{ V}$		-	14.8	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		2.0	4.3	7.4	2.3	8.3	9.2	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		1.6	3.2	5.2	1.7	5.9	6.5	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.5	3.0	4.8	1.5	5.5	6.1	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.1	2.2	3.5	1.4	4.0	4.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.3	2.5	3.9	1.4	4.5	5.0	ns

^[2] To show I_{CC} remains very low when the input-disable feature is enabled.

Table 8. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 10</u>

$V_{CC} = 0.8 V \qquad - \qquad 25.7 \qquad - \qquad $	Symbol	Parameter	Conditions			25 °C		-4	0 °C to +1	25 °C	Uni
A to Y; see Figure 8 Vac = 0.8 V					Min	Typ[1]	Max	Min			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _L = 10 բ	F					'	•		•	
V_{CC} = 1.1 \(\) to 1.3 \(\)	·pd	propagation delay	A to Y; see Figure 8	[2]							
Vac = 1.4 \to 1.6 \to \to 2.2			$V_{CC} = 0.8 \text{ V}$		-	25.7	-	-	-	-	ns
Vac = 1.65 \text{ to 1.95 \text{ to 1.95 \text{ vo 2.0}} 3.8 6.4 1.8 7.7 8.6 ns Vac = 2.3 to 2.7 \text{ vo 3.6 \text{			$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.5	6.6	14.5	3.2	16.3	18.0	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.2	4.6	8.4	2.0	9.9	10.9	ns
Variable time OE to Y; see Figure 9 S S S S S S S S S			$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.0	3.8	6.4	1.8	7.7	8.6	ns
Parable time OE to Y; see Figure 9 19			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.8	3.1	4.8	1.7	5.7	6.4	ns
$V_{CC} = 0.8 \text{V} \qquad - 74.0 \qquad - - - - - - \text{ns} \\ V_{CC} = 1.1 \text{V to } 1.3 \text{V} \qquad 3.6 \qquad 7.4 \qquad 16.3 \qquad 3.2 \qquad 18.2 \qquad 20.1 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.6 \text{V} \qquad 2.3 \qquad 5.1 \qquad 9.2 \qquad 2.1 \qquad 10.9 \qquad 12.0 \text{ns} \\ V_{CC} = 1.65 \text{V to } 1.95 \text{V} \qquad 2.0 \qquad 4.1 \qquad 7.1 \qquad 1.8 \qquad 8.5 \qquad 9.4 \text{ns} \\ V_{CC} = 2.3 \text{V to } 2.7 \text{V} \qquad 1.8 \qquad 3.4 \qquad 5.4 \qquad 1.7 \qquad 6.4 \qquad 7.1 \text{ns} \\ V_{CC} = 3.0 \text{V to } 3.6 \text{V} \qquad 1.8 \qquad 3.1 \qquad 4.8 \qquad 1.7 \qquad 5.7 \qquad 6.3 \text{ns} \\ V_{CC} = 0.8 \text{V} \qquad - \qquad 33.7 \qquad - \qquad - \qquad - \qquad - \qquad - \text{ns} \\ V_{CC} = 1.1 \text{V to } 1.3 \text{V} \qquad 3.4 \qquad 5.4 \qquad 9.0 \qquad 3.2 \qquad 10.0 \qquad 11.0 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.60 \text{V} \qquad 2.1 \qquad 4.1 \qquad 6.3 \qquad 2.1 \qquad 7.1 \qquad 7.9 \text{ns} \\ V_{CC} = 1.65 \text{V to } 1.95 \text{V} \qquad 2.3 \qquad 4.2 \qquad 6.3 \qquad 1.8 \qquad 7.1 \qquad 7.9 \text{ns} \\ V_{CC} = 2.3 \text{V to } 2.7 \text{V} \qquad 1.6 \qquad 3.0 \qquad 4.6 \qquad 1.7 \qquad 5.2 \qquad 5.7 \text{ns} \\ V_{CC} = 2.3 \text{V to } 3.6 \text{V} \qquad 2.1 \qquad 3.8 \qquad 5.7 \qquad 1.7 \qquad 6.4 \qquad 7.1 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.3 \text{V} \qquad 3.9 \qquad 7.4 \qquad 16.3 \qquad 3.6 \qquad 18.4 \qquad 20.2 \text{ns} \\ V_{CC} = 1.1 \text{V to } 1.3 \text{V} \qquad 3.9 \qquad 7.4 \qquad 16.3 \qquad 3.6 \qquad 18.4 \qquad 20.2 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.6 \text{V} \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.6 \text{V} \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \text{ns} \\ V_{CC} = 1.3 \text{V to } 1.6 \text{V} \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \text{ns} \\ V_{CC} = 1.3 \text{V to } 1.6 \text{V} \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \text{ns} \\ V_{CC} = 1.3 \text{V to } 1.6 \text{V} \qquad 2.0 3.3 4.9 1.9 5.7 6.4 \text{ns} \\ V_{CC} = 1.65 \text{V to } 1.95 \text{V} \qquad 2.0 3.5 5.4 1.9 6.5 7.2 \text{ns} \\ V_{CC} = 2.3 \text{V to } 2.7 \text{V} \qquad 2.0 3.5 5.4 1.9 6.5 7.2 \text{ns} \\ V_{CC} = 1.65 \text{V to } 1.6 \text{V} \qquad 3.0 5.6 10.3 2.5 12.2 13.4 \text{ns} \\ V_{CC} = 1.1 \text{V to } 1.3 \text{V} \qquad 4.0 8.2 18.2 3.6 20.4 22.5 \text{ns} \\ V_{CC} = 1.4 \text{V to } 1.6 \text{V} \qquad 3.0 5.6 10.3 2.5 12.2 13.4 \text{ns} \\ V_{CC} = 1.65 \text{V to } 1.95 \text{V} \qquad 2.0 3.5 6.0 2.0 7.2 7.9 \text{ns} \\ V_{CC} = 1.65 $			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.7	2.8	4.3	1.7	5.0	5.5	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	en	enable time	OE to Y; see Figure 9	[3]							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{CC} = 0.8 \text{ V}$		-	74.0	-	-	-	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.6	7.4	16.3	3.2	18.2	20.1	ns
$ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.8 \ 3.1 \ 4.8 \ 1.7 \ 5.7 \ 6.3 \ ns \\ V_{CC} = 3.0 \ V \ to \ 1.3 \ V \\ V_{CC} = 1.1 \ V \ to \ 1.3 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 4.6 \ 1.7 \ 5.2 \ 5.7 \ ns \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 4.6 \ 1.7 \ 5.2 \ 5.7 \ ns \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 4.6 \ 3.0 \ 4.6 \ 1.7 \ 5.2 \ 5.7 \ ns \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 5.1 \ 9.4 \ 2.5 \ 11.1 \ 12.3 \ ns \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 5.1 \ 9.4 \ 2.5 \ 11.1 \ 12.3 \ ns \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 5.1 \ 9.4 \ 2.5 \ 11.1 \ 12.3 \ ns \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \ 2.0 \ 3.5 \ 5.4 \ 1.9 \ 6.5 \ 7.2 \ ns \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ 5.6 \ 10.3 \ 2.5 \ 12.2 \ 13.4 \ ns \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.95 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.0 \ 0.5 \ V_{CC} = 3.0 \ V \ to \ 1.0 \ 0.5 \ 0.5 \ 10.3 \ 2.5 \ 12.2 \ 13.4 \ ns \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 1.6 \ V \\ V_{CC}$			$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.3	5.1	9.2	2.1	10.9	12.0	ns
VCC = 3.0 V to 3.6 V 1.8 3.1 4.8 1.7 5.7 6.3 ns			$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.0	4.1	7.1	1.8	8.5	9.4	ns
disable time $\frac{OE}{V_{CC}} = 0.8 \text{V}$ - 33.7 ns $\frac{V_{CC}}{V_{CC}} = 1.1 \text{V to } 1.3 \text{V}$ 3.4 5.4 9.0 3.2 10.0 11.0 ns $\frac{V_{CC}}{V_{CC}} = 1.4 \text{V to } 1.6 \text{V}$ 2.1 4.1 6.3 2.1 7.1 7.9 ns $\frac{V_{CC}}{V_{CC}} = 1.65 \text{V to } 1.95 \text{V}$ 2.3 4.2 6.3 1.8 7.1 7.9 ns $\frac{V_{CC}}{V_{CC}} = 2.3 \text{V to } 2.7 \text{V}$ 1.6 3.0 4.6 1.7 5.2 5.7 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.1 3.8 5.7 1.7 6.4 7.1 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.1 3.8 5.7 1.7 6.4 7.1 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.1 3.8 5.7 1.7 6.4 7.1 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 3.9 7.4 16.3 3.6 18.4 20.2 ns $\frac{V_{CC}}{V_{CC}} = 1.1 \text{V to } 1.3 \text{V}$ 3.9 7.4 16.3 3.6 