Features

* High-performance, Low-power AVR ® 8-bit Microcontroller
* Advanced RISC Architecture
— 133 Powerful Instructions — Mo st Single Clock Cycle Execution
— 32 x 8 General Purpose Working Regist ers + Peripheral Control Registers
— Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Non volatile Program and Data Memories
— 32K/64K/128K Bytes of In-System Re programmable Flash (AT90CAN32/64/128)
« Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
* Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
¢ In-System Programming by On-C hip Boot Program (CAN, UART, ...)
¢ True Read-While-Write Operation
— 1K/2K/4K Bytes EEPROM (Endurance: 100,000 Write/Er ase Cycles) (A T9OCAN32/64/128)
— 2K/4K/4K Bytes Internal SRAM (AT90CAN32/64/128)
— Up to 64K Bytes Optional External Memory Space
— Programming Lock fo r Software Security
* JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Programming Flash (Hardware ISP), EEPR OM, Lock & Fuse Bits
— Extensive On-chip Debug Support
 CAN Controller 2.0A & 2.0B - ISO 16845 Certified
— 15 Full Message Objects with Separate Identifier Tags and Masks
— Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
— 1Mbits/s Maximum Transfer Rate at 8 MHz
— Time stamping, TTC & Listening Mode (Spying or Autobaud)
* Peripheral Features
— Programmable Watchdog Timer with On-chip Oscillator
— 8-bit Synchronous Timer/Counter-0
¢ 10-bit Prescaler
« External Event Counter
¢ Qutput Compare or 8-bit PWM Output
— 8-bit Asynchronous Timer/Counter-2
* 10-bit Prescaler
« External Event Counter
¢ Output Compare or 8-Bit PWM Output
« 32Khz Oscillator for RTC Operation
— Dual 16-bit Synchronous Timer/Counters-1 & 3
¢ 10-bit Prescaler
¢ Input Capture with Noise Canceler
« External Event Counter
¢ 3-Output Compare or 16-Bit PWM Output
« Output Compare Modulation
— 8-channel, 10-bit SAR ADC
« 8 Single-ended Channels
« 7 Differential Channels
« 2 Differential Channels With Programmable Gain at 1x, 10x, or 200x
On-chip Analog Comparator
Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USART
— Master/Slave SPI Serial Interface
¢ Programming Flash (Hardware ISP)
* Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— 8 External Interrupt Sources
— 5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
— Software Selectable Clock Frequency
— Global Pull-up Disable
* |/O and Packages
— 53 Programmable 1/O Lines
— 64-lead TQFP and 64-lead QFN
* Operating Voltages: 2.7 - 5.5V
* Operating temperature: Industrial (-40C to +85<C)
e Maximum Frequency: 8 MHz at 2.7V, 16 MHz at 4.5V

Note: 1. Details on section 19.4.3 on page 242.

ATMEL

Y

8-bit AVR
Microcontroller
with
32K/64K/128K
Bytes of

ISP Flash

and

CAN Controller

AT90CANS2
AT90CANG4
AT90CAN128

Rev. 7679H-CAN-08/08

1. Description

ATMEL

1.1 Comparison Between AT90 CAN32, AT90OCAN64 and AT90CAN128

AT90CAN32, AT90CANG64 and AT90CAN128 are hardware and software compatible. They dif-

fer only in memory sizes as shown in Table 1-1.

Table 1-1.

Memory Size Summary

Device

Flash

EEPROM

RAM

AT90CAN32

32K Bytes

1K Byte

2K Bytes

AT90CANG4

64K Bytes

2K Bytes

4K Bytes

AT90CAN128

128K Bytes

4K Byte

4K Bytes

1.2

Part Description

The AT90CAN32/64/128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
AT90CAN32/64/128 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The AT90CAN32/64/128 provides the following features: 32K/64K/128K bytes of In-System Pro-
grammable Flash with Read-While-Write capabilities, 1K/2K/4K bytes EEPROM, 2K/4K/4K
bytes SRAM, 53 general purpose /O lines, 32 general purpose working registers, a CAN con-
troller, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, 2
USARTS, a byte oriented Two-wire Serial Interface, an 8-channel 10-bit ADC with optional differ-
ential input stage with programmable gain, a programmable Watchdog Timer with Internal
Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for
accessing the On-chip Debug system and programming and five software selectable power sav-
ing modes.

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI/CAN ports and
interrupt system to continue functioning. The Power-down mode saves the register contents but
freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware
Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to main-
tain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops
the CPU and all /O modules except Asynchronous Timer and ADC, to minimize switching noise
during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the
rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By

2 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

1.3 Disclaimer

7679H-CAN-08/08

combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel AT90CAN32/64/128 is a powerful microcontroller that provides a highly flexible and
cost effective solution to many embedded control applications.

The AT90CAN32/64/128 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emula-
tors, and evaluation kits.

Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

ATMEL ;

1.4 Block Diagram

ATMEL

Figure 1-1. Block Diagram
e
| .
PF7 - PFO PA7 - PAO PC7 - PCO z z| |2
A A A A A A A x x x
oo mmm----- --t-d--F-1----F-4--------- --F-3---F-1----F--------- ---F-4----F-4-4----]----1 B '
1
1
, VY AR 'y v
VCC | | PORTF DRIVERS PORTA DRIVERS PORTC DRIVERS
1
GND !
1
= ! DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
. PORTF REG. PORTF PORTA REG. PORTA PORTC REG. PORTC
1
, i i i i 8-BIT DATA BUS i i
<& >
1
| [A
. POR-BOD [%
AVCC 1 > RESET |« INTERNAL
1
| OSCILLATOR | CALIB. OSC |
AGND ADC l
1
AREF ! » OSCILLATOR |
X v v WATCHDOG |_
| PROGRAM STACK | TIMER
i —>| JTAG TAP | "l COUNTER |' | POINTER [€7 |
| OSCILLATOR [
1
o 8 :
| PROGRAM MCU CONTROL TIMING AND CAN
SRAM NTROLLER
! —>|ON-CHIP DEBUGI: ->| FLASH | ::I |<—’ ‘—'l REGISTER | > CONTROL CONTRO
! —I_ A Y
1
| _-
! INSTRUCTION TIMER/ >
| GENERAL 4—>| E
\ REGISTER >l PURPOSE > COUNTERS -
. REGISTERS
: g X
! PRocEgg'I\:l:MING INSTRUCTION [Y INTERRUPT
| DECODER L UNIT
1
' |
! v
1
CONTROL
1
1
1
1
1
1
1
.]
! < » * *
, | TWO-WIRE SERIAL
! USARTO > SPI USART1 INTERFACE
1
| , A i
1 A
! < b v 12 v >
1
I A X K A]
1
1 Y
1
1
5 v vV l v i vy v ¢ vV v l v v
' 8k DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATAREGISTER DATA DIR. DATAREG. | | DATA DIR.
YA PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD PORTG ||REG. PORTG
1 ze
=
55 | Lk vviveeee
10
1
! | PORTE DRIVERS | PORTB DRIVERS PORTD DRIVERS | I PORTG DRIVERS
. A A A A A
1
[U AU Sy AP N S A P, U (O R AU (N Y A U Y N A ! AN . JEUPER S [Y A
YVYVYY \
PE7 - PEO PB7 - PBO PD7 - PDO PG4 - PGO

ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

1.5 Pin Configurations

Figure 1-2. Pinout AT90CAN32/64/128 - TQFP

S @ 0O =
O = O 0o
L
S 3 8§83 885 5 3 8
QA O o o o o o o o O 0o
8 b £ £ £ £ £ £ < < < < <
3] [2] [5] 2] [2] [3] [2] [5] [B] [B] [Z] [2] [¥] [E] [B] 3]

IS
©

NC® PA3 (AD3)

N
J

(RXDO / PDI) PEO PA4 (AD4)

Q\

INDEX CORNER

S

(TXDO / PDO) PE1 PAS (AD5)

ey

(XCKO / AINO) PE2 PA6 (AD6)

~
i

8] [e] [&] 8] [e] 8] [8] [s] (2] [&] [&] [&] [&] [8] [&] [&]

(OC3A/ AIN1) PE3 PA7 (AD7)

N

(OC3B / INT4) PE4 PG2 (ALE)

(OC3C /INT5) PE5S PC7 (A15/ CLKO)

(T3/INT6) PE6 PC6 (A14)

(64-lead TQFP top view)

(Bl [&] [B] [&] [R][F][E][e]l [=] [s] [o] [a] [o] [o] [~] [~]

(ICP3/INT7) PE7 PC5 (A13)
(SS) PBO PC4 (A12)
(SCK) PB1 PC3 (Al1)
(MOSI) PB2 PC2 (A10)
(MISO) PB3 36| PC1 (A9)
(OC2A) PB4 35| PCO (A8)
(OC1A) PB5 4| PG1 (RD)
(OC1B) PB6 3| PGO (WR)
[s] (=] [a] [&] [&] (] [R] [&] [&] [&] [&] [&] [’] [8] [=] [&]
B 8 ol 8 2 3 8 3 8 8 8 8 8 B
g £ 8 & g ‘% L &£ a o a a a 4o a a
c & & ¥ X X 8 @9 8§ ®» 9 g 9 &
P E E E E o X + E
O O O z z z z O 0O = *«
o 9 0 T T I I = X z
2 0 O 3 3 3 3 Sz
g = F 8388 z3g
0 = 2 2 £ o 2
S x b g <

®NC = Do not connect (May be used in future devices)
@ Timer2 Oscillator

ATMEL ;

7679H-CAN-08/08

Figure 1-3. Pinout AT90CAN32/64/128 - QFN

@0 =
O = 0 0
- F
S aN® T w o~ o
O O O O O O O O o d o
e e aNaENaEN ol alNa) [a NN a]
0 p e KSENSERS
O Wodaoawmswmon~2 0o 9w
S 2 @ 0o LWL WL 20 << <L
< O < oo O >oaoaaa
<t M N 4 O O 0N © I S MO N 4 O O
© © O O O W O O 1 W v v W W nu <
NC® |1 48 | PA3 (AD3)
(RXDO/ PDI) PEO | 2 47 | PA4 (AD4)
TXDO/PDO) PE1 | 3 46 | PA5 (AD5
INDEX CORNER
(XCKO/ AINO) PE2 | 4 45 | PA6 (AD6)
(OC3A/AIN1)PE3 | 5 44 | PA7 (AD7)
(OC3B/INT4)PE4 | 6 43 | PG2 (ALE)
(OC3C/INT5) PE5 | 7 42 | PC7 (A15/ CLKO)
(T3/INT6) PE6 | 8 41 | PC6 (Al14)
(ICP3/INT7) PE7 | 9 (64-lead QFN top view) 40 | PC5 (A13)
(SS)PBO | 10 39 | PC4 (A12)
(SCK) PB1 | 11 38 | PC3 (A11)
(MOSI)PB2 | 12 37 | PC2 (A10)
(MISO) PB3 | 13 36 | PC1 (A9)
(OC2A) PB4 | 14 35 | PCO (A8)
(OC1A) PB5 | 15 34 | PG1 (RD)
(OC1B) PB6 | 16 33 | PGO (WR)
M~ 0 O © 4 N M < I © I~ 0 oo O d
A+ 4 N N N N NN NN NN MmO m
N o S OO N d O 4 N M S W O N~
o [—
50¢Hczz28580888¢8¢
S5« 2 XX agamagao
o W EEEE QL X F E
0O QO O zZzz2z00~>—
°© 22 =S ===%2xz
S EE o388 z9
o oz oz
3 x e 2=

WNC = Do not connect (May be used in future devices)

@ Timer2 Oscillator

Note: The large center pad underneath the QFN package is made of metal and internally connected to
GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center
pad is left unconnected, the package might loosen from the board.

1.6 Pin Descriptions

16.1 VCC
Digital supply voltage.
1.6.2 GND
Ground.
6 ATO0CANSG2/64/128 m———————————————————————————————

7679H-CAN-08/08

s A TO0CAN32/64/128

1.6.3 Port A (PA7..PAO)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port A also serves the functions of various special features of the AT90CAN32/64/128 as listed
on page 74.

1.6.4 Port B (PB7..PBO)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the AT90CAN32/64/128 as listed
on page 76.

1.6.5 Port C (PC7..PCO)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of special features of the AT90CAN32/64/128 as listed on page
78.

1.6.6 Port D (PD7..PDO)

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the AT90CAN32/64/128 as listed
on page 80.

1.6.7 Port E (PE7..PEO)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the AT90CAN32/64/128 as listed
on page 83.

1.6.8 Port F (PF7..PF0)

7679H-CAN-08/08

Port F serves as the analog inputs to the A/D Converter.

ATMEL 7

ATMEL

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled, the pull-
up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

1.6.9 Port G (PG4..PG0)
Port G is a 5-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output
buffers have symmetrical drive characteristics with both high sink and source capability. As
inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are
activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock
is not running.

Port G also serves the functions of various special features of the AT90CAN32/64/128 as listed
on page 88.

1.6.10 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset. The minimum pulse length is given in characteristics. Shorter pulses are not guaranteed
to generate a reset. The 1/O ports of the AVR are immediately reset to their initial state even if
the clock is not running. The clock is needed to reset the rest of the AT90OCAN32/64/128.

1.6.11 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

1.6.12 XTAL2
Output from the inverting Oscillator amplifier.

1.6.13 AVCC
AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally con-
nected to V., even if the ADC is not used. If the ADC is used, it should be connected to V¢
through a low-pass filter.

1.6.14 AREF
This is the analog reference pin for the A/D Converter.

2. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

8 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

3. AVR CPU Core

3.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

3.2 Architectural Overview

7679H-CAN-08/08

Figure 3-1. Block Diagram of the AVR Architecture

(Data Bus 8-bit

\ 4
Program Status
Flash < Counter [T and Control |
Program
Memory <
Interrupt
v > 32x8 > Unit
Instruction General
Register Purpose SP|
< Registrers <> Unit
A
Instruction Watchdog
Decoder A Y < Timer
o 2 N
= 1)
0 0
l 3 e ALU PN Analog
Control Lines 3 2 Comparator
<
- ©
8] ()
(4] =
= e} N
e £ <1 1/0 Modulel
g Data «>l«> 110 Module 2
> SRAM
<—>» |/O Module n
EEPROM <
I/0O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

ATMEL ;

ATMEL

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File —in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM (Store Program Memory) instruction that writes into the Application Flash
memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher is the priority.

The 1/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other 1/0O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the
AT90CAN32/64/128 has Extended I/O space from 0x60 - OxFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

3.3 ALU - Arithm etic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set Summary” section for a detailed description.

10 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

3.4 Status Register
The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| [| 7 | H] s | v N p2 C | SREG

Read/Write R/W RIW RIW R/W RIW R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 —I: Global Interrupt Enable

The Global Interrupt Enable bit must be set to enabled the interrupts. The individual interrupt
enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

« Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit5 - H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

e Bit4-S:SignBit, S=N @V
The S-bit is always an EXCLUSIVE OR between the negative flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’'s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.

e Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1l-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

ATMEL i

7679H-CAN-08/08

ATMEL

 Bit0-C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

3.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
* One 8-bit output operand and one 8-bit result input
« Two 8-bit output operands and one 8-bit result input
< Two 8-bit output operands and one 16-bit result input
* One 16-bit output operand and one 16-bit result input
Figure 3-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0X0E
Purpose R15 OxOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 3-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

351 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 3-3.

12 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

Figure 3-3. The X-, Y-, and Z-registers

15 XH XL
X-register I7 o]~ o]
R27 (OX1B) R26 (OX1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (Ox1D) R28 (OX1C)
15 ZH ZL 0
Z-register I 0 |7 0 |
R31 (OX1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

3.5.2 Extended Z-pointer Register for ELPM/SPM — RAMPZ

Bit 7 6 5 4 3 2 1 0
| - | - | - | - - - - RAMPZO | RAMPZ

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7..1 — Res: Reserved Bits
These bits are reserved for future use and will always read as zero. For compatibility with future
devices, be sure to write to write them to zero.

* Bit 0 - RAMPZO0: Extended RAM Page Z-pointer

The RAMPZ Register is normally used to select which 64K RAM Page is accessed by the Z-
pointer. As the AT90CAN32/64/128 does not support more than 64K of SRAM memory, this reg-
ister is used only to select which page in the program memory is accessed when the ELPM/SPM
instruction is used. The different settings of the RAMPZ0 bit have the following effects:

RAMPZ0 = 0: Program memory address 0x0000 - Ox7FFF (lower 64K bytes) is accessed by
ELPM/SPM

RAMPZ0 = 1: Program memory address 0x8000 - OxFFFF (higher 64K bytes) is accessed by
ELPM/SPM

— AT90CAN32 and AT90CANG64: RAMPZO0 exists as register bit but it is not used for
program memory addressing.

— AT90CAN128: RAMPZ0 exists as register bit and it is used for program memory
addressing.

Figure 3-4. The Z-pointer used by ELPM and SPM
Bit (Individually) 7 o 7 o 7 0
| RAMPZ ZH zZL

Bit (Z-pointer) 23 16 15 8 7 0

Note: LPM (different of ELPM) is never affected by the RAMPZ setting.

ATMEL i

7679H-CAN-08/08

3.6

3.7

14

Stack Pointer

ATMEL

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above OxFF. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is heeded. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkcpy,, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 3-5 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 3-5. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

ok —4 N

CPU
1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 T
1 1 1
1 1 1
1 1 1
T T T
1 1 1
1 1 1
T T T
1 1 1
1 1 1

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Figure 3-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 3-6. Single Cycle ALU Operation

T1 T2 T3 T4
1 1 1 1
1 1 1 1
1 1 1 1

ok —4 —1) 7

CPU
Total Execution ime

Register Operands Fetch

ALU Operation Execute

Result Write Back

3.8 Reset and In terrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 336 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 60. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 60 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Boot Loader Support — Read-While-Write Self-Programming” on page
321.

