

Current Transducer LT 4000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

_{PN}	Primary nominal r.m.s. current Primary current, measuring range		4000 0 ± 6000		A A
$\mathbf{R}_{\scriptscriptstyleM}$	Measuring resistance		\mathbf{R}_{Mmin}	\mathbf{R}_{Mma}	ax
	with ± 24 V	@ \pm 4000 A _{max}	0	10	Ω
		@ ± 6000 A max	0	2	Ω
I _{SN}	Secondary nominal r.m.s. current		800		m A
K _N	Conversion ratio		1:500	0	
v c	Supply voltage (±5%)		± 24		V
I _c	Current consumption		$35(@\pm 24V)+I_{s} mA$		
$\check{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		ڏΚV

Accuracy - Dynamic performance data

$oldsymbol{\epsilon}_{\scriptscriptstyle{L}}^{\scriptscriptstyle{G}}$	Overall accuracy @ I_{PN} , $T_A = 25$ °C Linearity		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_o	- 25℃ + 70℃	Typ ± 0.6	Max ± 0.8 ± 0.8	m A m A
t _r di/dt f	Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs Α/μs kHz

General data

T _A	Ambient operating temperature Ambient storage temperature	- 25 + 70 - 40 + 85	oc O	
R _s	Secondary coil resistance @ T _A = 70 °C	15	Ω	
m	Mass	6	kg	
	Standards	EN 50178: 19	EN 50178: 1997	

 $I_{PN} = 4000 A$

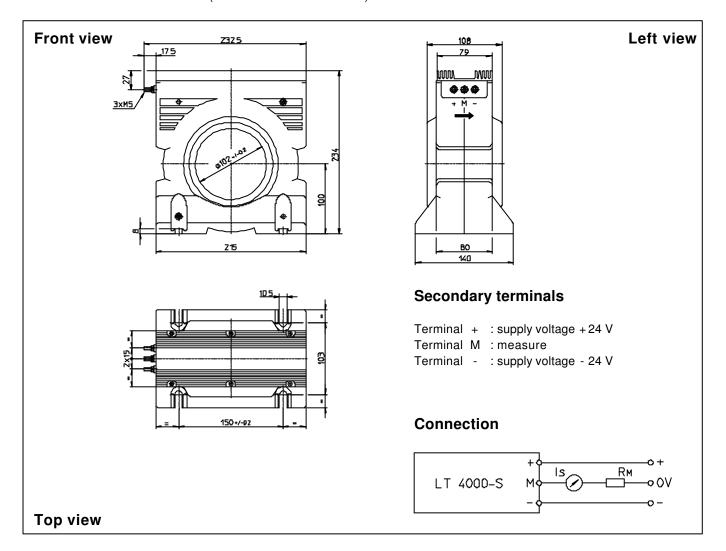
Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note: 1) With a di/dt of 100 A/ μ s.

070706/9

Dimensions LT 4000-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary fastening torque
- ± 1.0 mm

2.2 Nm

- 4 holes \varnothing 10.5 mm \varnothing 102 mm
- M5 threaded studs

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.