18.4 20.2 ns $\frac{V_{CC}}{V_{CC}} = 1.4 \text{V to } 1.6 \text{V}$ 3.0 5.1 9.4 2.5 11.1 12.3 ns $\frac{V_{CC}}{V_{CC}} = 1.65 \text{V to } 1.95 \text{V}$ 2.2 4.2 7.2 2.1 8.7 9.6 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.3 4.9 1.9 5.7 6.4 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 6.5 7.2 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 2.0 3.5 5.4 1.9 5.7 6.4 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V}$ 3.0 5.6 10.3 2.5 12.2 13.4 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V to } 3.6 \text{V}$ 3.0 5.6 10.3 2.5 12.2 13.4 ns $\frac{V_{CC}}{V_{CC}} = 3.0 \text{V to } 3.6 \text{V to } 3.6 \text{V}$ 3.9 6.0 2.0			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.8	3.4	5.4	1.7	6.4	7.1	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.8	3.1	4.8	1.7	5.7	6.3	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{dis} disable time	disable time	OE to Y; see Figure 9	[4]							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 0.8 \text{ V}$		-	33.7	-	-	-	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.4	5.4	9.0	3.2	10.0	11.0	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.1	4.1	6.3	2.1	7.1	7.9	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.3	4.2	6.3	1.8	7.1	7.9	ns
propagation delay $A ext{ to Y; see } Figure 8$ $V_{CC} = 0.8 ext{ V}$ $V_{CC} = 1.1 ext{ V to } 1.3 ext{ V}$ $V_{CC} = 1.4 ext{ V to } 1.6 ext{ V}$ $V_{CC} = 1.4 ext{ V to } 1.6 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.3 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.3 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.3 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.3 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 1.95 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 1.65 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V to } 2.7 ext{ V}$ $V_{CC} = 2.3 ext{ V$			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.6	3.0	4.6	1.7	5.2	5.7	ns
propagation delay $A ext{ to } Y; ext{ see } \frac{\text{Figure } 8}{\text{V}_{CC} = 0.8 \text{ V}} - 29.0$			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.1	3.8	5.7	1.7	6.4	7.1	ns
$V_{CC} = 0.8 \text{ V} \qquad - \qquad 29.0 \qquad - \qquad - \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V} \qquad 3.9 \qquad 7.4 \qquad 16.3 \qquad 3.6 \qquad 18.4 \qquad 20.2 \text{ns}$ $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V} \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \text{ns}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V} \qquad 2.2 \qquad 4.2 \qquad 7.2 \qquad 2.1 \qquad 8.7 \qquad 9.6 \text{ns}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \qquad 2.0 \qquad 3.5 \qquad 5.4 \qquad 1.9 \qquad 6.5 \qquad 7.2 \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad 2.0 \qquad 3.3 \qquad 4.9 \qquad 1.9 \qquad 5.7 \qquad 6.4 \text{ns}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V} \qquad 2.0 \qquad 3.3 \qquad 4.9 \qquad 1.9 \qquad 5.7 \qquad 6.4 \text{ns}$ $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V} \qquad 4.0 \qquad 8.2 \qquad 18.2 \qquad 3.6 \qquad 20.4 \qquad 22.5 \text{ns}$ $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V} \qquad 4.0 \qquad 8.2 \qquad 18.2 \qquad 3.6 \qquad 20.4 \qquad 22.5 \text{ns}$ $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V} \qquad 3.0 \qquad 5.6 \qquad 10.3 \qquad 2.5 \qquad 12.2 \qquad 13.4 \text{ns}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V} \qquad 2.3 \qquad 4.6 \qquad 7.9 \qquad 2.1 \qquad 9.5 \qquad 10.5 \text{ns}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V} \qquad 2.1 \qquad 3.9 \qquad 6.0 \qquad 2.0 \qquad 7.2 \qquad 7.9 \text{ns}$	C _L = 15 p	o F									