3.8.1 Interrupt Behavior
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
interrupt flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector
in order to execute the interrupt handling routine, and hardware clears the corresponding inter-
rupt flag. Interrupt flags can also be cleared by writing a logic one to the flag bit position(s) to be
cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared,
the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared
by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable
bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.

ATMEL i

7679H-CAN-08/08

ATMEL

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; sStart EEPROM write

sbi EECR, EEWE

out SREG, rlé ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_CLI();

EECR |= (1<<EEMWE) ; /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ,; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP() ; /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

16 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

3.8.2 Interrupt Response Time

7679H-CAN-08/08

The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling routine
is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack.
The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If
an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed
before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt
execution response time is increased by four clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

ATMEL Y

4. Memories

ATMEL

This section describes the different memories in the AT90CAN32/64/128. The AVR architecture
has two main memory spaces, the Data Memory and the Program Memory space. In addition,
the AT90CAN32/64/128 features an EEPROM Memory for data storage. All three memory
spaces are linear and regular.

Table 4-1. Memory Mapping.
Memory Mnemonic AT90CAN32 AT90CANG64 AT90CAN128
Size Flash size 32 K bytes 64 K bytes 128 K hytes
Start Address - 0x00000
Flash
O0x07FFF® OXOFFFF® Ox1FFFF®W
End Address Flash end
Ox3FFF® OX7FFF® OXFFFF®
Size - 32 bytes
3.’2 Start Address - 0x0000
Registers
End Address - 0x001F
Size - 64 bytes
I/0
. Start Address - 0x0020
Registers
End Address - 0x005F
Size - 160 bytes
Ext I/O
. Start Address - 0x0060
Registers
End Address - Ox00FF
Size ISRAM size 2 K bytes ‘ 4 K bytes 4 K bytes
Internal
SRAM Start Address ISRAM start 0x0100
End Address ISRAM end O0x08FF ‘ O0x10FF O0x10FF
Size XMem size 0-64 K bytes
External
Start Address XMem start 0x0900 ‘ 0x1100 0x1100
Memory
End Address XMem end OxXFFFF
Size E2 size 1 K bytes ‘ 2 K bytes 4 K bytes
EEPROM | Start Address - 0x0000
End Address E2 end O0x03FF ‘ O0x07FF OxOFFF
Notes: 1. Byte address.

2. Word (16-bit) address.

4.1 In-System Reprogrammabl e Flash Program Memory
The AT90CAN32/64/128 contains On-chip In-System Reprogrammable Flash memory for pro-
gram storage (see “Flash size”). Since all AVR instructions are 16 or 32 bits wide, the Flash is
organized as 16 bits wide. For software security, the Flash Program memory space is divided
into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
AT90CAN32/64/128 Program Counter (PC) address the program memory locations. The opera-
tion of Boot Program section and associated Boot Lock bits for software protection are described
in detail in “Boot Loader Support — Read-While-Write Self-Programming” on page 321. “Memory
Programming” on page 336 contains a detailed description on Flash data serial downloading
using the SPI pins or the JTAG interface.

18 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Constant tables can be allocated within the entire program memory address space (see the
LPM — Load Program Memory and ELPM — Extended Load Program Memory instruction
description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Tim-
ing” on page 14.

Figure 4-1. Program Memory Map

Program Memory

0x0000

Application Flash Section

P —

Boot Flash Section

Flash end

4.2 SRAM Data Memory
Figure 4-2 shows how the AT90CAN32/64/128 SRAM Memory is organized.

The AT90CAN32/64/128 is a complex microcontroller with more peripheral units than can be
supported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For
the Extended I/O space in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be
used.

The lower data memory locations address both the Register File, the /O memory, Extended 1/O
memory, and the internal data SRAM. The first 32 locations address the Register File, the next
64 location the standard 1/0O memory, then 160 locations of Extended I/O memory, and the next
locations address the internal data SRAM (see “ISRAM size").

An optional external data SRAM can be used with the AT90CAN32/64/128. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area starts at
the address following the internal SRAM. The Register file, /0, Extended 1/O and Internal SRAM
occupies the lowest bytes, so when using 64 KB (65,536 bytes) of External Memory,
“XMem size” bytes of External Memory are available. See “External Memory Interface” on page
27 for details on how to take advantage of the external memory map.

ATMEL i

7679H-CAN-08/08

42.1

20

ATMEL

SRAM Data Access

When the addresses accessing the SRAM memory space exceeds the internal data memory
locations, the external data SRAM is accessed using the same instructions as for the internal
data memory access. When the internal data memories are accessed, the read and write strobe
pins (PGO and PG1) are inactive during the whole access cycle. External SRAM operation is
enabled by setting the SRE bit in the XMCRA Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the
internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP
take one additional clock cycle. If the Stack is placed in external SRAM, interrupts, subroutine
calls and returns take three clock cycles extra because the two-byte program counter is pushed
and popped, and external memory access does not take advantage of the internal pipe-line
memory access. When external SRAM interface is used with wait-state, one-byte external
access takes two, three, or four additional clock cycles for one, two, and three wait-states
respectively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles
more than specified in the instruction set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, 160 Extended I/0O Registers, and
the “ISRAM size” bytes of internal data SRAM in the AT90CAN32/64/128 are all accessible
through all these addressing modes. The Register File is described in “General Purpose Regis-
ter File” on page 12.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

4.2.2

7679H-CAN-08/08

Figure 4-2. Data Memory Map

Data Memory
32 Registers 0x0000 - Ox001F
64 1/0 Registers | 0x0020 - Ox005F
160 Ext I/0O Reg. | 0x0060 - OXOOFF
ISRAM start
Internal SRAM
(ISRAM size)
ISRAM end
XMem start
External SRAM
(XMem size)
I
| -
e
. !
| 1
. ! OXFFFF

SRAM Data Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clksp, cycles as described in Figure 4-3.

Figure 4-3. On-chip Data SRAM Access Cycles

T1 T2 T3
]]]
]]]
clkepy X X '
Address ! Compute Address ;X Address valid |
]]]
Data —— a D .
]]] ‘E
]] 1
WR ; n =
]]] —
]] / it -
Data ; — L —
]] 1 g
]]]
4
RD ! 1/ :\
]]] -
Memory Access Instruction Next Instruction

ATMEL 2

4.3

43.1

4.3.2

22

ATMEL

EEPROM Data Memory

The AT90CAN32/64/128 contains EEPROM memory (see “E2 size”). It is organized as a sepa-
rate data space, in which single bytes can be read and written. The EEPROM has an endurance
of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is
described in the following, specifying the EEPROM Address Registers, the EEPROM Data Reg-
ister, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
“SPI Serial Programming Overview” on page 348, “JTAG Programming Overview” on page 352,
and “Parallel Programming Overview” on page 339 respectively.

EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the 1/O space.

The write access time for the EEPROM is given in Table 4-2. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V. is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 26.for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

The EEPROM Address Registers — EEARH and EEARL

Bit 15 14 13 12 11 10 9 8
- - - - EEAR11 | EEAR10 | EEAR9 EEARS EEARH
EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL

7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X X X X
X X X X X X X X

e Bits 15..12 — Reserved Bits
These bits are reserved bits in the AT90CAN32/64/128 and will always read as zero.

e Bits 11..0 - EEAR11..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
EEPROM space (see “E2 size”). The EEPROM data bytes are addressed linearly between 0
and “E2 end”. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.

— AT90CAN32: EEAR11 & EEAR1O exist as register bit but they are not used for
addressing.

— AT90CANG64: EEAR11 exists as register bit but it is not used for addressing.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

4.3.3 The EEPROM Data Register — EEDR

Bit 7 6 5 4 3 2 1 0

I EEDR7 | EEDRG6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO I EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

4.3.4 The EEPROM Control Register — EECR

Bit 7 6 5 4 3 2 1 0

I - 1 - 1 - - EERIE | EEMWE | EEWE EERE | EECR
Read/Write R R R R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 X 0

e Bits 7..4 — Reserved Bits
These bits are reserved bits in the AT90CAN32/64/128 and will always read as zero.

« Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.

e Bit2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.

* Bit1- EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEWE bit must be written to one to write the value into the
EEPROM. The EEMWE bit must be written to one before a logical one is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program Mem-
ory Control and Status Register) becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot Loader

ATMEL 2

o~ w

7679H-CAN-08/08

24

ATMEL

Support — Read-While-Write Self-Programming” on page 321 for details about Boot
programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEWE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 4-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 4-2. EEPROM Programming Time.

Symbol Number of Calibrated RC O scillator Cycles [Typ Programming Time

EEPROM write (from CPU) 67 584 8.5 ms

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glo-
bally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the

EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_write
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé) to data register
out EEDR, rl6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

{

/* Wait for completion of previous write */
while (EECR & (1<<EEWE)) ;

/* Set up address and data registers */
EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE) ;

/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

void EEPROM write (unsigned int uiAddress, unsigned char ucData)

ATMEL

25

4.3.5

26

ATMEL

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example

EEPROM read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_ read
; Set up address (rl18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in rl6, EEDR

ret

C Code Example

unsigned char EEPROM read(unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE)) ;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

Preventing EEPR OM Corruption

During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

4.4 1/0 Memory

The I/O space definition of the AT90CAN32/64/128 is shown in “Register Summary” on page
405.

All AT90CAN32/64/128 1/0s and peripherals are placed in the I/O space. All I/0 locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the
32 general purpose working registers and the 1/O space. I/O registers within the address range
0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the
instruction set section for more details. When using the I/O specific commands IN and OUT, the
I/0 addresses 0x00 - Ox3F must be used. When addressing I/O registers as data space using
LD and ST instructions, 0x20 must be added to these addresses. The ATO0CAN32/64/128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location
reserved in Opcode for the IN and OUT instructions. For the Extended 1/O space from 0x60 -
OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other
AVR’s, the CBI and SBI instructions will only operate on the specified bit, and can therefore be
used on registers containing such status flags. The CBI and SBI instructions work with registers
0x00 to Ox1F only.

The 1/O and peripherals control registers are explained in later sections.

4.5 External Memory Interface

45.1 Overview

7679H-CAN-08/08

With all the features the External Memory Interface provides, it is well suited to operate as an
interface to memory devices such as External SRAM and Flash, and peripherals such as LCD-
display, A/D, and D/A. The main features are:

» Four different wait-state settings (including no wait-state).

* Independent wait-state setting for different exErnal Memory sectors (configurable sector

size).
« The number of bits dedicated to address high byte is selectable.
« Bus keepers on data lines to minimize current consumption (optional).

When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM
becomes available using the dedicated External Memory pins (see Figure 1-2 on page 5 or Fig-
ure 1-3 on page 6, Table 9-3 on page 74, Table 9-9 on page 78, and Table 9-21 on page 88).
The memory configuration is shown in Figure 4-4.

ATMEL 2

ATMEL

Figure 4-4. External Memory with Sector Select

0x0000
Internal memory
ISRAM end
A XMem start
Lower sector
SRWO01
SRWO00
———————— SRL[2..0]
External Memory Upper sector
(0-64K x 8)
SRW11
SRW10
Y OxFFFF

45.2 Using the External Memory Interface
The interface consists of:

e AD7:0: Multiplexedlow-order address bus and data bus.

< A15:8: High-order address bus (configurable number of bits).
e ALE: Address latch enable.

+ RD Read strobe.

« WR Write strobe.

The control bits for the External Memory Interface are located in two registers, the External
Memory Control Register A — XMCRA, and the External Memory Control Register B — XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the data
direction registers that corresponds to the ports dedicated to the XMEM interface. For details
about the port override, see the alternate functions in section “I/O-Ports” on page 66. The XMEM
interface will auto-detect whether an access is internal or external. If the access is external, the
XMEM interface will output address, data, and the control signals on the ports according to Fig-
ure 4-6 (this figure shows the wave forms without wait-states). When ALE goes from high-to-low,
there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface
is enabled, also an internal access will cause activity on address, data and ALE ports, but the
RD and WR strobes will not toggle during internal access. When the External Memory Interface
is disabled, the normal pin and data direction settings are used. Note that when the XMEM inter-
face is disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 4-5 illustrates how to connect an external SRAM to the AVR using an
octal latch (typically “74x573” or equivalent) which is transparent when G is high.

28 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

45.3

45.4

45.5

Address Latch Requirements

Due to the high-speed operation of the XRAM interface, the address latch must be selected with
care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V. When operating at condi-
tions above these frequencies, the typical old style 74HC series latch becomes inadequate. The
External Memory Interface is designed in compliance to the 74AHC series latch. However, most
latches can be used as long they comply with the main timing parameters. The main parameters
for the address latch are:

» D to Q propagation delay (§p).
» Data setup time before G low (§).
» Data (address) hold time after G low).

The External Memory Interface is designed to guaranty minimum address hold time after G is
asserted low of t, = 5 ns. Refer to t; axx 1o/ tiaxx st in Table 26-7 through Table 26-14 of Sec-
tion 26.9 on page 375. The D-to-Q propagation delay (trp) Mmust be taken into consideration
when calculating the access time requirement of the external component. The data setup time
before G low (tg,) must not exceed address valid to ALE low (tay,) minus PCB wiring delay
(dependent on the capacitive load).

Figure 4-5. External SRAM Connected to the AVR

™ brro
Ap7:0 K —— D Q| [/ | Al
AVRALE > G SRAM
L |
A15_:8 'l> A_[15:8]
RD > RD
WR > WR

Pull-up and Bus-keeper

Timing

7679H-CAN-08/08

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to
one. To reduce power consumption in sleep mode, it is recommended to disable the pull-ups by
writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be dis-
abled and enabled in software as described in “External Memory Control Register B — XMCRB”
on page 33. When enabled, the bus-keeper will ensure a defined logic level (zero or one) on the
AD7:0 bus when these lines would otherwise be tri-stated by the XMEM interface.

External Memory devices have different timing requirements. To meet these requirements, the
AT90CAN32/64/128 XMEM interface provides four different wait-states as shown in Table 4-4. It
is important to consider the timing specification of the External Memory device before selecting
the wait-state. The most important parameters are the access time for the external memory
compared to the set-up requirement of the AT90CAN32/64/128. The access time for the Exter-
nal Memory is defined to be the time from receiving the chip select/address until the data of this

ATMEL 2

ATMEL

address actually is driven on the bus. The access time cannot exceed the time from the ALE
pulse must be asserted low until data is stable during a read sequence (see t, | g+ trirH - tovrH
in Table 26-7 through Table 26-14). The different wait-states are set up in software. As an addi-
tional feature, it is possible to divide the external memory space in two sectors with individual
wait-state settings. This makes it possible to connect two different memory devices with different
timing requirements to the same XMEM interface. For XMEM interface timing details, please
refer to Table 26-7 through Table 26-14 and Figure 26-6 to Figure 26-9 in the “External Data
Memory Characteristics” on page 375.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures
are related to the internal system clock. The skew between the internal and external clock
(XTALL1) is not guarantied (varies between devices temperature, and supply voltage). Conse-
quently, the XMEM interface is not suited for synchronous operation.

Figure 4-6. External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)

T1 | T2 T3 T4

System Clock (CLKcpy)

|

ALE _'_/_T—\
|
|

A15:8 Prev. addr. '
, A

|
|
|
|
|
|
i
|
i
DA7:0 Prev. data }X Address)@(} Data
T / :
L
i
\
\
\
|
|
\
|

[
Write

WR | |
‘ ‘
‘

‘
DA7:0 (XMBK = 0) Prév. data X Address
d v

Read

‘
‘
‘
! ‘ !
DA7:0 (XMBK = 1) Prev. data X Address X xxxxx X pata | X xxxxxxxx X
! ‘ ‘
: : ‘
‘
‘

RD

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0O = SRW10 (upper sector) or
SRWOO (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).

Figure 4-7. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1Y

1 | T2 | 3 | T4 | 5

System Clock (CLKgpy) _/ \ / \ /__/_\ /: \ /_
/o
X

|

ALE m
|
|

j \ j
A15:8 Prev. addr. }X ' Address | '
: : : ‘ ‘ e
1 1 1 1 L 1 =
DA7:0 Prév. data }X Address)@(} Data ')C 2
: : : : : !
WR : "\ : ./ b
: : : : : -
DA7:0 (XMBK =0) Prev. data X Address ————H{ Data | 1)—(:
: : : ‘ : !
I 1 I 1 1 1 %
DA7:0 (XMBK =1) Prév. data B Address | Data ' X: @
() _Fre X X : : | &
R ! N\ : / :
: : : : : -
30 ATO90CANS32/64/128 s ———

7679H-CAN-08/08

s A TO0CAN32/64/128

Note: 1. SRWn1l=SRW11 (upper sector) or SRWO01 (lower sector), SRWnO = SRW10 (upper sector) or
SRWO0O (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal
or external).

Figure 4-8. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0@

. T1 . T2 . T3 ' T4 ' T5 i T6 .
i i i |
)
!
| g

System Clock (CLKgpy) _/__/__/ \ / _/ _/
ALE _—/__\

1

' I . '
J i | i
A15:8 Prev. addr. }X ' Address | ' ' X:
! ' ! i | i 2
: ‘ : ‘ ‘ £
DA7:0 Prév. data }X Address)@(} Data ! . X: =
! ' ! i | ! 1
WR 1 N\ 1 1 1/ D
| | | i | | [
DA7:0 (XMBK = 0) _ Prév. data X address Y——&{ pata | ! 1)—C
| | | i | | |
L L L L L [%
DA7:0 (XMBK =1) Prév. data ! Address | Data | ‘ ! X: g
‘ X X ‘ : : |
RD | 1 N\ 1 1 \/ 1
: : : ‘ ; ; b

Note: 1. SRWn1l=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0O = SRW10 (upper sector) or
SRWOO (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal
or external).