$V_{CC} = 1.1 \ V \ to \ 1.3 \ V \\ V_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.0 \ $	pd	propagation delay	A to Y; see Figure 8	[2]							
$V_{CC} = 1.4 \ V \ to \ 1.6 \ V \qquad 3.0 \qquad 5.1 \qquad 9.4 \qquad 2.5 \qquad 11.1 \qquad 12.3 \qquad ns \\ V_{CC} = 1.65 \ V \ to \ 1.95 \ V \qquad 2.2 \qquad 4.2 \qquad 7.2 \qquad 2.1 \qquad 8.7 \qquad 9.6 \qquad ns \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \qquad 2.0 \qquad 3.5 \qquad 5.4 \qquad 1.9 \qquad 6.5 \qquad 7.2 \qquad ns \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \qquad 2.0 \qquad 3.3 \qquad 4.9 \qquad 1.9 \qquad 5.7 \qquad 6.4 \qquad ns \\ \hline OE \ to \ Y; \ see \ Figure \ 9 \qquad \boxed{3} \qquad \qquad$			$V_{CC} = 0.8 \text{ V}$		-	29.0	-	-	-	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.9	7.4	16.3	3.6	18.4	20.2	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		3.0	5.1	9.4	2.5	11.1	12.3	ns
$\begin{array}{c} V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ N_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ \hline \\ N_{CC} = 0.8 \ V \\ \hline \\ N_{CC} = 1.1 \ V \ to \ 1.3 \ V \\ \hline \\ N_{CC} = 1.4 \ V \ to \ 1.6 \ V \\ \hline \\ N_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ \hline \\ N_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ \hline \\ $			$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.2	4.2	7.2	2.1	8.7	9.6	ns
enable time OE to Y; see Figure 9 OE to Y; see Figure 9 OE To Y: see Fi			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.0	3.5	5.4	1.9	6.5	7.2	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	3.3	4.9	1.9	5.7	6.4	ns
$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ 4.0 8.2 18.2 3.6 20.4 22.5 ns $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$ 3.0 5.6 10.3 2.5 12.2 13.4 ns $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ 2.3 4.6 7.9 2.1 9.5 10.5 ns $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ 2.1 3.9 6.0 2.0 7.2 7.9 ns	en	enable time	OE to Y; see Figure 9	[3]							
$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$ 3.0 5.6 10.3 2.5 12.2 13.4 ns $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ 2.3 4.6 7.9 2.1 9.5 10.5 ns $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ 2.1 3.9 6.0 2.0 7.2 7.9 ns			$V_{CC} = 0.8 \text{ V}$		-	77.8	-	-	-	-	ns
$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ 2.3 4.6 7.9 2.1 9.5 10.5 ns $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ 2.1 3.9 6.0 2.0 7.2 7.9 ns			$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		4.0	8.2	18.2	3.6	20.4	22.5	ns
$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ 2.1 3.9 6.0 2.0 7.2 7.9 ns			V _{CC} = 1.4 V to 1.6 V		3.0	5.6	10.3	2.5	12.2	13.4	ns
$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ 2.1 3.9 6.0 2.0 7.2 7.9 ns			$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.3	4.6	7.9	2.1	9.5	10.5	ns
			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.1	3.9	6.0	2.0	7.2	7.9	ns
				2.1	3.6	5.5	1.9	6.4	7.1	ns	

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10

Symbol	Parameter	Conditions			25 °C		-4	Unit		
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
t _{dis}	disable time	OE to Y; see Figure 9	[4]			'			'	'
		$V_{CC} = 0.8 \text{ V}$		-	62.5	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		4.3	6.6	10.4	3.6	11.6	12.8	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		3.0	5.0	7.4	2.5	8.4	9.3	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		3.0	5.3	7.8	2.1	8.7	9.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.1	3.8	5.7	2.0	6.4	7.1	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.9	5.0	7.4	1.9	8.3	9.1	ns
C _L = 30	oF									
t _{pd}	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 \text{ V}$		-	39.1	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		5.0	9.7	21.6	4.6	24.3	26.8	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		4.0	6.7	12.3	3.0	14.6	16.1	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	5.5	9.5	2.7	11.5	12.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.7	4.6	7.1	2.5	8.6	9.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.6	4.3	6.4	2.5	7.7	8.5	ns
t _{en}	enable time	OE to Y; see Figure 9	[3]							
		$V_{CC} = 0.8 \text{ V}$		-	89.4	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		5.2	10.6	23.8	4.6	26.7	29.5	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		4.0	7.3	13.2	3.0	15.7	17.4	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		3.0	6.0	10.2	2.7	12.3	13.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.8	5.0	7.8	2.6	9.3	10.3	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.8	4.8	7.1	2.6	8.4	9.3	ns
t _{dis}	disable time	OE to Y; see Figure 9	[4]							
		$V_{CC} = 0.8 \text{ V}$		-	68.9	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		6.0	9.3	15.0	4.6	16.5	18.2	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		4.4	7.7	11.0	3.0	12.2	13.4	ns
		V_{CC} = 1.65 V to 1.95 V		5.1	8.8	12.4	2.7	13.7	15.1	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		3.6	6.2	9.0	2.6	10.0	11.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		5.2	8.8	12.7	2.6	14.0	15.4	ns

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 10

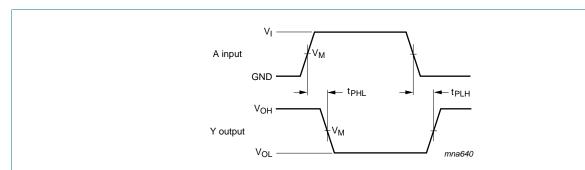
Symbol	Parameter	Conditions			25 °C		-40	Unit		
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
$C_L = 5 pl$	F, 10 pF, 15 pF and	30 pF								
C _{PD} power dissipation capacitance		$f_i = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[5]</u>							
		$V_{CC} = 0.8 \text{ V}$		-	2.7	-	-	-	-	pF
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		-	2.9	-	-	-	-	pF
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-	3.0	-	-	-	-	pF
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	3.2	-	-	-	-	pF
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	3.7	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	4.2	-	-	-	-	pF

- [1] All typical values are measured at nominal V_{CC}.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL}
- [3] t_{en} is the same as t_{PZH} and t_{PZL}
- [4] t_{dis} is the same as t_{PHZ} and t_{PLZ}
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;


C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

12. Waveforms

Measurement points are given in Table 9.

Logic levels: V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

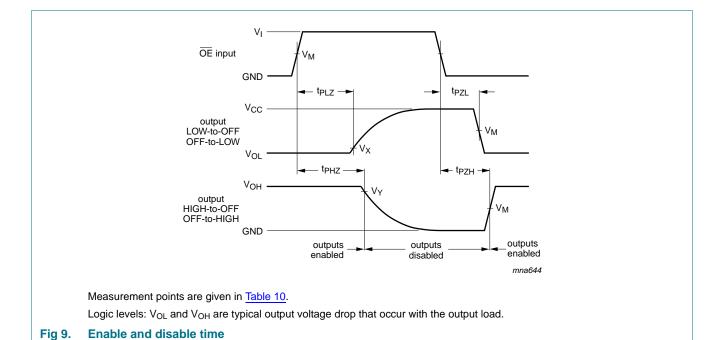

Fig 8. The data input (A) to output (Y) propagation delays

Table 9. Measurement points

Supply voltage	Output	Input		
V _{CC}	V _M	V _M	VI	$t_r = t_f$
0.8 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns

74AUP1G240

All information provided in this document is subject to legal disclaimers.

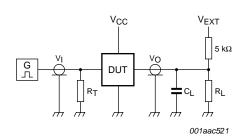

Measurement points

Table 10.