Figure 4-9. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1Y

Ta i T5 : T6 : T7

System Clock (CLK¢py) _/j' \ (j \ /j \ fj \ /:/ \ h /;’_—\ i/_
ALE m 3 3 i 3 E / E

A15:8 Prev. addr. j | Address | ! | 1
; IX . ‘ ; . r X:
DA7:0 Prév. data 1X Address)@(1 Data 3 ! ! X: =
' ' ' ! | ' I |
WRo| : AN 1 : / : b
| | | 1 T B A [
DAT:0 (XMBK = 0) _Prév. data X address Y——&L paa D) {
j | , j j j h h
; X ; ; ; | 3
DA7:0 (XMBK = 1) Prév. data) Address | Data ! | i °
() _Pd X P X ‘ ‘ ‘ . XC | &
o ; ; i ! |
RD | : N\ i : /
' ' ' ! T : -

Note: 1. SRWn1=SRW11 (upper sector) or SRWO1 (lower sector), SRWnO = SRW10 (upper sector) or
SRWO0O (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal
or external).

ATMEL o

7679H-CAN-08/08

4.5.6

32

ATMEL

External Memory Control Register A — XMCRA

Bit 7 6 5 4 3 2 1 0

| srRE | sri2 | srRL1 | SRLO | SRWil | SRW10 | SRWO1 | SRW00 | XMCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8,
ALE, WR, and RD are activated as the alternate pin functions. The SRE bit overrides any pin
direction settings in the respective data direction registers. Writing SRE to zero, disables the
External Memory Interface and the normal pin and data direction settings are used. Note that
when the XMEM interface is disabled, the address space above the internal SRAM boundary is
not mapped into the internal SRAM.

e Bit6..4 — SRL2, SRL1, SRLO: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses. The
external memory address space can be divided in two sectors that have separate wait-state bits.
The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table 4-3 and Figure 4-4. By
default, the SRL2, SRL1, and SRLO bits are set to zero and the entire external memory address
space is treated as one sector. When the entire SRAM address space is configured as one sec-
tor, the wait-states are configured by the SRW11 and SRW10 bits.

Table 4-3. Sector limits with different settings of SRL2..0

SRL2 SRL1 SRLO Sector Addressing
Lower sector N/A
0 0 0
Upper sector “XMem start"® - OxFFFF
Lower sector “XMem start"® - Ox1FFF
0 0 ! Upper sector 0x2000 - OXFFFF
Lower sector “XMem start"® - 0x3FFF
0 ! 0 Upper sector 0x4000 - OXFFFF
Lower sector “XMem start"® - Ox5FFF
0 ! ! Upper sector 0x6000 - OXFFFF
Lower sector “XMem start"® - Ox7FFF
! 0 0 Upper sector 0x8000 - OXFFFF
Lower sector “XMem start"® - Ox9FFF
! 0 ! Upper sector 0xAO000 - OXxFFFF
Lower sector “XMem start"® - OXBFFF
! ! 0 Upper sector 0xCO000 - OXFFFF
Lower sector “XMem start"® - OxXDFFF
! ! ! Upper sector OxEO000 - OXFFFF

Note: 1. See Table 4-1 on page 18 for “XMem start” setting.

ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

« Bit3..2 - SRW11, SRW10: Wait-state Select Bits for Upper Sector
The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the exter-
nal memory address space, see Table 4-4.

« Bit1..0 - SRW01, SRWO0O0: Wait-state Select Bits for Lower Sector

The SRWO01 and SRWOO bits control the number of wait-states for the lower sector of the exter-
nal memory address space, see Table 4-4.

Table 4-4. Wait States®

SRWnl1 | SRWnO | Wait States

0 0 No wait-states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe

Wait two cycles during read/write and wait one cycle before driving out new

1 1 address

Note: 1. n=0or1 (lower/lupper sector).
For further details of the timing and wait-states of the External Memory Interface, see Figures
4-6 through Figures 4-9 for how the setting of the SRW bits affects the timing.

457 External Memory Control Register B — XMCRB

Bit 7 6 5 4 3 2 1 0
| xvex | - | - | - - XMM2 XMM1 XxMMO | xMCRB

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7- XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper is
enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would otherwise
be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not qualified with SRE, so
even if the XMEM interface is disabled, the bus keepers are still activated as long as XMBK is
one.

* Bit6..4 — Reserved Bits
These are reserved bits and will always read as zero. When writing to this address location,
write these bits to zero for compatibility with future devices.

e Bit2..0 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high address byte.
If the full address space is not required to access the External Memory, some, or all, Port C pins
can be released for normal Port Pin function as described in Table 4-5. As described in “Using
all 64KB Locations of External Memory” on page 35, it is possible to use the XMMn bits to
access all 64KB locations of the External Memory.

ATMEL s

7679H-CAN-08/08

45.8

34

ATMEL

Table 4-5. Port C Pins Released as Normal Port Pins when the External Memory is Enabled
XMM2 XMM1 XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full External Memory Space) None

0 0 1 7 PC7

0 1 0 6 PC7 .. PC6

0 1 1 5 PC7 .. PC5

1 0 0 4 PC7 .. PC4

1 0 1 3 PC7 .. PC3

1 1 0 2 PC7 .. PC2

1 1 1 No Address high bits Full Port C

Using all Locations of External Memory Smaller than 64 KB

Since the external memory is mapped after the internal memory as shown in Figure 4-4, the
external memory is not addressed when addressing the first “ISRAM size” bytes of data space. It
may appear that the first “ISRAM size” bytes of the external memory are inaccessible (external
memory addresses 0x0000 to “ISRAM end”). However, when connecting an external memory
smaller than 64 KB, for example 32 KB, these locations are easily accessed simply by address-
ing from address 0x8000 to “ISRAM end + 0x8000". Since the External Memory Address bit A15
is not connected to the external memory, addresses 0x8000 to “ISRAM end + 0x8000" will
appear as addresses 0x0000 to “ISRAM end” for the external memory. Addressing above
address “ISRAM end + 0x8000” is not recommended, since this will address an external mem-
ory location that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from “XMem start” to
“XMem start + 0x8000”. This is illustrated in Figure 4-10.

Figure 4-10. Address Map with 32 KB External Memory

AVR Memory Map External 32K SRAM (Size=0x8000)
0x0000 0x0000
Internal Memory P
ISRAM end EEEEERNS J Lo ISRAM end
XMem start XMem start
>
External Memory
OX7FFF OX7FFF

0x8000

ISRAM end + 0x8000
XMem start + 0x8000

(Unused)

OXFFFF

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

4.5.9 Using all 64KB Locations of External Memory
Since the External Memory is mapped after the Internal Memory as shown in Figure 4-4, only
(64K-(“ISRAM size"+256)) bytes of External Memory is available by default (address space
0x0000 to “ISRAM end” is reserved for internal memory). However, it is possible to take advan-
tage of the entire External Memory by masking the higher address bits to zero. This can be done
by using the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin operation,

7679H-CAN-08/08

the Memory Interface will address 0x0000 - Ox1FFF. See the following code examples.

Assembly Code Example®

; OFFSET is defined to 0x2000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1d4di rle, OxFF

out DDRC, rle6

1di rle, 0x00

out PORTC, rle

; release PC7:5

1ldi rl6, (1<<XMM1) | (1<<XMMO)

sts XMCRB, rleé

; write OxAA to address 0x0001 of external

; memory
1di rlée, Oxaa
sts 0x0001+OFFSET, rle6

; re-enable PC7:5 for external memory
1di rl6, (0<<XMM1) | (0<<XMMO)

sts XMCRB, rle

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rl6e, 0x55

sts 0x0001+OFFSET, rlé6

C Code Example®™

#define OFFSET 0x2000
void XRAM example (void)
{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) | (1<<XMMO) ;
*p = 0xaa;
XMCRB = 0x00;

*p = 0x55;

}

Note: 1. The example code assumes that the part specific header file is included.

Care must be exercised using this option as most of the memory is masked away.

ATMEL

35

4.6

46.1

4.6.2

4.6.3

36

ATMEL

General Purpose 1/0O Registers

The AT90CAN32/64/128 contains three General Purpose I/O Registers. These registers can be
used for storing any information, and they are particularly useful for storing global variables and
status flags.

The General Purpose 1/0 Register 0, within the address range 0x00 - Ox1F, is directly bit-acces-
sible using the SBI, CBI, SBIS, and SBIC instructions.

General Purpose I/O Register 0 — GPIORO

Bit 7 6 5 4 3 2 1 0
| GPIORO7 | GPIORO6 | GPIOROS | GPIOR04 | GPIOR03 | GPIOR02 | GPIORO1 | GPIOR00 | GPIORO

Read/Write R/W R/W RIW RIW RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

General Purpose I/O Register 1 — GPIOR1

Bit 7 6 5 4 3 2 1 0

|GPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 | GPIOR12 | GPIOR11 GPIOR10| GPIOR1
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

General Purpose I/O Register 2 — GPIOR2

Bit 7 6 5 4 3 2 1 0

IGPIOR27 | GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 | GPIOR22 | GPIOR21 GPIORZOI GPIOR2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

5. System Clock

5.1 Clock Systems and their Distribution
Figure 5-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to unused
modules can be halted by using different sleep modes, as described in “Power Management and
Sleep Modes” on page 46. The clock systems are detailed below.

Figure 5-1. Clock Distribution

Asynchronous CAN General I/O Flash and
Timer/Counter2 Controller Modules ADC CPU Core RAM EEPROM
A [[A A 4
Cclkype
ko | AVR Clock clkepy
: Control Unit
CLKO clk,gy ClKepagi
A A
CKOUT Fuse
Reset Logic Watchdog Timer
F 1 ,
Source clock Watchdog clock
Prescaler
Watchdog
Clock Oscillator
Multiplexer Multiplexer
A A A *
Timer/Counter2 Timer/Counter2 External Clock Crystal Low-frequency Calibrated RC
External Clock Oscillator Oscillator Crystal Oscillator Oscillator

3 r— T T 7
&V

TOSC1 TOSC2 XTAL1 XTAL2

511 CPU Clock — clk ¢py

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

5.1.2 I/0 Clock —clk o
The I/O clock is used by the majority of the 1/O modules, like Timer/Counters, SPI, CAN,
USART. The I/O clock is also used by the External Interrupt module, but note that some external
interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the
1/0 clock is halted. Also note that address recognition in the TWI module is carried out asynchro-
nously when clk, is halted, enabling TWI address reception in all sleep modes.

513 Flash Clock — clk g ash

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

ATMEL o

7679H-CAN-08/08

ATMEL

51.4 Asynchronous Timer Clock —clk Ay
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

5.1.5 ADC Clock — clk apc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

5.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 5-1. Device Clocking Options Select®

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1000
External Low-frequency Crystal 0111 - 0100
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0011, 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the CPU
wakes up from Power-down or Power-save, the selected clock source is used to time the start-
up, ensuring stable Oscillator operation before instruction execution starts. When the CPU starts
from reset, there is an additional delay allowing the power to reach a stable level before starting
normal operation. The Watchdog Oscillator is used for timing this real-time part of the start-up
time. The number of WDT Oscillator cycles used for each time-out is shown in Table 5-2. The
frequency of the Watchdog Oscillator is voltage dependent as shown in “AT90CAN32/64/128
Typical Characteristics” on page 384.

Table 5-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V ¢ =5.0V) Typ Time-out (V ¢ = 3.0V) Number of Cycles
4.1 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

5.3 Default Clock Source
The device is shipped with CKSEL =“0010", SUT = “10", and CKDIV8 programmed. The default
clock source setting is the Internal RC Oscillator with longest start-up time and an initial system
clock prescaling of 8. This default setting ensures that all users can make their desired clock
source setting using an In-System or Parallel programmer.

38 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

5.4 Crystal Oscillator

XTAL1 and XTALZ2 are input and output, respectively, of an inverting amplifier which can be con-
figured for use as an On-chip Oscillator, as shown in Figure 5-2. Either a quartz crystal or a
ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for
use with crystals are given in Table 5-3. For ceramic resonators, the capacitor values given by
the manufacturer should be used. For more information on how to choose capacitors and other
details on Oscillator operation, refer to the Multi-purpose Oscillator Application Note.

Figure 5-2. Crystal Oscillator Connections

c2

| XTAL2
0

CSE T xTan

GND

The Oscillator can operate in three different modes, each optimized for a specific frequency
range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 5-3.

Table 5-3. Crystal Oscillator Operating Modes

CKSEL3..1 Frequency Range (MHz) Recommgg(:g;jURSaén\?Vietgocr:r(;ng;:izg'r:s) Cland
100W 0.4-0.9 12-22
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0-16.0 12-22

Note: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table
5-4.

ATMEL 5

7679H-CAN-08/08

ATMEL

Table 5-4. Start-up Times for the Oscillator Clock Selection
Start-up Time from Additional Delay
CKSELO SUT1..0 Power-down and from Reset Recommended Usage
Power-save (Vee =5.0V)
0 00 258 CK® 14CK+41ms | Ceramic resonator, fast
rising power
0 o1 258 CK® 14 CK + 65 ms C_:e_ramlc resonator, slowly
rising power
0 10 1K CK® 14 CK Ceramic resonator, BOD
enabled
@ Ceramic resonator, fast
0 11 1K CK 14 CK + 4.1 ms o
rising power
1 00 1K CK® 14 CK + 65 ms C_:e_ramlc resonator, slowly
rising power
1 01 16K CK 14 CK Crystal Oscillator, BOD
enabled
1 10 16K CK 14 CK + 4.1 ms Crystal Oscillator, fast
rising power
1 1 16K CK 14 CK + 65 ms C_:r_ystal Oscillator, slowly
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These

2.

options are not suitable for crystals.

These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
guency of the device, and if frequency stability at start-up is not important for the application.

5.5 Low-frequency Crystal Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency crystal
Oscillator must be selected by setting the CKSEL Fuses to “0100”, “0101”, “0110", or “0111".
The crystal should be connected as shown in Figure 5-3.

Figure 5-3.

Low-frequency Crystal Oscillator Connections

12 - 22 pF
XTAL2
32.768 KHz []
*—) XTAL1
12 - 22 pF
GND

12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & PCB) is very

low.

40 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

When this Oscillator is selected, start-up times are determined by the SUT1..0 fuses as shown in
Table 5-5 and CKSEL1..0 fuses as shown in Table 5-6.

Table 5-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
SUT1..0 Additional Delay from Reset (V. ¢ = 5.0V) Recommended Usage
00 14 CK Fast rising power or BOD enabled
01 14 CK+4.1ms Slowly rising power
10 14 CK + 65 ms Stable frequency at start-up
11 Reserved
Table 5-6. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
CKSEL3..0 Powe?—tc?(:f/;;pa:]icrinsg\r/\?er?-save Recommended Usage
0100% 1K CK
0101 32K CK Stable frequency at start-up
0110 1K CK
0111 32K CK Stable frequency at start-up

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application

5.6 Calibrated Internal RC Oscillator

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is nominal
value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the device (depends on
V¢c), the CKDIV8 Fuse must be programmed in order to divide the internal frequency by 8 dur-
ing start-up. The device is shipped with the CKDIV8 Fuse programmed. See “System Clock
Prescaler” on page 44. for more details. This clock may be selected as the system clock by pro-
gramming the CKSEL Fuses as shown in Table 5-7. If selected, it will operate with no external
components. During reset, hardware loads the calibration byte into the OSCCAL Register and
thereby automatically calibrates the RC Oscillator. At 5V and 25°C, this calibration gives a fre-
quency within + 10% of the nominal frequency. Using calibration methods as described in
application notes available at www.atmel.com/avr it is possible to achieve + 2% accuracy at any
given Vcc and temperature. When this Oscillator is used as the chip clock, the Watchdog Oscil-
lator will still be used for the Watchdog Timer and for the Reset Time-out. For more information
on the pre-programmed calibration value, see the section “Calibration Byte” on page 339.

Table 5-7. Internal Calibrated RC Oscillator Operating Modes™®
CKSEL3..0 Nominal Frequency
0010 8.0 MHz

Note: 1. The device is shipped with this option selected.

ATMEL i

7679H-CAN-08/08

ATMEL

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in

Table 5-8.
Table 5-8. Start-up times for the internal calibrated RC Oscillator clock selection
Start-up Time from Power- Additional Delay from
SUTL.0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14 CK BOD enabled
01 6 CK 14CK+4.1ms Fast rising power
10 6 CK 14 CK + 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

5.6.1 Oscillator Calibra tion Register —- OSCCAL

Bit 7 6 5 4 3 2 1 0
| - | cas | cas CAL4 CAL3 CAL2 CAL1 CALO Josccal

Read/Write R R/W RIW RIW RIW RIW R/W RIW

Initial Value 0 R Device Specific Calibration Value =~ ----------- ----- >

+ Bit 7 — Reserved Bit
This bit is reserved for future use.

* Bits 6..0 — CAL6..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove process vari-
ations from the Oscillator frequency. This is done automatically during Chip Reset. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this regis-
ter will increase the frequency of the internal Oscillator. Writing Ox7F to the register gives the
highest available frequency. The calibrated Oscillator is used to time EEPROM and Flash
access. If EEPROM or Flash is written, do not calibrate to more than 10% above the nominal fre-
quency. Otherwise, the EEPROM or Flash write may fail. Note that the Oscillator is intended for
calibration to 8.0 MHz. Tuning to other values is not guaranteed, as indicated in Table 5-9.

Table 5-9. Internal RC Oscillator Frequency Range.
osceaLvawe | MNP/ Pecenage o | M Fisqueney 1 Parcentage of
0x00 50% 100%
Ox3F 75% 150%
Ox7F 100% 200%

5.7 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
5-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000".