Supply voltage	Input	Output							
V _{CC}	V _M	V _M	V _X	V _Y					
0.8 V to 1.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.1 V	$V_{OH} - 0.1 V$					
1.65 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V					
3.0 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OI} + 0.3 V	V _{OH} – 0.3 V					

NXP Semiconductors 74AUP1G240

Low-power inverting buffer/line driver; 3-state

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

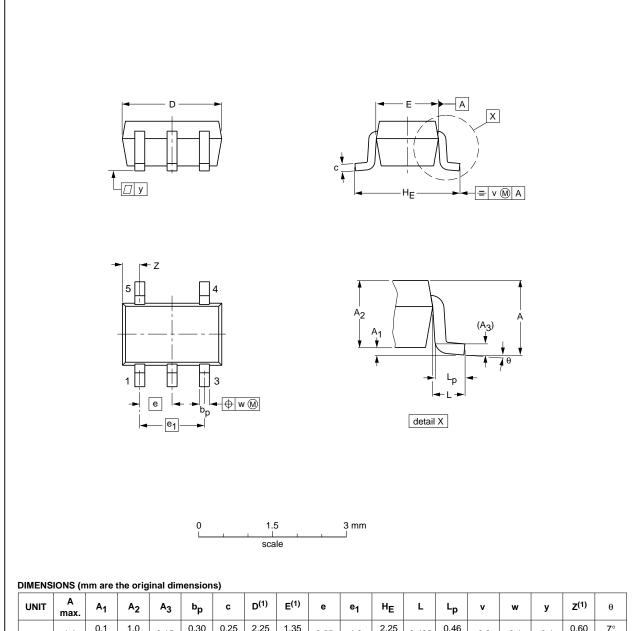
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 10. Test circuit for measuring switching times

Table 11. Test data


Supply voltage	Load		V _{EXT}				
V _{CC}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}		
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2\times V_{CC}$		

[1] For measuring enable and disable times R_L = 5 k Ω , for measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

13. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.1 0	1.0 0.8	0.15	0.30 0.15	0.25 0.08	2.25 1.85	1.35 1.15	0.65	1.3	2.25 2.0	0.425	0.46 0.21	0.3	0.1	0.1	0.60 0.15	7° 0°

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC JEDEC		JEITA	PROJECTION	1330E DATE	
SOT353-		MO-203	SC-88A		-00-09-01 03-02-19	

Fig 11. Package outline SOT353-1 (TSSOP5)

74AUP1G240

All information provided in this document is subject to legal disclaimers.

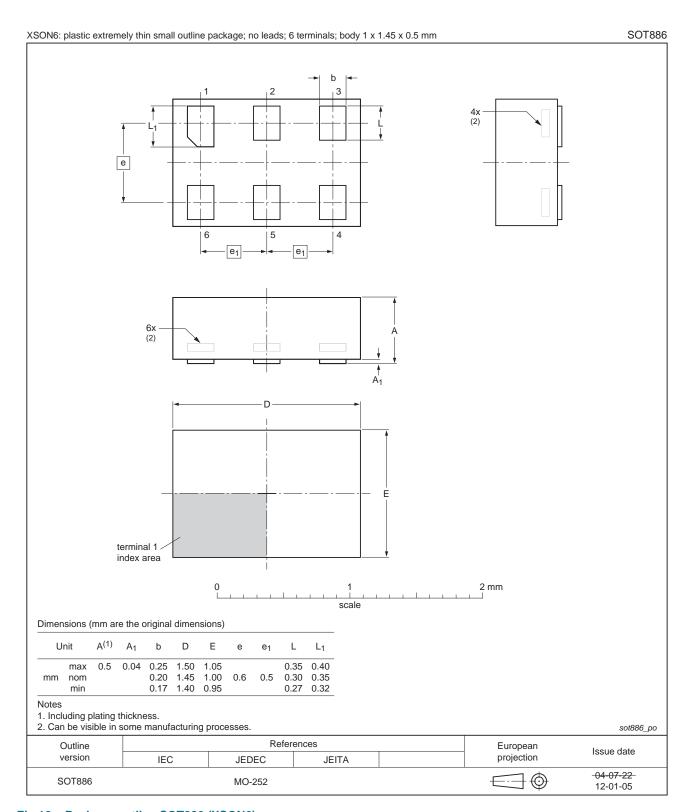


Fig 12. Package outline SOT886 (XSON6)

74AUP1G240 All information provided in this document is subject to legal disclaimers.

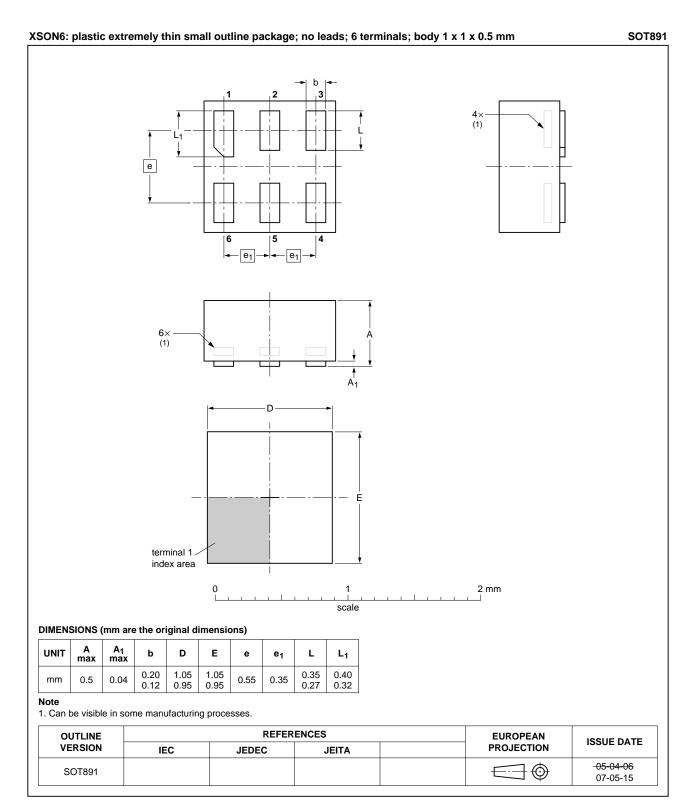


Fig 13. Package outline SOT891 (XSON6)

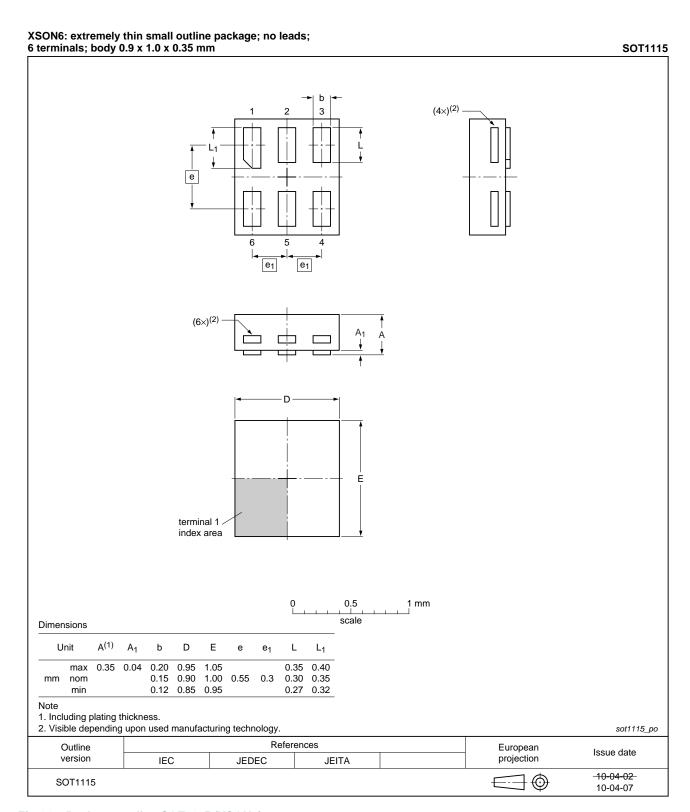


Fig 14. Package outline SOT1115 (XSON6)