42 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

Figure 5-4. External Clock Drive Configuration

NC —— - XTAL2
External
Clock — 1 XTAL1
Signal
GND

Ml

Table 5-10. External Clock Frequency

CKSEL3..0 Frequency Range
0000 0-16 MHz

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 5-11.
Table 5-11. Start-up Times for the External Clock Selection
Start-up Time from Power- Additional Delay from
SUTL.0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage

00 6 CK 14 CK BOD enabled
01 6 CK 14 CK+4.1ms Fast rising power
10 6 CK 14 CK + 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
qguency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the
MCU is kept in Reset during such changes in the clock frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
44 for details.

5.8 Clock Output Buffer
When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This mode is
suitable when chip clock is used to drive other circuits on the system. The clock will be output
also during reset and the normal operation of I/O pin will be overridden when the fuse is pro-
grammed. Any clock source, including internal RC Oscillator, can be selected when CLKO
serves as clock output. If the System Clock Prescaler is used, it is the divided system clock that
is output (CKOUT Fuse programmed).

5.9 Timer/Counter2 Oscillator
For AVR microcontrollers with Timer/Counter2 Oscillator pins (TOSC1 and TOSC?2), the crystal
is connected directly between the pins. The Oscillator is optimized for use with a 32.768 kHz
watch crystal. 12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires &
PCB) is very low.

ATMEL i

7679H-CAN-08/08

ATMEL

AT90CAN32/64/128 share the Timer/Counter2 Oscillator Pins (TOSC1 and TOSC2) with PG4
and PG3. This means that both PG4 and PG3 can only be used when the Timer/Counter2 Oscil-
lator is not enable.

Applying an external clock source to TOSC1 can be done in asynchronous operation if EXTCLK
in the ASSR Register is written to logic one. See “Asynchronous operation of the
Timer/Counter2” on page 160 for further description on selecting external clock as input instead
of a 32 kHz crystal. In this configuration, PG4 cannot be used but PG3 is available.

5.10 System Clock Prescaler
The AT90CAN32/64/128 system clock can be divided by setting the Clock Prescaler Register —
CLKPR. This feature can be used to decrease power consumption when the requirement for
processing power is low. This can be used with all clock source options, and it will affect the
clock frequency of the CPU and all synchronous peripherals. clk;q, Clkape, ClKepy, and Clkg asy
are divided by a factor as shown in Table 5-12.

5.10.1 Clock Prescaler Register — CLKPR

Bit 7 6 5 4 3 2 1 0
Jckpce | - - - CLKPS3 |CLKPS2 |CLKPS1 [CLKPSO | CLKPR

Read/Write RIW R R R RIW R/W R/W RIW

Initial Value 0 0 0 0 <eeee- See Bit Description ----- >

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

* Bit 6..0 — Reserved Bits
These bits are reserved for future use.

* Bits 3..0 — CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 5-12.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to

44 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

“0011", giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 5-12. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 1

2

4

8

16

32

64

128

256

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

R lRr|Rr|lPr|lP|RP|P|lr|lO|jlO|lO|lO|Oo|O|O|O
R |lRr|RPr|lkr|lOo|lo|jOo|lO|rR|R ||| O|O|O
|k |lo|lOoO|lr|RP|O|lO|R|R|O|lO|FR|R|O
R |lo|lr|lO|lr|O|RP|O|FR|O|RP|O|FR|O|F

Reserved

Note: The frequency of the asynchronous clock must be lower than 1/4th of the frequency of the scaled
down Source clock. Otherwise, interrupts may be lost, and accessing the Timer/Counter2 regis-
ters may fail.

ATMEL i

ATMEL

6. Power Management and Sleep Modes

6.0.1

46

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select
which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, or Standby) will be
activated by the SLEEP instruction. See Table 6-1 for a summary. If an enabled interrupt occurs
while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in
addition to the start-up time, executes the interrupt routine, and resumes execution from the
instruction following SLEEP. The contents of the register file and SRAM are unaltered when the
device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and exe-
cutes from the Reset Vector.

Figure 5-1 on page 37 presents the different clock systems in the AT90CAN32/64/128, and their
distribution. The figure is helpful in selecting an appropriate sleep mode.

Sleep Mode Control Register - SMCR

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0
I - | - | - | - | sm2 | smi | smo | s | sSMCR

Read/Write R R R R RIW RIW R/W R/W

Initial Value 0 0 0 0 0 0 0

* Bit 7..4 — Reserved Bits
These bits are reserved for future use.

e Bits 3..1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 6-1.

Table 6-1. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby®
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit1 - SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

6.1 Idle Mode

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC, Two-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clkcp, and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

6.2 ADC Noise Reduction Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the External Interrupts, the
Two-wire Serial Interface address watch, Timer/Counter2, CAN and the Watchdog to continue
operating (if enabled). This sleep mode basically halts clk;q, clkepy, and clkg agy, While allowing
the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, a Two-wire Serial Interface address match interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU from ADC Noise Reduction mode.

6.3 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the External Oscillator is stopped, while the External Interrupts, the
Two-wire Serial Interface address watch, and the Watchdog continue operating (if enabled).
Only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface
address match interrupt, an External Level Interrupt on INT7:4, or an External Interrupt on
INT3:0 can wake up the MCU. This sleep mode basically halts all generated clocks, allowing
operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to “External Interrupts” on page 93
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL fuses that define the
Reset Time-out period, as described in “Clock Sources” on page 38.

6.4 Power-save Mode

When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

ATMEL i

7679H-CAN-08/08

ATMEL

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set, Timer/Counter2
will run during sleep. The device can wake up from either Timer Overflow or Output Compare
event from Timer/Counter2 if the corresponding Timer/Counter2 interrupt enable bits are set in
TIMSK2, and the global interrupt enable bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is recommended
instead of Power-save mode because the contents of the registers in the asynchronous timer
should be considered undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clk,gy, allowing operation only of asynchronous
modules, including Timer/Counter? if clocked asynchronously.

6.5 Standby Mode
When the SM2..0 bits are 110 and an External Crystal/Resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in 6 clock cycles.
Table 6-2. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.
Active Clock Domains Osci llators Wake-up Sources
Main)
Timer TWI) SPM/
I\Sﬂlegp ckepy | Ckens | Ckio | Ckape | ClK asy S%'Sfcke Osc. | INT7:0 | Address T'”Z‘er EEPROM | ADC olt;‘()er
ode Enabled Match Ready
Enabled
Idle X X X X X@ X X X X X X
ADC Noise X X X X® X® X X@ X X
Reduction
Power- X@ X
down
Power- X@ X® NE) X X®
save
Standby® X X® X
Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If AS2 bitin ASSR is set.
3. Only INT3:0 or level interrupt INT7:4.
6.6 Minimizing Power Consumption
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.
6.6.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog to Digital Converter - ADC” on page
273 for details on ADC operation.
48 AT O0C AN 3 2/6A/ 1 2:S s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

6.6.2

6.6.3

6.6.4

6.6.5

6.6.6

6.6.7

Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to “Analog Comparator” on page 269 for details on how to configure the Analog
Comparator.

Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to “Brown-out Detection” on page 54 for details
on how to configure the Brown-out Detector.

Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to “Internal Volt-
age Reference” on page 56 for details on the start-up time.

Watchdog Timer

Port Pins

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to “Watchdog Timer” on page 57 for details on how to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/O clock (clk,o) and the ADC clock (clk,pc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 70 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to V/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to “Digital Input Disable Register 1 — DIDR1” on page 272 and “Digital Input Dis-
able Register 0 — DIDRO” on page 292 for details.

JTAG Interface and On-chip Debug System

7679H-CAN-08/08

If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,

ATMEL i

ATMEL

this will contribute significantly to the total current consumption. There are three alternative ways
to avoid this:

* Disable OCDEN Fuse.
* Disable JTAGEN Fuse.
* Write one to the JTD bit in MCUCR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is
not shifting data. If the hardware connected to the TDO pin does not pull up the logic level,
power consumption will increase. Note that the TDI pin for the next device in the scan chain con-
tains a pull-up that avoids this problem. Writing the JTD bit in the MCUCR register to one or
leaving the JTAG fuse unprogrammed disables the JTAG interface.

50 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

7. System Control and Reset

7.1 Reset

7.1.1 Resetting the AVR

7.1.2 Reset Sources

7679H-CAN-08/08

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 7-1 shows the reset
logic. Table 7-1 defines the electrical parameters of the reset circuitry.

The 1/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in “Clock Sources” on page 38.

The AT90CAN32/64/128 has five sources of reset:
« Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpgor)-

« External Reset. The MCU is reset whena low level is present on the RESET pin for longer
than the minimum pulse length.

« Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

» Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out
Reset threshold (Vgo7) and the Brown-out Detector is enabled.

« JTAG AVR Reset. The MCU is reset as long as tlere is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section “Boundary-scan IEEE 1149.1
(JTAG)” on page 300 for details.

ATMEL Z

ATMEL

Figure 7-1. Reset Logic

DATA BUS

A

MCU Status
Register (MCUSR)

L

L

LL| LLf L

SEEELE
vee _| Power-on Reset oo X 27
Circuit
Brown-out
BODLEVEL [2..0] 5| Reset Circuit
[l] Pull-up Resistor
RESET Spike »| Reset Circuit \ \ s ql_ INTERNAL
Filter | ' / RESET
[i "
i
JTAG Reset Watchdog ['4
Register Timer ﬁ
T =
2
(o]
Watchdog ©
Oscillator 1
A4
>
Clock CcK Delay Counters ——
Generator g TIMEOUT
A A
CKSEL[3:0]
suT[:0) —— |
Table 7-1. Reset Characteristics
Symbol | Parameter Conditi on Min. Typ. Max. Units
Power-on Reset Threshold Voltage (rising) 14 2.3 \%
Veor
Power-on Reset Threshold Voltage (falling)® 1.3 2.3 \%
Vcc Start Voltage to ensure
. . - 0. +0.
VeoR internal Power-on Reset signal 0.05 GND 0.05 v
Vcc Rise Rate to ensure
Veerr internal Power-on Reset signal 0.3 Vims
. 0.2 0.85
VRsT RESET Pin Threshold Voltage Vee Ve \Y
trsT Minimum pulse width on RESET Pin Vce =5V, temperature = 25 C 400 ns

Note: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqor (falling)

7.1.3

Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in Table 7-1. The POR is activated whenever V. is below the detection level. The
POR circuit can be used to trigger the start-up Reset, as well as to detect a failure in supply

voltage.

A Power-on Reset (POR) circuit ensures that the device is properly reset from Power-on if V¢
started from Vpog With a rise rate upper than V-cgrgr. Reaching the Power-on Reset threshold
voltage invokes the delay counter, which determines how long the device is kept in RESET after

52 ATOOCANS2/0A/ 1 2E s ——

s A TO0CAN32/64/128

V¢ rise. The RESET signal is activated again, without any delay, when V. decreases below
the detection level.

Figure 7-2. MCU Start-up, RESET Tied to V¢

Veerr

Vee

VPOR_)

RESET

TIME-OUT

INTERNAL
RESET

Figure 7-3. MCU Start-up, RESET Extended Externally

Vcerr
Vee
Veor_ _1./
1
:
1
RESET !
1
1
1
:
1
TIME-OUT :
1
1
INTERNAL |
RESET

Note: If Vpog OF Vcrr Parameter range can not be followed, an External Reset is required.

7.1.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see Table 7-1) will generate a reset, even if the clock is not running.
Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage — Vggr — 0N its positive edge, the delay counter starts the MCU after
the Time-out period — t;o 7 —has expired.

ATMEL &

7679H-CAN-08/08

ATMEL

Figure 7-4. External Reset During Operation

Vee
RESET \ |
1
- Vret -
1 1
1 1
1 1
1 1
1
| : < tTOUT
TIME-OUT : .
1
1
1
I
INTERNAL |
RESET

7.1.5 Brown-out Detection
AT90CAN32/64/128 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢
level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can
be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike free
Brown-out Detection. The hysteresis on the detection level should be interpreted as Vg, =
Veor + Viyst/2 and Vgor. = Veor - Viyst/2.

Table 7-2. BODLEVEL Fuse Coding®

BODLEVEL 2..0 Fuses MinV gor Typ Vgor Max Vgor Units

11 BOD Disabled

110 4.1 \Y
101 4.0 \
100 3.9 \
011 3.8 \Y
010 2.7 \Y
001 2.6 \Y
000 2.5 \Y

Note: 1. Vgor may be below nominal minimum operating voltage for some devices. For devices where
this is the case, the device is tested down to V¢ = Vgor during the production test. This guar-
antees that a Brown-Out Reset will occur before V. drops to a voltage where correct
operation of the microcontroller is no longer guaranteed. The test is performed using
BODLEVEL = 010 for Low Operating Voltage and BODLEVEL = 101 for High Operating Volt-

age .
Table 7-3. Brown-out Characteristics
Symbol Parameter Min. Typ. Max. Units
ViysT Brown-out Detector Hysteresis 70 mV
tzop Min Pulse Width on Brown-out Reset 2 ps

When the BOD is enabled, and V. decreases to a value below the trigger level (Vgor. in Figure
7-5), the Brown-out Reset is immediately activated. When V. increases above the trigger level

54 ATOOCANS2/0A/ 1 2E s ——

s A TO0CAN32/64/128

(Vgort+ in Figure 7-5), the delay counter starts the MCU after the Time-out period t;o 1 has
expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for
longer than tgzgp given in Table 7-3.

Figure 7-5. Brown-out Reset During Operation

Vee R 2 S VeoT+
VBOT - T +| -

1 1
1 1
1 1
RESET i i
1 1
1 1
1 1
1 1
1 1

TIME-OUT ! < trout
1 1
1 1
1 1
1 1
1 1
INTERNAL |
RESET . |

7.1.6 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period tyo 7. Refer to
page 57 for details on operation of the Watchdog Timer.

Figure 7-6. Watchdog Reset During Operation

VCC
RESET
WD —>, i«— 1 CKCycle
TIME-OUT H
o
[N
[N
«— t
RESET TouT
TIME-OUT !
1

INTERNAL
RESET

ATMEL 5

7679H-CAN-08/08

7.1.7

7.2

7.2.1

56

ATMEL

MCU Status Register - MCUSR

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0
|l - | - | - | Jre | wbrRF | BORF | EXTRF | PORF | McUSR

Read/Write R R R RIW R/W RIW R/W RIW

Initial Value 0 0 0 See Bit Description

* Bit 7..5 — Reserved Bits
These bits are reserved for future use.

¢ Bit4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

e Bit 3 - WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

« Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 1 - EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset flags to identify a reset condition, the user should read and then reset
the MCUSR as early as possible in the program. If the register is cleared before another reset
occurs, the source of the reset can be found by examining the reset flags.

Internal Voltage Reference

AT90CAN32/64/128 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC.

Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in Table 7-4. To save power, the reference is not always turned on. The
reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or

ATOOCANS2/0A/ 1 2E s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

7.2.2 Voltage Reference Characteristics
Table 7-4. Internal Voltage Reference Characteristics
Symbol | Parameter Conditi on Min. Typ. Max. Units
Vie Bandgap reference voltage 1.0 11 1.2 \Y,
tag Bandgap reference start-up time 40 70 us
leg Bandgap reference current 15 LA
consumption

7.3 Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1 MHz. This is
the typical value at V. = 5V. See characterization data for typical values at other V. levels. By
controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as
shown in Table 7-6 on page 58. The WDR — Watchdog Reset — instruction resets the Watchdog
Timer. The Watchdog Timer is also reset when it is disabled and when a Chip Reset occurs.
Eight different clock cycle periods can be selected to determine the reset period. If the reset
period expires without another Watchdog Reset, the AT90CAN32/64/128 resets and executes
from the Reset Vector. For timing details on the Watchdog Reset, refer to Table 7-6 on page 58.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out period,
two different safety levels are selected by the fuse WDTON as shown in Table 7-5. Refer to
“Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 59 for
details.

Table 7-5. WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON Safety WDT Initial How to Disable How to Change
Level State the WDT Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

Figure 7-7. Watchdog Timer

WATCHDOG WATCHDOG
OSCILLATOR P PRESCALER
~1 MHz A x| x| x| x| x| x| x]x
o3l gl &l gl gl
olol ol 5|58 2|
WATCHDOG 213]8|3|3|3|alg
RESET °1°1°|s|s
\A A \A A
WDPO :‘&
WDP1 ™\
WDP2
WDE

MCU RESET

ATMEL 57

7679H-CAN-08/08

7.3.1

58

ATMEL

Watchdog Timer Control Register - WDTCR

Bit 7 6 5 4 3 2 1 0
I - | - | - WDCE WDE WDP2 WDP1 WDPO | WDTCR
Read/Write R R R RIW RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..5 — Reserved Bits
These bits are reserved bits for future use.

* Bit 4 — WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not
be disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the
description of the WDE bit for a Watchdog disable procedure. This bit must also be set when
changing the prescaler bits. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 59.

« Bit 3 - WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written
to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDCE bit
has logic level one. To disable an enabled Watchdog Timer, the following procedure must be
followed:

1. Inthe same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
In safety level 2, it is not possible to disable the Watchdog Timer, even with the algorithm
described above. See “Timed Sequences for Changing the Configuration of the Watchdog
Timer” on page 59.

e Bits 2..0 - WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and O

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watch-
dog Timer is enabled. The different prescaling values and their corresponding Timeout Periods
are shown in Table 7-6.

Table 7-6. Watchdog Timer Prescale Select

wopz | wops | wopo | SR D PG T e
0 0 0 16K cycles 17.1 ms 16.3 ms
0 0 1 32K cycles 34.3ms 32.5ms
0 1 0 64K cycles 68.5 ms 65 ms
0 1 1 32/64K cycles 0.14s 0.13s
1 0 0 256K cycles 0.27 s 0.26 s
1 0 1 512K cycles 0.55s 0.52s
1 1 0 1,024K cycles 11s 1.0s
1 1 1 2,048K cycles 2.2s 2.1s

ATOOCANS2/0A/ 1 2E s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

The following code example shows one assembly and one C function for turning off the WDT.
The example assumes that interrupts are controlled (e.g. by disabling interrupts globally) so that
no interrupts will occur during execution of these functions.

Assembly Code Example®

WDT off:
; Write logical one to WDCE and WDE

1di rl6, (1<<WDCE) | (1<<WDE)

sts WDTCR, rlé6

; Turn off WDT

1di rl6, (0<<WDE)

sts WDTCR, rlé6

ret

C Code Example®

void WDT off (void)
{
/* Write logical one to WDCE and WDE */
WDTCR = (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCR = 0x00;

Note: 1. The example code assumes that the part specific header file is included.

7.4 Timed Sequences for Changing the C onfiguration of the Watchdog Timer
The sequence for changing configuration differs slightly between the two safety levels. Separate
procedures are described for each level.

7.4.1 Safety Level 1
In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit
to 1 without any restriction. A timed sequence is needed when changing the Watchdog Time-out
period or disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, and/or
changing the Watchdog Time-out, the following procedure must be followed:

1. Inthe same operation, write a logic one to WDCE and WDE. A logic one must be writ-
ten to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and WDP bits
as desired, but with the WDCE bit cleared.

7.4.2 Safety Level 2
In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A
timed sequence is needed when changing the Watchdog Time-out period. To change the
Watchdog Time-out, the following procedure must be followed:

1. Inthe same operation, write a logical one to WDCE and WDE. Even though the WDE
always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as desired,
but with the WDCE bit cleared. The value written to the WDE bit is irrelevant.

ATMEL L

7679H-CAN-08/08

8.

8.1

60

Interrupts

ATMEL

This section describes the specifics of the interrupt handling as performed in
AT90CAN32/64/128. For a general explanation of the AVR interrupt handling, refer to “Reset
and Interrupt Handling” on page 15.

Interrupt Vectors in AT90CAN32/64/128

Table 8-1. Reset and Interrupt Vectors
Vt'a\lc;?r Azrgrger::h) Source Interrupt Definition

1| 0x0000% | RESET Watohdog Reset and ITAG AVR Reset -
2 0x0002 INTO External Interrupt Request 0
3 0x0004 INT1 External Interrupt Request 1
4 0x0006 INT2 External Interrupt Request 2
5 0x0008 INT3 External Interrupt Request 3
6 0x000A INT4 External Interrupt Request 4
7 0x000C INT5 External Interrupt Request 5
8 0x000E INT6 External Interrupt Request 6
9 0x0010 INT7 External Interrupt Request 7
10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match
11 0x0014 TIMER2 OVF Timer/Counter2 Overflow
12 0x0016 TIMER1 CAPT Timer/Counterl Capture Event
13 0x0018 TIMER1 COMPA Timer/Counterl Compare Match A
14 0x001A TIMER1 COMPB Timer/Counterl Compare Match B
15 0x001C TIMER1 COMPC Timer/Counterl Compare Match C
16 Ox001E TIMER1 OVF Timer/Counterl Overflow
17 0x0020 TIMERO COMP Timer/Counter0 Compare Match
18 0x0022 TIMERO OVF Timer/Counter0 Overflow
19 0x0024 CANIT CAN Transfer Complete or Error
20 0x0026 OVRIT CAN Timer Overrun
21 0x0028 SPI, STC SPI Serial Transfer Complete
22 0x002A USARTO, RX USARTO, Rx Complete
23 0x002C USARTO, UDRE USARTO Data Register Empty
24 0x002E USARTO, TX USARTO, Tx Complete
25 0x0030 ANALOG COMP Analog Comparator
26 0x0032 ADC ADC Conversion Complete
27 0x0034 EE READY EEPROM Ready
28 0x0036 TIMER3 CAPT Timer/Counter3 Capture Event

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 8-1. Reset and Interrupt Vectors (Continued)
V?\lc;?r AF:jrgrgersasm(l) Source Interrupt Definition

29 0x0038 TIMER3 COMPA Timer/Counter3 Compare Match A
30 0x003A TIMER3 COMPB Timer/Counter3 Compare Match B
31 0x003C TIMER3 COMPC Timer/Counter3 Compare Match C
32 0x003E TIMER3 OVF Timer/Counter3 Overflow
33 0x0040 USART], RX USART1, Rx Complete
34 0x0042 USART1, UDRE USART1 Data Register Empty
35 0x0044 USART1, TX USART1, Tx Complete
36 0x0046 TWI Two-wire Serial Interface
37 0x0048 SPM READY Store Program Memory Ready

Notes: 1. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot

2.

Flash Section. The address of each Interrupt Vector will then be the address in this table

added to the start address of the Boot Flash Section.

When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at

reset, see “Boot Loader Support — Read-While-Write Self-Programming” on page 321.

Table 8-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 8-2. Reset and Interrupt Vectors Placement®
BOOTRST IVSEL Reset Address Inter rupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 24-6 on page 334. For the BOOTRST Fuse “1”

AT90CAN3

;Addre
0x0000
0x0002
0x0004
0x0006
0x0008
0x000A
0x000C
0x000E
0x0010

means unprogrammed while “0” means programmed.
The most typical and general program setup for the Reset and Interrupt Vector Addresses in

2/64/128 is:

ss Labels Code
jmp RESET ;
mp EXT INTO ;
Jjmp EXT INT1 ;
Jmp EXT INT2 ;
mp EXT INT3 ;
jmp EXT INT4 ;
Jmp EXT INT5 ;
mp EXT INT6 ;
mp EXT INT7 ;

7679H-CAN-08/08

ATMEL

Comments
Reset Handler
IRQO Handler
IRQ1 Handler
IRQ2 Handler
IRQ3 Handler
IRQ4 Handler
IRQ5 Handler
IRQ6 Handler
IRQ7 Handler

61

ATMEL

0x0012 jmp TIM2 COMP ; Timer2 Compare Handler
0x0014 jmp TIM2 OVF ; Timer2 Overflow Handler
0x0016 jmp TIM1 CAPT ; Timerl Capture Handler
0x0018 jmp TIM1 COMPA; Timerl CompareA Handler
0x001A jmp TIM1 _COMPB; Timerl CompareB Handler
0x001C jmp TIM1 OVF ; Timerl CompareC Handler
0x001E jmp TIM1 OVF ; Timerl Overflow Handler
0x0020 jmp TIMO_COMP ; Timer(O Compare Handler
0x0022 jmp TIMO OVF ; Timer0 Overflow Handler
0x0024 jmp CAN IT ; CAN Handler

0x0026 jmp CTIM OVF ; CAN Timer Overflow Handler
0x0028 jmp SPI_STC ; SPI Transfer Complete Handler
0x002A jmp USARTO_RXC; USARTO RX Complete Handler
0x002C jmp USARTO_DRE; USARTO,UDR Empty Handler
0x002E jmp USARTO_TXC; USARTO TX Complete Handler
0x0030 jmp ANA COMP ; Analog Comparator Handler
0x0032 jmp ADC ; ADC Conversion Complete Handler
0x0034 jmp EE RDY ; EEPROM Ready Handler

0x0036 jmp TIM3 CAPT ; Timer3 Capture Handler
0x0038 jmp TIM3 _COMPA; Timer3 CompareA Handler
0x003A jmp TIM3 COMPB; Timer3 CompareB Handler
0x003C jmp TIM3 COMPC; Timer3 CompareC Handler
0x003E jmp TIM3_OVF ; Timer3 Overflow Handler
0x0040 jmp USART1 RXC; USART1 RX Complete Handler
0x0042 Jmp USART1 DRE; USART1,UDR Empty Handler
0x0044 jmp USART1 TXC; USART1 TX Complete Handler
0x0046 jmp TWI ; TWI Interrupt Handler

0x0048 jmp SPM_RDY ; SPM Ready Handler

0x004A RESET: 1di rl6, high(RAMEND) ; Main program start
0x004B out SPH,rlé6 ;Set Stack Pointer to top of RAM
0x004C 1di rl6, low (RAMEND)

0x004D out SPL,rlé6

0x004E sei ; Enable interrupts
0x004F <instr> xxx

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments
0x0000 RESET: 1di rl6,high (RAMEND) ; Main program start
0x0001 out SPH,rlé6 ; Set Stack Pointer to top of RAM
0x0002 1di rlé6, low (RAMEND)
0x0003 out SPL,rlé6
62 ATO0CANSG2/64/128 m———————————————————————————

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

0x0004
0x0005

7

sei

<instr> xxx

.org (BootResetAdd + 0x0002)

0x..02
0x..04
0x..0C

jmp
jmp

jmp

EXT INTO
PCINTO

SPM_RDY

7

I

7

I

Enable interrupts

IRQO Handler
PCINTO Handler

Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels
.org 0x0002
0x0002

0x0004

0x002C

7

.org (BootResetAdd)

0x..00 RESET:
0x..01
0x..02
0x..03
0x..04
0x..05

jmp
jmp

jmp

1di
out
1di
out

sei

Code

EXT INTO
PCINTO

SPM_RDY

rl6,high (RAMEND)
SPH, rl6
rlé, low (RAMEND)
SPL,rl6

<instr> xxx

7

Comments

IRQO Handler
PCINTO Handler

Store Program Memory Ready Handler

Main program start

Set Stack Pointer to top of RAM

Enable interrupts

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels

I

.org (BootResetAdd)

0x..00
0x0002
0x..04
0x. .44
0x..46 RESET:
0x. .47
0x..48
0x..49
0x..4A
0x..4B

jmp
jmp
jmp

jmp

1di
out
1di
out

sei

Code

RESET
EXT_INTO
PCINTO

SPM_RDY

rl6,high (RAMEND)
SPH, rle6

116, low (RAMEND)
SPL,rlé6

<instr> xxx

ATMEL

7

Comments

Reset handler

IRQ0 Handler

PCINTO Handler

Store Program Memory Ready Handler
Main program start

Set Stack Pointer to top of RAM

Enable interrupts

63

8.2

8.2.1

64

ATMEL

Moving Interrupts Between Application and Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

MCU Control Register - MCUCR

Bit 7 6 5 4 3 2 1 0

| o | - - PUD = - IVSEL IVCE | MCucR
Read/Write R/W R R RIW R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support — Read-While-Write Self-
Programming” on page 321 for details. To avoid unintentional changes of Interrupt Vector tables, a
special write procedure must be followed to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt Vectors
are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are dis-
abled while executing from the Boot Loader section. Refer to the section “Boot Loader Support —
Read-While-Write Self-Programming” on page 321 for details on Boot Lock bits.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

* Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable

interrupts, as explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move_interrupts:
; Get MCUCR
in rl6e, MCUCR
mov rl7, rle
; Enable change of Interrupt Vectors
ori rl6, (1l<<IVCE)
out MCUCR, rlé6
; Move interrupts to Boot Flash section
ori rl7, (1<<IVSEL)
out MCUCR, rl17

ret

C Code Example

void Move interrupts (void)

{
uchar temp;

/* Get MCUCR*/
temp = MCUCR;

/* Enable change of Interrupt Vectors */
MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp | (1<<IVSEL);

ATMEL

65

9.

9.1

66

I/O-Ports

Introduction

ATMEL

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. All port pins have individually selectable pull-up resistors with a supply-voltage invari-
ant resistance. All I/O pins have protection diodes to both V. and Ground as indicated in Figure
9-1. Refer to “Electrical Characteristics (1)” on page 365 for a complete list of parameters.

Figure 9-1. 1/O Pin Equivalent Schematic

pu

Pxn ’

!

= = L

Logic

See Figure
"General Digital /0" for
Details

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTRB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical /O Regis-
ters and bit locations are listed in “Register Description for 1/O-Ports”.

Three 1/O memory address locations are allocated for each port, one each for the Data Register
— PORTX, Data Direction Register — DDRX, and the Port Input Pins — PINx. The Port Input Pins
I/0O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable — PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the 1/O port as General Digital 1/O is described in “Ports as General Digital I/0”. Most port
pins are multiplexed with alternate functions for the peripheral features on the device. How each
alternate function interferes with the port pin is described in “Alternate Port Functions” on page
71. Refer to the individual module sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

9.2 Ports as General Digital I/O
The ports are bi-directional 1/0 ports with optional internal pull-ups. Figure 9-2 shows a func-
tional description of one 1/O-port pin, here generically called Pxn.

Figure 9-2. General Digital /0

<|I bk PUD

MW\
;U
O
x

N (%))
L D
» 1 @
- < — |2
3. S <DE

| WP

RESET ‘ *

SLEEP ; RRx

(.

v

— |
2l

o |
N
7

|
T—‘m
%

clk o
- WDx: WRITE DDRXx
PUD: PULLUP DISABLE RDx: READ DDRX
SLEEP: SLEEP CONTROL WRx: WRITE PORTX
clk,o: /O CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTXx PIN
WPx: WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,q,
SLEEP, and PUD are common to all ports.

9.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Register
Description for I/O-Ports” on page 89, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,

Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin

The port pins are tri-stated when reset condition becomes active, even if no clocks are running.

ATMEL o

7679H-CAN-08/08

9.2.2

9.2.3

9.2.4

68

ATMEL

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0bl1l), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled state is fully acceptable, as
a high-impedant environment will not notice the difference between a strong high driver and a
pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all pull-
ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
= 0b11) as an intermediate step.

Table 9-1 summarizes the control signals for the pin value.

Table 9-1. Port Pin Configurations

PUD
DDxn PORTxn (in MCUCR) I/0 Pull-up | Comment
Default configuration after Reset.
0 0 X Input No . .
Tri-state (Hi-2)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 9-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 9-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tog nax and tyg min respectively.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Figure 9-3.

Synchronization when Reading an Externally Applied Pin value

SYSTEM CLK ;: ;: ;: |]
INSTRUCTIONS X X wix X e X

SYNC LATCH |7//A
PINXN : :
r17 OxOOé X oxFF
4 tpd, max : ‘
tpd, min
e >

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?” signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpg ma, and t,g min, @ single signal transition on the pin will be delayed
between %2 and 1% system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 9-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay t 4 through the synchronizer is 1 system clock period.

Figure 9-4.

7679H-CAN-08/08

Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK ! !

rl6 : OXFF

INSTRUCTIONS Y out PORTx, r16 X nop X inr17, PINx -~ X

SYNC LATCH [

PINxn

r17 i 0x00 : X oxFF

pd

ATMEL o

9.2.5

70

ATMEL

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Assembly Code Example®

; Define pull-ups and set outputs high

; Define directions for port pins

1di rl6, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO)

1ldi rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO0)
out PORTB, rlé6

out DDRB, rl7

; Insert nop for synchronization

nop

; Read port pins

in rlé6, PINB

C Code Example®

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. Forthe assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3
as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep Modes

As shown in Figure 9-2, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to V./2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in “Alternate Port Functions” on page 71.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

above mentioned sleep modes, as the clamping in these sleep modes produces the requested
logic change.

9.2.6 Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a
defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be
disabled during reset. If low power consumption during reset is important, it is recommended to
use an external pull-up or pull-down. Connecting unused pins directly to Vcc or GND is not rec-
ommended, since this may cause excessive currents if the pin is accidentally configured as an
output.

9.3 Alternate Port Functions

7679H-CAN-08/08

Most port pins have alternate functions in addition to being general digital I/Os. Figure 9-5 shows
how the port pin control signals from the simplified Figure 9-2 can be overridden by alternate
functions. The overriding signals may not be present in all port pins, but the figure serves as a
generic description applicable to all port pins in the AVR microcontroller family.

ATMEL m

ATMEL

Figure 9-5. Alternate Port Functions

PUOExn A

PUOVxn

PUD

DDOExn

DDOVxn

PVOEXxn

PVOVxn

DATA BUS

DIEOExn PTOExn

DIEOVxn
1
SLEEP

Hgl

WPx

clk o

P Dixn

@ AlOXn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE v
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTXx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINX
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clk o 1/0 CLOCK

SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTX

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,q,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

Table 9-2 summarizes the function of the overriding signals. The pin and port indexes from
Figure 9-5 are not shown in the succeeding tables. The overriding signals are generated
internally in the modules having the alternate function.

72 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

Table 9-2. Generic Description of Overriding Signals for Alternate Functions
Signal Name Full Name Description
. If this signal is set, the pull-up enable is controlled by the PUOV
Pull-up Override . L . -
PUOE Enable signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.
. If PUOE is set, the pull-up is enabled/disabled when PUQV is
Pull-up Override .
PUOV Value set/cleared, regardless of the setting of the DDxn, PORTxn,
and PUD Register bits.
Data Direction If this signal is set, the Output Driver Enable is controlled by the
DDOE Override Enable DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.
N If DDOE is set, the Output Driver is enabled/disabled when
Data Direction ; :
DDOV - DDOV is set/cleared, regardless of the setting of the DDxn
Override Value . .
Register bit.
If this signal is set and the Output Driver is enabled, the port
PVOE Port Value value is controlled by the PVOV signal. If PVOE is cleared, and
Override Enable the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless of the
Override Value setting of the PORTxn Register bit.
PTOE Port T_oggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Digital Input If this bit is set, the Digital Input Enable is controlled by the
DIEOE Enable Override DIEQV signal. If this signal is cleared, the Digital Input Enable
Enable is determined by MCU state (Normal mode, sleep mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV Enable Override DIEQV is set/cleared, regardless of the MCU state (Normal
Value mode, sleep mode).
This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but
DI Digital Input before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.
This is the Analog Input/output to/from alternate functions. The
Analog . . . ;
AIO signal is connected directly to the pad, and can be used bi-
Input/Output S
directionally.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further

details.
9.3.1 MCU Control Register - MCUCR
Bit 7 6 4 3 2 1 0
| JTD | = PUD = = IVSEL IVCE | MCUCR
Read/Write R/W R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0

7679H-CAN-08/08

ATMEL

73

ATMEL

¢ Bit4 - PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” for more details about this feature.