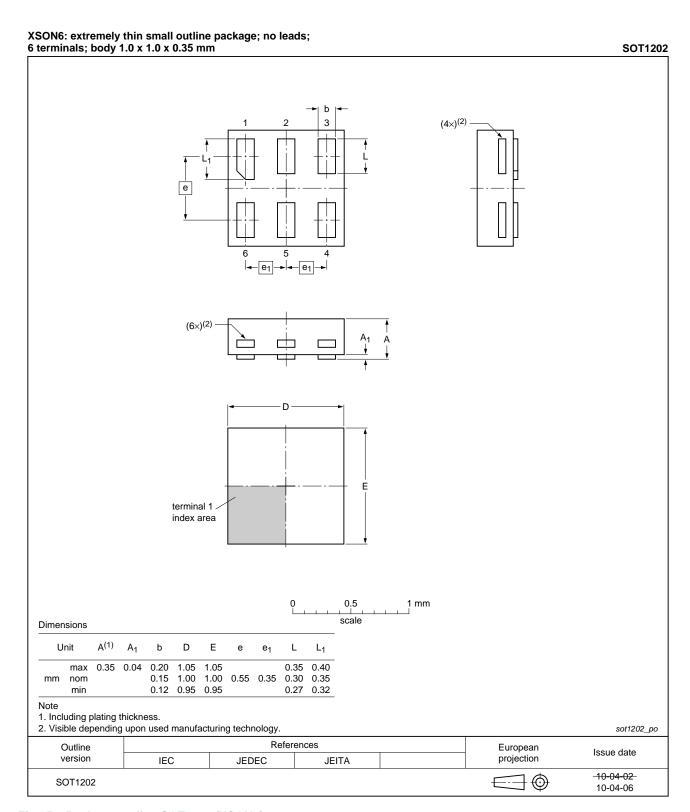


Fig 15. Package outline SOT1202 (XSON6)

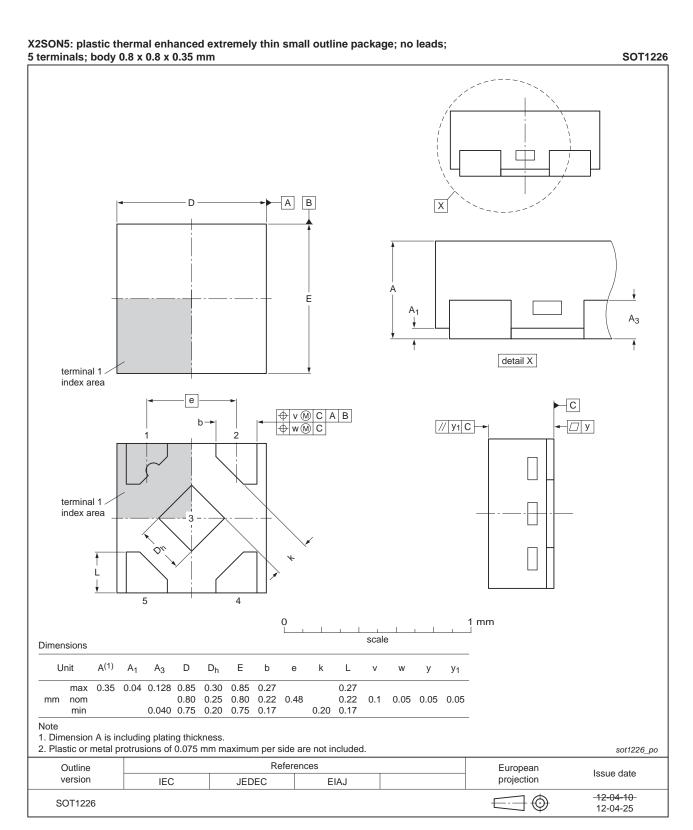


Fig 16. Package outline SOT1226 (X2SON5)

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G240 v.4	20120629	Product data sheet	-	74AUP1G240 v.3
Modifications:	 Added type 	number 74AUP1G240GX	(SOT1226)	
	 Package ou 	tline drawing of SOT886 (Figure 12) modified.	
74AUP1G240 v.3	20111124	Product data sheet	-	74AUP1G240 v.2
Modifications:	 Legal pages 	s updated.		
74AUP1G240 v.2	20100913	Product data sheet	-	74AUP1G240 v.1
74AUP1G240 v.1	20061106	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AUP1G240

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors 74AUP1G240

Low-power inverting buffer/line driver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AUP1G240

Low-power inverting buffer/line driver; 3-state

18. Contents

General description
Features and benefits
Ordering information 2
Marking 2
Functional diagram 2
Pinning information 3
Pinning
Pin description
Functional description 4
Limiting values 4
Recommended operating conditions 4
Static characteristics 5
Dynamic characteristics 8
Waveforms
Package outline
Abbreviations
Revision history
Legal information
Data sheet status 21
Definitions
Disclaimers
Trademarks22
Contact information 22
Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.