9.3.2 Alternate Functions of Port A

The Port A has an alternate function as the address low byte and data lines for the External
Memory Interface.

The Port A pins with alternate functions are shown in Table 9-3.

Table 9-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 AD7 (External memory interface address and data bit 7)
PAG6 ADG (External memory interface address and data bit 6)
PA5 AD5 (External memory interface address and data bit 5)
PA4 AD4 (External memory interface address and data bit 4)
PA3 AD3 (External memory interface address and data bit 3)
PA2 AD2 (External memory interface address and data bit 2)
PAl AD1 (External memory interface address and data bit 1)
PAO ADO (External memory interface address and data bit 0)

The alternate pin configuration is as follows:

« AD7-Port A, Bit7
AD7, External memory interface address 7 and Data 7.

* ADG6 - Port A, Bit6
ADG6, External memory interface address 6 and Data 6.

« AD5-Port A, Bit5
AD5, External memory interface address 5 and Data 5.

* AD4 -Port A, Bit4
AD4, External memory interface address 4 and Data 4.

e AD3-PortA, Bit3
AD3, External memory interface address 3 and Data 3.

* AD2-Port A, Bit2
AD2, External memory interface address 2 and Data 2.

e AD1-PortA Bitl
AD1, External memory interface address 1 and Data 1.

* ADO-Port A, Bit0
ADO, External memory interface address 0 and Data 0.

74 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

Table 9-4 and Table 9-5 relates the alternate functions of Port A to the overriding signals shown
in Figure 9-5 on page 72.

Table 9-4. Overriding Signals for Alternate Functions in PA7..PA4
Signal Name PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4
PUOE SRE — SREs — SREe — SRE —
(ADAY + WR) (ADA® + WR) (ADA® + WR) (ADAY + WR)
PUOV 0 0 0 0
DDOE EE ﬁE ﬁE EE
DDOV WR + ADA WR + ADA WR + ADA WR + ADA
PVOE SRE SRE SRE SRE
PVOV A7 « ADAM4+D7 | A6+ ADAY4+D6 | A5« ADAY4DP5 | A4+« ADAV—+D4
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT
AlO - - - -
Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-
nal Memory Interface” on page 27 for details.
Table 9-5. Overriding Signals for Alternate Functions in PA3..PAO
Signal Name PA3/AD3 P A2/AD2 PA1/AD1 PAO/ADO
PUOE SREe — SREs — SREe — SREe —
(ADA® + WR) (ADAM + WR) (ADA® + WR) (ADA® + WR)
PUOV 0 0 0 0
DDOE EE EE EE EE
DDOV WR + ADA WR + ADA WR + ADA WR + ADA
PVOE SRE SRE SRE SRE
PVOV A3+ ADAD4D3 | A2+ ADAD4D2 | Al+ADAY=4D1 | A0+ ADAD-DO
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI D3 INPUT D2 INPUT D1 INPUT DO INPUT
AlO - - - -
Note: 1. ADA is short for ADdress Active and represents the time when address is output. See “Exter-

nal Memory Interface” on page 27 for details.

7679H-CAN-08/08

ATMEL

75

9.3.3

76

ATMEL

Alternate Functions of Port B

The Port B pins with alternate functions are shown in Table 9-6.

Table 9-6. Port B Pins Alternate Functions

Port Pin | Alternate Functions

OCOA/OC1C (Output Compare and PWM Output A for Timer/Counter0O or Output Compare
and PWM Output C for Timer/Counterl)

PB6 OC1B (Output Compare and PWM Output B for Timer/Counterl)
PB5 OCI1A (Output Compare and PWM Output A for Timer/Counterl)
PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2)
PB3 MISO (SPI Bus Master Input/Slave Output)

PB7

PB2 MOSI (SPI Bus Master Output/Slave Input)
PB1 SCK (SPI Bus Serial Clock)
PBO SS (SPI Slave Select input)

The alternate pin configuration is as follows:

« OCOA/OC1C, Bit 7

OCOA, Output Compare Match A output. The PB7 pin can serve as an external output for the
Timer/CounterO Output Compare A. The pin has to be configured as an output (DDB7 set “one”)
to serve this function. The OCOA pin is also the output pin for the PWM mode timer function.

OC1C, Output Compare Match C output. The PB7 pin can serve as an external output for the
Timer/Counterl Output Compare C. The pin has to be configured as an output (DDB7 set “one”)
to serve this function. The OC1C pin is also the output pin for the PWM mode timer function.

« OCI1B, Bit6

OC1B, Output Compare Match B output. The PB6 pin can serve as an external output for the
Timer/Counterl Output Compare B. The pin has to be configured as an output (DDB6 set “one”)
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

« OCI1A, Bit5

OC1A, Output Compare Match A output. The PB5 pin can serve as an external output for the
Timer/Counterl Output Compare A. The pin has to be configured as an output (DDB5 set “one”)
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

« OC2A, Bit4

OC2A, Output Compare Match A output. The PB4 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB4 set “one”)
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

e MISO - Port B, Bit 3

MISO, Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB3. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB3 bit.

* MOSI - Port B, Bit 2

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB2. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB2 bit.

* SCK-PortB, Bit1l

SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB1. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB1 bit.

*+ SS-PortB, Bit0

SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDBO. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDBO.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTBO bit.

Table 9-7 and Table 9-8 relate the alternate functions of Port B to the overriding signals shown
in Figure 9-5 on page 72. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO sig-
nal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 9-7 and Table 9-8 relates the alternate functions of Port B to the overriding signals shown
in Figure 9-5 on page 72.

Table 9-7. Overriding Signals for Alternate Functions in PB7..PB4

Signal Name PB7/OCOA/OC1C PB6/0OC1B PB5/OC1A PB4/0OC2A
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE gﬁggﬁ%}c OC1B ENABLE | OC1A ENABLE | OC2A ENABLE
PVOV ocoa/ocic® OC1B OC1A OC2A
PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - - - -

AIO - - - -

Note: 1. See “Output Compare Modulator - OCM” on page 165 for details.

ATMEL m

9.3.4

78

ATMEL

Table 9-8. Overriding Signals for Alternate Functions in PB3..PB0O
Signal Name PB3/MISO PB 2/MOSI PB1/SCK PBO/SS
PUOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV PORTB3 « PUD PORTB2 « PUD PORTB1 « PUD PORTBO « PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0
PVOE SPE « MSTR SPE « MSTR SPE « MSTR 0
POV SPISLAVE | SPIMASTER | ooy ourpur | o
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEQV 0 0 0 0
DI IS'\IPF!SATASTER ﬁ\lplilf'l%é\;EES? SCK INPUT SPI SS
AIO - - - -

Alternate Functions of Port C
The Port C has an alternate function as the address high byte for the External Memory Interface.

The Port C pins with alternate functions are shown in Table 9-9.

Table 9-9. Port C Pins Alternate Functions
Port Pin Alter nate Function
PC7 A15/CLKO (External memory interface address 15 or Divided System
Clock)

PC6 Al4 (External memory interface address 14)
PC5 A13 (External memory interface address 13)
PC4 A12 (External memory interface address 12)
PC3 A1l (External memory interface address 11)
PC2 A10 (External memory interface address 10)
PC1 A9 (External memory interface address 9)
PCO A8 (External memory interface address 8)

The alternate pin configuration is as follows:

* A15/CLKO - Port C, Bit 7
A15, External memory interface address 15.

CLKO, Divided System Clock: The divided system clock can be output on the PC7 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTC7 and DDCY7 settings. It will also be output during reset.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

* Al4-PortC, Bit6
Al4, External memory interface address 14.

e Al13-PortC,Bit5
A13, External memory interface address 13.

+ Al12-PortC, Bit4
Al12, External memory interface address 12.

e All-PortC,Bit3
All, External memory interface address 11.

+ Al10-PortC,Bit2
A10, External memory interface address 10.

A9 - Port C, Bit 1
A9, External memory interface address 9.

« A8-PortC,Bit0
A8, External memory interface address 8.

s A TO0CAN32/64/128

Table 9-10 and Table 9-11 relate the alternate functions of Port C to the overriding signals

shown in Figure 9-5 on page 72.

Table 9-10. Overriding Signals for Alternate Functions in PC7..PC4

Signal Name PC7/A15 PC6/A14 PC5/A13 PC4/A12
PUOE SRE « (XMM<1) SRE + (XMM<2) SRE ¢ (XMM<3) SRE « (XMM<4)
PUOV 0 0 0 0
CKOUT® +
DDOE (SRE * (XMM<1)) SRE « (XMM<2) SRE « (XMM<3) SRE « (XMM<4)
DDOV 1 1 1 1
CKOUT® +
PVOE (SRE + (XMM<1)) SRE « (XMM<2) SRE « (XMM<3) SRE « (XMM<4)
(A15 « CKOUT®) +
PVOV (CLKO = CKOUT®) Al4 A13 Al2
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AIO - - - -

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

ATMEL

79

ATMEL

Table 9-11. Overriding Signals for Alternate Functions in PC3..PCO
Signal Name PC3/A11 P C2/A10 PC1/A9 PCO/A8
PUOE SRE s (XMM<5) SRE + (XMM<6) SRE « (XMM<7) SRE « (XMM<7)
PUOV 0 0 0 0
DDOE SRE * (XMM<5) SRE + (XMM<6) SRE * (XMM<7) SRE « (XMM<7)
DDOV 1 1 1 1
PVOE SRE « (XMM<5) SRE « (XMM<6) SRE « (XMM<7) SRE « (XMM<7)
PVOV All Al10 A9 A8
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlO - - - -

9.3.5 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 9-12.

Table 9-12.

Port D Pins Alternate Functions

Port Pin

Alternate Function

PD7

TO (Timer/Counter0 Clock Input)

PD6

RXCAN/T1 (CAN Receive Pin or Timer/Counterl Clock Input)

PD5

TXCAN/XCK1 (CAN Transmit Pin or USART1 External Clock Input/Output)

PD4

ICP1 (Timer/Counterl Input Capture Trigger)

PD3

INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin)

PD2

INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin)

PD1

INT1/SDA (External Interruptl Input or TWI Serial DAta)

PDO

INTO/SCL (External InterruptO Input or TWI Serial CLock)

The alternate pin configuration is as follows:

e TO-PortD,Bit7
TO, Timer/CounterQ counter source.

*« RXCAN/T1 - Port D, Bit6

RXCAN, CAN Receive Data (Data input pin for the CAN). When the CAN controller is enabled
this pin is configured as an input regardless of the value of DDD6. When the CAN forces this pin
to be an input, the pull-up can still be controlled by the PORTDS bit.

T1, Timer/Counterl counter source.

e TXCAN/XCK1 - Port D, Bit 5

80 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

TXCAN, CAN Transmit Data (Data output pin for the CAN). When the CAN is enabled, this pin is
configured as an output regardless of the value of DDD5.

XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether the clock
is output (DDD5 set) or input (DDD45 cleared). The XCK1 pin is active only when the USART1
operates in Synchronous mode.

* ICP1-PortD,Bit4
ICP1, Input Capture Pinl. The PD4 pin can act as an input capture pin for Timer/Counterl.

e INT3/TXD1 — Port D, Bit 3

INT3, External Interrupt source 3. The PD3 pin can serve as an external interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD3.

e INT2/RXD1 — Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt source to the
MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is enabled
this pin is configured as an input regardless of the value of DDD2. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTD?2 bit.

e INT1/SDA - Port D, Bit 1

INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source to the
MCU.

SDA, Two-wire Serial Interface Data. When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PD1 is disconnected from the port and becomes the Serial Data
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.

e INTO/SCL - Port D, Bit O

INTO, External Interrupt source 0. The PDO pin can serve as an external interrupt source to the
MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
Two-wire Serial Interface, pin PDO is disconnected from the port and becomes the Serial Clock
I/0 pin for the Two-wire Serial Interface. In this mode, there is a spike filter on the pin to sup-
press spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver
with slew-rate limitation.

ATMEL o

7679H-CAN-08/08

82

ATMEL

Table 9-13 and Table 9-14 relates the alternate functions of Port D to the overriding signals
shown in Figure 9-5 on page 72.

Table 9-13. Overriding Signals for Alternate Functions PD7..PD4
Signal Name PD7/TO PD6/T1/R XCAN PD5/XCK1/TXCAN PD4/ICP1
PUOE 0 RXCANEN TXCANEN + 0
PUOV 0 PORTDG6 « PUD 0 0
DDOE 0 RXCANEN TXCANEN 0
DDOV 0 0 1 0
PVOE 0 0 TXCANEN + UMSEL1 0
(XCK1 OUHRHH—=——
PVOV 0 0 UMSEL1 « TXCANEN) + 0
(TXCAN « TXCANEN)
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI TO INPUT T1 INPUT/RXCAN XCK1 INPUT ICP1 INPUT
AlO - - - -
Table 9-14. Overriding Signals for Alternate Functions in PD3..PDO®
Signal Name PD3/INT3/T XD1 PD2/INT2/RXD1 PD1/INT1/SDA PDO/INTO/SCL
PUOE TXEN1 RXEN1 TWEN TWEN
PUOV 0 PORTD2 « PUD PORTD1 « PUD PORTDO « PUD
DDOE TXEN1 RXEN1 0 0
DDOV 1 0 0 0
PVOE TXEN1 0 TWEN TWEN
PVOV TXD1 0 SDA_OUT SCL_OUT
PTOE 0 0 0 0
DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE
DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INTO INPUT
AlO - - SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables Slew-Rate controls on the output pins
PDO0 and PD1. This is not shown in this table. In addition, spike filters are connected between
the AIO outputs shown in the port figure and the digital logic of the TWI module.

ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

9.3.6

7679H-CAN-08/08

Alternate Functions of Port E

The Port E pins with alternate functions are shown in Table 9-15.

Table 9-15. Port E Pins Alternate Functions

Port Pin | Alternate Function

PE7 INT7/ICP3 (External Interrupt 7 Input or Timer/Counter3 Input Capture Trigger)
PE6 INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)
INT5/OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for
PE5 .
Timer/Counter3)
INT4/0OC3B (External Interrupt4 Input or Output Compare and PWM Output B for
PE4 .
Timer/Counter3)
PE3 AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM Output A

for Timer/Counter3)

PE2 AINO/XCKO (Analog Comparator Positive Input or USARTO external clock input/output)

PE1 PDO/TXDO (Programming Data Output or UARTO Transmit Pin)

PEO PDI/RXDO (Programming Data Input or UARTO Receive Pin)

The alternate pin configuration is as follows:

e PCINT7/ICP3 - Port E, Bit 7
INT7, External Interrupt source 7. The PE7 pin can serve as an external interrupt source.

ICP3, Input Capture Pin3: The PE7 pin can act as an input capture pin for Timer/Counter3.

* INT6/T3 - Port E, Bit6
INT6, External Interrupt source 6. The PEG6 pin can serve as an external interrupt source.

T3, Timer/Counter3 counter source.

* INT5/0OC3C - Port E, Bit 5
INT5, External Interrupt source 5. The PE5 pin can serve as an External Interrupt source.

OC3C, Output Compare Match C output. The PES5 pin can serve as an External output for the
Timer/Counter3 Output Compare C. The pin has to be configured as an output (DDES5 set “one”)
to serve this function. The OC3C pin is also the output pin for the PWM mode timer function.

* INT4/OC3B - Port E, Bit 4
INT4, External Interrupt source 4. The PE4 pin can serve as an External Interrupt source.

0OC3B, Output Compare Match B output. The PE4 pin can serve as an External output for the
Timer/Counter3 Output Compare B. The pin has to be configured as an output (DDE4 set (one))
to serve this function. The OC3B pin is also the output pin for the PWM mode timer function.

* AIN1/OC3A - Port E, Bit 3
AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

OC3A, Output Compare Match A output. The PE3 pin can serve as an External output for the
Timer/Counter3 Output Compare A. The pin has to be configured as an output (DDE3 set “one”)
to serve this function. The OC3A pin is also the output pin for the PWM mode timer function.

ATMEL 5

84

ATMEL

* AINO/XCKO — Port E, Bit 2
AINO — Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

XCKO, USARTO External clock. The Data Direction Register (DDE2) controls whether the clock
is output (DDE2 set) or input (DDE2 cleared). The XCKO pin is active only when the USARTO
operates in Synchronous mode.

+ PDO/TXDO - Port E, Bit 1
PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this pin is
used as data output line for the AT90CAN32/64/128.

TXDO0, UARTO Transmit pin.

* PDI/RXDO - Port E, Bit0
PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin is used
as data input line for the AT90CAN32/64/128.

RXDO0, USARTO Receive Pin. Receive Data (Data input pin for the USARTO0). When the
USARTO receiver is enabled this pin is configured as an input regardless of the value of DDREDO.
When the USARTO forces this pin to be an input, a logical one in PORTEO will turn on the inter-
nal pull-up.

Table 9-16 and Table 9-17 relates the alternate functions of Port E to the overriding signals
shown in Figure 9-5 on page 72.

Table 9-16. Overriding Signals for Alternate Functions PE7..PE4

Signal Name PE7/INT7/ICP3 PEG6/IN T6/T3 PES/INT5/0OC3C | PE4/INT4/OC3B
PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE OC3B ENABLE
PVOV 0 0 oc3c oc3B

PTOE 0 0 0 0

DIEOE INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE
DIEOV INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE
DI ;:\é:TIZ3”I\INPPUUTT }.'F‘,OT ?,\:EE?T INT5 INPUT INT4 INPUT
AIO - - - -

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 9-17. Overriding Signals for Alternate Functions in PE3..PEO
Signal Name PE3/AIN1/O C3A PE2/AINO/XCKO PE1/P DO/TXDO PEO/PDI/RXDO
PUOE 0 0 TXENO RXENO
PUOV 0 0 0 PORTEO « PUD
DDOE 0 0 TXENO RXENO
DDOV 0 0 1 0
PVOE OC3A ENABLE UMSELO TXENO 0
PVOV OC3A XCKO OUTPUT TXDO 0
PTOE 0 0 0 0
DIEOE AIN1DW AINODW 0 0
DIEOV 0 0 0 0
DI 0 XCKO INPUT - RXDO
AlIO AIN1 INPUT AINO INPUT - -
Note: 1. AINOD and AIN1D is described in “Digital Input Disable Register 1 — DIDR1” on page 272.

Alternate Functions of Port F

The Port F has an alternate function as analog input for the ADC as shown in Table 9-18. If
some Port F pins are configured as outputs, it is essential that these do not switch when a con-
version is in progress. This might corrupt the result of the conversion. If the JTAG interface is
enabled, the pull-up resistors on pins PF7 (TDI), PF5 (TMS) and PF4 (TCK) will be activated
even if a reset occurs.

Table 9-18. Port F Pins Alternate Functions
Port Pin Alternate Function
PF7 ADCY7/TDI (ADC input channel 7 or JTAG Data Input)
PF6 ADCG6/TDO (ADC input channel 6 or JTAG Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG ClocK)
PF3 ADC3 (ADC input channel 3)
PF2 ADC2 (ADC input channel 2)
PF1 ADC1 (ADC input channel 1)
PFO ADCO (ADC input channel 0)

The alternate pin configuration is as follows:

e TDI, ADC7 — Port F, Bit 7
ADCY7, Analog to Digital Converter, input channel 7.

ATMEL

85

86

ATMEL

TDI, JTAG Test Data In. Serial input data to be shifted in to the Instruction Register or Data Reg-
ister (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.

+ TCK, ADC6 — Port F, Bit 6
ADCB6, Analog to Digital Converter, input channel 6.

TDO, JTAG Test Data Out. Serial output data from Instruction Register or Data Register. When
the JTAG interface is enabled, this pin can not be used as an 1/O pin.

+ TMS, ADC5 - Port F, Bit5
ADCS5, Analog to Digital Converter, input channel 5.

TMS, JTAG Test mode Select. This pin is used for navigating through the TAP-controller state
machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin.

+ TDO, ADC4 - Port F, Bit 4
ADC4, Analog to Digital Converter, input channel 4.

TCK, JTAG Test Clock. JTAG operation is synchronous to TCK. When the JTAG interface is
enabled, this pin can not be used as an I/O pin.

* ADC3 - Port F, Bit 3
ADC3, Analog to Digital Converter, input channel 3.

+ ADC2 - PortF, Bit 2
ADC2, Analog to Digital Converter, input channel 2.

* ADC1 - Port F, Bit1
ADC1, Analog to Digital Converter, input channel 1.

« ADCO - Port F, Bit 0
ADCO, Analog to Digital Converter, input channel 0.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 9-19 and Table 9-20 relates the alternate functions of Port F to the overriding signals
shown in Figure 9-5 on page 72.

Table 9-19. Overriding Signals for Alternate Functions in PF7..PF4
Signal Name PF 7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK
PUOE JTAGEN JTAGEN JTAGEN JTAGEN
PUOV JTAGEN JTAGEN JTAGEN JTAGEN
DDOE JTAGEN JTAGEN JTAGEN JTAGEN
o« Siasa P :
PVOE JTAGEN JTAGEN JTAGEN JTAGEN
PVOV 0 TDO 0 0
PTOE 0 0 0 0
DIEOE JTAGEN + JTAGEN + JTAGEN + JTAGEN +
ADC7D ADC6D ADC5D ADC4D
DIEOQV JTAGEN 0 JTAGEN JTAGEN
DI TDI - TMS TCK
AIO ADC7 INPUT ADCG6 INPUT ADCS5 INPUT ADC4 INPUT
Table 9-20. Overriding Signals for Alternate Functions in PF3..PFO
Signal Name PF3/ADC3 PF 2/ADC2 PF1/ADC1 PFO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
PTOE 0 0 0 0
DIEOE ADC3D ADC2D ADC1D ADCOD
DIEOV 0 0 0 0
DI - - - -
AlO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

ATMEL

87

ATMEL

9.3.8 Alternate Functions of Port G
The alternate pin configuration is as follows:

Table 9-21. Port G Pins Alternate Functions

Port Pin Alternate Function
PG4 TOSC1 (RTC Oscillator Timer/Counter2)
PG3 TOSC2 (RTC Oscillator Timer/Counter2)
PG2 ALE (Address Latch Enable to external memory)
PG1 RD (Read strobe to external memory)
PGO WR (Write strobe to external memory)

The alternate pin configuration is as follows:

*+ TOSC1 - Port G, Bit4

TOSC2, Timer/Counter2 Oscillator pin 1. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG4 is disconnected from the port, and becomes the
input of the inverting Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this
pin, and the pin can not be used as an 1/O pin.

*+ TOSC2 - Port G, Bit 3

TOSC2, Timer/Counter2 Oscillator pin 2. When the AS2 bit in ASSR is set (one) to enable asyn-
chronous clocking of Timer/Counter2, pin PG3 is disconnected from the port, and becomes the
inverting output of the Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this
pin, and the pin can not be used as an 1/O pin.

e ALE-PortG, Bit2
ALE is the external data memory Address Latch Enable signal.

. RD- Port G, Bit 1
RD is the external data memory read control strobe.

* WR-PortG, Bit0
WR is the external data memory write control strobe.

88 ATOOCANS2/0A/1 2 s ——

s A TO0CAN32/64/128

9.4

9.4.1

7679H-CAN-08/08

Table 9-21 and Table 9-22 relates the alternate functions of Port G to the overriding signals
shown in Figure 9-5 on page 72.

Table 9-22. Overriding Signals for Alternate Function in PG4

Signal Name - - - PG4/TOSC1
PUOE AS2

PUOV 0

DDOE AS2

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE AS2

DIEOV EXCLK

DI -

AIO T/C2 OSC INPUT

Table 9-23. Overriding Signals for Alternate Functions in PG3:0

Signal Name PG3/TOSC 2 PG2/ALE PG1/RD PGO/WR
PUOE AS2 « EXCLK SRE SRE SRE
PUOV 0 0 0 0
DDOE AS2 « EXCLK SRE SRE SRE
DDOV 0 1 1 1
PVOE 0 SRE SRE SRE
PVOV 0 ALE RD WR
PTOE 0 0 0 0
DIEOE AS2 0 0 0
DIEOV 0 0 0 0

DI - - - -
AlIO T/C2 OSC OUTPUT - - -

Register Description for I/O-Ports

Port A Data Register — PORTA

Bit 7 6 5 4 3 2 1 0

I PORTA7 | PORTAG6 | PORTA5 | PORTA4 | PORTA3 |PORTA2 |PORTAl1 |PORTAO I PORTA
Read/Write R/IW R/IW R/IW RIW R/IW RIW RIW R/IW
Initial Value 0 0 0 0 0 0 0 0

ATMEL L

9.4.2 Port A Data Direction Register — DDRA

Bit 7 6 5 4 3 2 1 0

| ppa7 | ppas | DDA5 DDA4 DDA3 DDA2 DDA1 DDAO | DDRA
Read/Write RIW RIW R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.3 Port A Input Pins Address — PINA

Bit 7 6 5 4 3 2 1 0

I PINA7 | PINAG PINAS PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.4 Port B Data Register —- PORTB

Bit 7 6 5 4 3 2 1 0

| PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/IW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.5 Port B Data Direction Register — DDRB

Bit 7 6 5 4 3 2 1 0

| poe7 | ppBs | DDB5 DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write RIW RIW R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.6 Port B Input Pins Address — PINB

Bit 7 6 5 4 3 2 1 0

I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.7 Port C Data Register - PORTC

Bit 7 6 5 4 3 2 1 0

| PORTC? | PORTC6 | PORTC5 | PORTC4 | PORTC3 | PORTC2 | PORTC1 PORTCOI PORTC
Read/Write R/W R/W R/W R/W R/W R/IW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.8 Port C Data Direction Register —- DDRC

Bit 7 6 5 4 3 2 1 0

| poc7 | pbce | pbcs DDC4 DDC3 DDC2 DDC1 pbco | DDRC
Read/Write RIW RIW R/W R/W RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.9 Port C Input Pins Address — PINC

Bit 7 6 5 4 3 2 1 0
I PINC7 | PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
90 ATO90CANS32/64/128 s ———

7679H-CAN-08/08

s A TO0CAN32/64/128

9.4.10 Port D Data Register - PORTD

Bit 7 6 5 4 3 2 1 0

I PORTD?7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 PORTDOI PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.11 Port D Data Di rection Register - DDRD

Bit 7 6 5 4 3 2 1 0

| poo7 | pooe | DDDs DDD4 DDD3 DDD2 DDD1 popo | porp
Read/Write R/W RIW R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.12 Port D Input Pins Address — PIND

Bit 7 6 5 4 3 2 1 0

I PIND7 | PIND6 PIND5S PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/IW R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.13 Port E Data Register - PORTE

Bit 7 6 5 4 3 2 1 0

I PORTE7 | PORTE6 | PORTES5 | PORTE4 | PORTE3 | PORTE2 | PORTE1L PORTEOI PORTE
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.14 Port E Data Direction Register —- DDRE

Bit 7 6 5 4 3 2 1 0

| poe7 | poee | DDEs DDE4 DDE3 DDE2 DDE1 DDEO | DDRE
Read/Write R/W RIW R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.15 Port E Input Pins Address — PINE

Bit 7 6 5 4 3 2 1 0

I PINE7 | PINEG PINES PINE4 PINE3 PINE2 PINE1 PINEO I PINE
Read/Write RIW R/IW RIW RIW RIW RIW R/IW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

9.4.16 Port F Data Register - PORTF

Bit 7 6 5 4 3 2 1 0

I PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 | PORTFO I PORTF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

9.4.17 Port F Data Direction Register — DDRF

Bit 7 6 5 4 3 2 1 0

| poF7 | poré | DDF5 DDF4 DDF3 DDF2 DDF1 DDFO | DDRF
Read/Write R/W R/W R/W R/W RIW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

ATMEL o

7679H-CAN-08/08

9.4.18

9.4.19

9.4.20

9.4.21

92

Port F Input Pins Address — PINF

ATMEL

Bit 7 6 5 4 3 2 1 0
| PinF7 | PiNFs PINF5 PINF4 PINF3 PINF2 PINF1 PINFO | PINF
Read/Write R/W R/W RIW R/W RIW R/W R/W RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Port G Data Register - PORTG
Bit 7 6 5 4 3 2 1 0
| - | - - PORTG4 | PORTG3 | PORTG2 | PORTGL | PORTGO | PORTG
Read/Write R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port G Data Direction Register — DDRG
Bit 7 6 5 4 3 2 1 0
| | DDG4 DDG3 DDG2 DDG1 DDGO | DDRG
Read/Write R R R R/W RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port G Input Pins Address — PING
Bit 7 6 5 4 3 2 1 0
| - | - - PING4 PING3 PING2 PING1 PINGO | PING
Read/Write R R/W R/W R/W R/W R/W
Initial Value 0 0 0 N/A N/A N/A N/A N/A

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

10. External Interrupts

The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the interrupts
will trigger even if the INT7:0 pins are configured as outputs. This feature provides a way of gen-
erating a software interrupt. The External Interrupts can be triggered by a falling or rising edge or
a low level. This is set up as indicated in the specification for the External Interrupt Control Reg-
isters — EICRA (INT3:0) and EICRB (INT7:4). When the external interrupt is enabled and is
configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that
recognition of falling or rising edge interrupts on INT7:4 requires the presence of an I/O clock,
described in “Clock Systems and their Distribution” on page 37. Low level interrupts and the
edge interrupt on INT3:0 are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode. The 1/O clock is halted in
all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. This makes the MCU less sensitive to
noise. The changed level is sampled twice by the Watchdog Oscillator clock. The period of the
Watchdog Oscillator is 1 pus (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscilla-
tor is voltage dependent as shown in the “Electrical Characteristics (1)” on page 365. The MCU
will wake up if the input has the required level during this sampling or if it is held until the end of
the start-up time. The start-up time is defined by the SUT fuses as described in “System Clock”
on page 37. If the level is sampled twice by the Watchdog Oscillator clock but disappears before
the end of the start-up time, the MCU will still wake up, but no interrupt will be generated. The
required level must be held long enough for the MCU to complete the wake up to trigger the level
interrupt.

10.1 External Interrupt Register Description

10.1.1 Asynchronous External Interrupt Control Register A — EICRA

Bit 7 6 5 4 3 2 1 0

| 'sca1 | 1scso | Isc21 | 1sc20 | IsCil ISC10 1ISC01 Iscoo | EICRA
Read/Write R/W R/W RIW RIW RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 - ISC31, ISC30 — ISC01, ISC00: Asynchronous External Interrupt 3 - 0 Sense
Control Bits

The External Interrupts 3 - O are activated by the external pins INT3:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 10-1. Edges on INT3..INTO are registered asynchro-
nously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 10-2 will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an inter-
rupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur.
Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the
EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be
cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the
interrupt is re-enabled.

ATMEL o

7679H-CAN-08/08

10.1.2

94

ATMEL

Table 10-1. Asynchronous External Interrupt Sense Control®

ISCn1 ISCn0 | Description
0 0 The low level of INTnh generates an interrupt request.
0 1 Any logical change on INTh generates an interrupt request
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,10r0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 10-2. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition Min Typ Max Units
Minimum pulse width for asynchronous
tNT . 50 ns
external interrupt

Synchronous External Interrupt Control Register B — EICRB

Bit 7 6 5 4 3 2 1 0
| 'sc71 | 1sc7o | isce1 | Isceo | ISC51 ISC50 ISC41 Isca0 | EICRB

Read/Write R/W R/W RIW RIW RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 - ISC71, ISC70 - ISC41, ISC40: Synchronous External Interrupt 7 - 4 Sense
Control Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 10-3. The value on the INT7:4 pins are sampled
before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one
clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an inter-
rupt. Observe that CPU clock frequency can be lower than the XTAL frequency if the XTAL
divider is enabled. If low level interrupt is selected, the low level must be held until the comple-
tion of the currently executing instruction to generate an interrupt. If enabled, a level triggered
interrupt will generate an interrupt request as long as the pin is held low.

Table 10-3. Synchronous External Interrupt Sense Control™®

ISCn1 | ISCn0 | Description
0 0 The low level of INTnh generates an interrupt request.
0 1 Any logical change on INTn generates an interrupt request
1 0 The falling edge between two samples of INTn generates an interrupt request.
1 1 The rising edge between two samples of INTn generates an interrupt request.

Note: 1. n=7,6,5o0r4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

10.1.3 External Interrupt Mask Register — EIMSK

Bit 7 6 5 4 3 2 1 0

I w17 | INTe | INTS5 INT4 INT3 INT2 INT1 IINTO | EIMSK
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 — INT7 — INTO: External Interrupt Request 7 - 0 Enable

When an INT7 — INTO bit is written to one and the I-bit in the Status Register (SREG) is set
(one), the corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the
External Interrupt Control Registers — EICRA and EICRB — defines whether the external inter-
rupt is activated on rising or falling edge or level sensed. Activity on any of these pins will trigger
an interrupt request even if the pin is enabled as an output. This provides a way of generating a
software interrupt.

10.1.4 External Interrupt Flag Register — EIFR

7679H-CAN-08/08

Bit 7 6 5 4 3 2 1 0

I NTF7 | INTF6 | INTFS5 INTF4 INTF3 INTF2 INTF1 IINTFO | EIFR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0 — INTF7 - INTFO: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT7:0 in EIMSK, are
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT7:0 are configured as level interrupt. Note that when entering sleep
mode with the INT3:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF3:0 flags. See “Digital Input
Enable and Sleep Modes” on page 70 for more information.

ATMEL o

ATMEL

11. Timer/Counter3/1/0 Prescalers

11.1 Overview

Timer/Counter3, Timer/Counterl and Timer/CounterO share the same prescaler module, but the
Timer/Counters can have different prescaler settings. The description below applies to both
Timer/Counter3, Timer/Counterl and Timer/CounterO.

Most bit references in this section are written in general form. A lower case “n” replaces the
Timer/Counter number.

11.1.1 Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This
provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system
clock frequency (fo k 110)- Alternatively, one of four taps from the prescaler can be used as a
clock source. The prescaled clock has a frequency of either fe x o/8, fork 10/64: fork 10/256, or
fouk 1o/1024. B B B

11.1.2 Prescaler Reset

The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter3, Timer/Counterl and Timer/CounterQ. Since
the prescaler is not affected by the Timer/Counter’s clock select, the state of the prescaler will
have implications for situations where a prescaled clock is used. One example of prescaling arti-
facts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The
number of system clock cycles from when the timer is enabled to the first count occurs can be
from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is
connected to.

11.1.3 External Clock Source

An external clock source applied to the T3/T1/TO pin can be used as Timer/Counter clock
(clkys/clkq/clkrg). The T3/T1/TO pin is sampled once every system clock cycle by the pin syn-
chronization logic. The synchronized (sampled) signal is then passed through the edge detector.
Figure 11-1 shows a functional equivalent block diagram of the T3/T1/T0O synchronization and
edge detector logic. The registers are clocked at the positive edge of the internal system clock
(clk,0)- The latch is transparent in the high period of the internal system clock.

The edge detector generates one clks/clk,/clkyy pulse for each positive (CSn2:0 = 7) or nega-
tive (CSn2:0 = 6) edge it detects.

96 ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Figure 11-1. T3/T1/TO Pin Sampling

N T
B D Q b Q D Q }4 (To Clock
Select Logic)
— [|

Synchronization Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles
from an edge has been applied to the T3/T1/TO pin to the counter is updated.

Enabling and disabling of the clock input must be done when T3/T1/TO has been stable for at
least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is
generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the sys-
tem clock frequency (feyicw < o 110/2) given a 50/50 % duty cycle. Since the edge detector uses
sampling, the maximum freque_ncy of an external clock it can detect is half the sampling fre-
quency (Nyquist sampling theorem). However, due to variation of the system clock frequency
and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is
recommended that maximum frequency of an external clock source is less than f., ,o/2.5.

An external clock source can not be prescaled.

Figure 11-2. Prescaler for Timer/Counter3, Timer/Counterl and Timer/CounterQ ¥

CK 10-BIT T/C PRESCALER |
Clear
PSR310

CKI/8
CK/64
CK/256)
CK/1024|

T3 —
L

T1 — Synchronization r

,,,,,,,,,,,,

eomn Y 5 0
17 v v v v v

CSs00 Cs10 CS30
Cso1 Csi11 Cs31
CSs02 Cs12 Cs32

led— o

TIMER/COUNTERO CLOCK SOURCE TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTER3 CLOCK SOURCE
clkpy clkpy. clkpg

Note: 1. The synchronization logic on the input pins (TO/T1/T3) is shown in Figure 11-1.

ATMEL o

7679H-CAN-08/08

ATMEL

11.2 Timer/Counter0/1/3 Prescal ers Register Description

11.2.1

98

General Timer/Counte r Control Register —- GTCCR

Bit 7 6 5 4 3 2 1 0

| tsm | = | = | = = = PSR2 | PSR310 | GTCCR
Read/Write RIW R R R R R RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSR2 and PSR310 bits is kept, hence keeping the corresponding
prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted
and can be configured to the same value without the risk of one of them advancing during con-
figuration. When the TSM bit is written to zero, the PSR2 and PSR310 bits are cleared by
hardware, and the Timer/Counters start counting simultaneously.

e Bit 0 — PSR310: Prescaler Reset Timer/Counter3, Timer/Counterl and Timer/CounterQ
When this bit is one, Timer/Counter3, Timer/Counterl and Timer/Counter0O prescaler will be
Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note
that Timer/Counter3, Timer/Counterl and Timer/CounterQ share the same prescaler and a reset
of this prescaler will affect these three timers.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

12. 8-bit Timer/Counter0 with PWM

Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

12.1 Features
¢ Single Channel Counter
¢ Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOVO and OCF0A)

12.2 Overview
Many register and bit references in this section are written in general form.

« Alower case “n” replaces the Timer/Countemumber, in this case 0. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNTO for
accessing Timer/Counter0 counter value and so on.

« Alower case “X" replaces the Output Compareunit channel, in this case A. However, when
using the register or bit defines in a program, the precise form must be used, i.e., OCROA for
accessing Timer/Counter0 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual
placement of I/O pins, refer to “Pin Configurations” on page 5. CPU accessible 1/0 Registers,

including 1/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the “8-bit Timer/Counter Register Description” on page 109.

Figure 12-1. 8-bit Timer/Counter Block Diagram

A
< |
< > TCCRn |
\ /
count _ Tovn
clear | " (Int.Req.)
Control Logic
direction 9 clkry Clock Select
Edge L
A A Detector | i
BOTTOM TOP
(%2} Yvy _x (From Prescaler)
D Timer/Counter A
2 <-l|>| |
TCNTn
< [=07] [FoxFF > oCh
g 1 } (Int.Req.)
\ /
— | w| Waveform -
— Generation »-| OCnx
[
<1 OCRnx |

ATMEL o

7679H-CAN-08/08

12.2.1 Registers

12.2.2 Definitions

ATMEL

The Timer/Counter (TCNTO) and Output Compare Register (OCROA) are 8-bit registers. Inter-
rupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt
Flag Register (TIFRO0). All interrupts are individually masked with the Timer Interrupt Mask Reg-
ister (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clky).

The double buffered Output Compare Register (OCROA) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OCOA). See “Output
Compare Unit” on page 101. for details. The compare match event will also set the Compare
Flag (OCFOA) which can be used to generate an Output Compare interrupt request.

The following definitions are used extensively throughout the section:

BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxXFF
(MAX) or the value stored in the OCROA Register. The assignment is depen-
dent on the mode of operation.

12.3 Timer/Counter Clock Sources

12.4 Counter Unit

100 AT90CAN32/64/128

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCROA). For details on clock sources and pres-
caler, see “Timer/Counter3/1/0 Prescalers” on page 96.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

TOVn

DATA BUS (Int.Req)

-
Clock Select

- count Edge B
n
clear clky, Detector
TCNTn <t Control Logic |«
direction
-

(From Prescaler)
bottom T Ttop

7679H-CAN-08/08

s A TO0CAN32/64/128

Signal description (internal signals):

count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).

clk Timer/Counter clock, referred to as clky, in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkyp). clkrg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in
the Timer/Counter Control Register (TCCROA). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OCOA. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 104.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO01.:0 bits. TOVO can be used for generating a CPU interrupt.

12.5 Output Compare Unit

7679H-CAN-08/08

The 8-bit comparator continuously compares TCNTO with the Output Compare Register
(OCROA). Whenever TCNTO equals OCROA, the comparator signals a match. A match will set
the Output Compare Flag (OCFOA) at the next timer clock cycle. If enabled (OCIEOA = 1 and
Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare
interrupt. The OCFOA flag is automatically cleared when the interrupt is executed. Alternatively,
the OCFOA flag can be cleared by software by writing a logical one to its 1/O bit location. The
Waveform Generator uses the match signal to generate an output according to operating mode
set by the WGMO0L1:0 bits and Compare Output mode (COMOAL:0) bits. The max and bottom sig-
nals are used by the Waveform Generator for handling the special cases of the extreme values
in some modes of operation (See “Modes of Operation” on page 104.).

A mEIZ@ 101

ATMEL

Figure 12-3 shows a block diagram of the Output Compare unit.

Figure 12-3. Output Compare Unit, Block Diagram
- t DATA BUS ¢ >
OCRnNx TCNTn

L iy

| = (8-bit Comparator) |

OCFnx (Int.Req.)

top »
bottom

—> Waveform Generator »

L]

WGMn1:0 COMNX1:0

OCnx

FOCn »|

The OCROA Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buff-
ering is disabled. The double buffering synchronizes the update of the OCROA Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROA Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCROA Buffer Register, and if double buffering is
disabled the CPU will access the OCROA directly.

125.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCOA) bit. Forcing compare match will not set the
OCFOA flag or reload/clear the timer, but the OCOA pin will be updated as if a real compare
match had occurred (the COMOAL:0 bits settings define whether the OCOA pin is set, cleared or
toggled).

12.5.2 Compare Match Blocking by TCNTO Write
All CPU write operations to the TCNTO Register will block any compare match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCROA to be initial-
ized to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

12.5.3 Using the Output Compare Unit
Since writing TCNTO in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTO when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNTO
equals the OCROA value, the compare match will be missed, resulting in incorrect waveform

102 ATI0CANSG2/64/128 m—————

s A TO0CAN32/64/128

generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
downcounting.

The setup of the OCOA should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCOA value is to use the Force Output Com-
pare (FOCOA) strobe bits in Normal mode. The OCOA Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMOAL:0 bits are not double buffered together with the compare value.
Changing the COMOAL1:0 bits will take effect immediately.

12.6 Compare Match Output Unit

12.6.1

7679H-CAN-08/08

The Compare Output mode (COMOAL:0) bits have two functions. The Waveform Generator
uses the COMOAL:0 bits for defining the Output Compare (OCOA) state at the next compare
match. Also, the COMOAL:0 bits control the OCOA pin output source. Figure 12-4 shows a sim-
plified schematic of the logic affected by the COMOAL:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I1/O port control regis-
ters (DDR and PORT) that are affected by the COMOAL1:0 bits are shown. When referring to the
OCOA state, the reference is for the internal OCOA Register, not the OCOA pin. If a system reset
occur, the OCOA Register is reset to “0”".

Figure 12-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnNX0 Waveform D O
FOCnx Generator
o 1
OCnx
OCnx o Pin
A
=D Q
n 0 |
-
ﬁ PORT
':(
[
A DDR
clkyo

Compare Output Function

The general 1/O port function is overridden by the Output Compare (OCOA) from the Waveform
Generator if either of the COMOA1.:0 bits are set. However, the OCOA pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCOA pin (DDR_OCO0A) must be set as output before the OCOA value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOA state before the
output is enabled. Note that some COMOAL:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 109.

A mEIZ@ 103

12.6.2

ATMEL

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOAL1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COMOA1:0 = 0 tells the Waveform Generator that no action on
the OCOA Register is to be performed on the next compare match. For compare output actions
in the non-PWM modes refer to Table 12-2 on page 110. For fast PWM mode, refer to Table 12-
3 on page 110, and for phase correct PWM refer to Table 12-4 on page 111.

A change of the COMOAL:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCOA strobe bits.

12.7 Modes of Operation

12,71

12.7.2

104

Normal Mode

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMO01:0) and Compare Output
mode (COMOAL:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMOAZ1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM
modes the COMOAZ1:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 103.).

For detailed timing information refer to Figure 12-8, Figure 12-9, Figure 12-10 and Figure 12-11
in “Timer/Counter Timing Diagrams” on page 108.

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCROA Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNTO) matches the OCROA. The OCROA defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-5. The counter value (TCNTO)
increases until a compare match occurs between TCNTO and OCROA, and then counter
(TCNTO) is cleared.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Figure 12-5. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

-

Y Y

o V1V Vi

OCnx —
(Toggle) ———— I R

(COMNX1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFOA flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing TOP to a value close to BOTTOM when the counter is running
with none or a low prescaler value must be done with care since the CTC mode does not have
the double buffering feature. If the new value written to OCROA is lower than the current value of
TCNTO, the counter will miss the compare match. The counter will then have to count to its max-
imum value (OxFF) and wrap around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMOA1L:0 = 1). The OCOA value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of focga =
fax o2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following
equation:

¢ _ fer o
OCnx = 27N (1 + OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

12.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare
match between TCNTO and OCROA, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 12-6. The TCNTO value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and

A mEIZ@ 105

7679H-CAN-08/08

ATMEL

inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent compare
matches between OCROA and TCNTO.

Figure 12-6. Fast PWM Mode, Timing Diagram

OCRnNX Interrupt Flag Set

OCRnNx Update and
TOVn Interrupt Flag Set

A /
m//////
OCnx (COMNX1:0 = 2)

OCnx |_| (COMNx1:0 = 3)
Periodl«—ll2l3l4lﬂlel7—»|

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOA pin.
Setting the COMOA1.:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMOA1:0 to three (See Table 12-3 on page 110). The actual
OCOA value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OCOA Register at the compare
match between OCROA and TCNTO, and clearing (or setting) the OCOA Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

£ - fclk_I/O
OCnxPWM N - 256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COMOA1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCOA to toggle its logical level on each compare match (COMOAL:0 = 1). The waveform
generated will have a maximum frequency of focpa = foi 1of2 Wwhen OCROA is set to zero. This
feature is similar to the OCOA toggle in CTC mode, excebt the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

106 ATOI0CANSG2/64/128 m——————

s A TO0CAN32/64/128

12.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OCOA) is cleared on the compare match
between TCNTO and OCROA while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNTO value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-7.
The TCNTO value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNTO slopes represent compare matches between OCROA and TCNTO.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnNx Update

TOVn Interrupt Flag Set

-
-
-
-
-
-

o /IN TN N

OCnx I_I |_ (COMNx1:0 = 2)
OCnx |_| |_| |— (COMNx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCOA pin. Setting the COMO0OA1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COMOAL:0 to three (See Table 12-4 on page 111).
The actual OCOA value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OCOA Register at the
compare match between OCROA and TCNTO when the counter increments, and setting (or
clearing) the OCOA Register at compare match between OCROA and TCNTO when the counter

A mEIZ@ 107

7679H-CAN-08/08

ATMEL

decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

f - fcIk_I/O
OCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

12.8 Timer/Counter Timing Diagrams

108

The Timer/Counter is a synchronous design and the timer clock (clk) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 12-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 12-8. Timer/Counter Timing Diagram, no Prescaling

. [T

clky,

(clk,/1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 12-9 shows the same timing data, but with the prescaler enabled.

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (fyy ,,0/8)

- UUUUUTTLUUUUUUog Uy UL
(cflf&”m r r

TCNTn MAX -1 MAX BOTTOM X BOTTOM + 1

clk

TOVn

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Figure 12-10 shows the setting of OCFOA in all modes except CTC mode.

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCFOA, with Prescaler (fqy ,0/8)

oo IR
(cﬂ:fj/”s) r r

TCNTn OCRnx -1 OCRnNx OCRnx + 1 >< OCRnx + 2
OCRnNx OCRnNx Value
OCFnx

Figure 12-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode.

Figure 12-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (foy_yo/8)

o AR
(c?iﬁ%) r r

Ig_’l_lg)n TOP-1 TOP BOTTOM X BOTTOM + 1

OCRnNX TOP

OCFnx

12.9 8-bit Timer/Counter Register Description

12.9.1 Timer/Counter0 Cont rol Register A— TCCROA

Bit 7 6 5 4 3 2 1 0

| Focoa | wGMoo | COMOAL | COMOAD | WGMO1 | CS02 CS01 CS00 | TCCROA
Read/Write w RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A

The FOCOA bit is only active when the WGMOO bit specifies a non-PWM mode. However, for
ensuring compatibility with future devices, this bit must be set to zero when TCCROA is written
when operating in PWM mode. When writing a logical one to the FOCOA bit, an immediate com-
pare match is forced on the Waveform Generation unit. The OCOA output is changed according
to its COMOAL:0 bits setting. Note that the FOCOA bit is implemented as a strobe. Therefore it is
the value present in the COMOAL:0 bits that determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROA as TOP.

The FOCOA bit is always read as zero.

A mEI%@ 109

7679H-CAN-08/08

ATMEL

e Bit6, 3—-WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and
two types of Pulse Width Modulation (PWM) modes. See Table 12-1 and “Modes of Operation”
on page 104.

Table 12-1. Waveform Generation Mode Bit Description”
Mode WGMO01 | WGMOO | Timer/Counter . ToP Update of TOVO Flag
(CTCO) (PWMO0) | Mode of Operation OCROA at Seton

0 0 0 Normal OXFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCROA Immediate MAX
3 1 1 Fast PWM OxFF TOP MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions.

However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit5:4 — COMO01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMOAL1:0
bits are set, the OCOA output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the
WGMO1:0 bit setting. Table 12-2 shows the COMOAL:0 bit functionality when the WGMO01.:0 bits
are set to a normal or CTC mode (non-PWM).

Table 12-2. Compare Output Mode, non-PWM Mode
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on compare match
1 0 Clear OCOA on compare match
1 1 Set OCOA on compare match

Table 12-3 shows the COMOAL1:0 bit functionality when the WGMO01.:0 bits are set to fast PWM

mode.
Table 12-3. Compare Output Mode, Fast PWM Mode®
COMOA1L COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match.
Set OCOA at TOP
1 1 Set OCOA on compare match.
Clear OCOA at TOP

110

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Note: 1. A special case occurs when OCROA equals TOP and COMOAL is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 105
for more details.

Table 12-4 shows the COMOAL:0 bit functionality when the WGMO1:0 bits are set to phase cor-

rect PWM mode.

Table 12-4. Compare Output Mode, Phase Correct PWM Mode™®

COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match when up-counting.
Set OCOA on compare match when downcounting.
1 1 Set OCOA on compare match when up-counting.

Clear OCOA on compare match when downcounting.

Note: 1. A special case occurs when OCROA equals TOP and COMOAL is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 107 for more details.

e Bit 2:0 - CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 12-5. Clock Select Bit Description

CS02 Cso1 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk;,o/(No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk;,o/64 (From prescaler)
1 0 0 clk;,o/256 (From prescaler)
1 0 1 clky;0/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.9.2 Timer/CounterO Register — TCNTO

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0] | Tcnto
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a compare match between TCNTO and the OCROA Register.

A mEIZ@ 111

7679H-CAN-08/08

12.9.3

12.9.4

12.95

112

ATMEL

Output Compare Register A— OCROA

Bit 7 6 5 4 3 2 1 0
| OCROA[7:0] | ocro

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

Timer/Counter0 Interrupt Mask Register — TIMSKO

Bit 7 6 5 4 3 2 1 0
I - 1 - 1 - 1 - - - OCIEOA | TOIEO | TIMSKO

Read/Write R R R R R R RIW RIW

Initial Value 0 0 0 0 0 0 0

+ Bit7..2 — Reserved Bits
These are reserved bits for future use.

e Bit 1 — OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/CounterO0 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/CounterO occurs, i.e., when the OCFOA bit is set in the
Timer/Counter 0 Interrupt Flag Register — TIFRO.

e Bit 0 — TOIEO: Timer/CounterO Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/CounterQ occurs, i.e., when the TOVO bit is set in the Timer/Counter O Inter-
rupt Flag Register — TIFRO.

Timer/Counter0 Interrupt Flag Register — TIFRO

Bit 7 6 5 4 3 2 1 0

Il - | - | - 1 - - - OCFOA | TOVO | TIFRO
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bit1 - OCFOA: Output Compare Flag 0 A

The OCFOA bit is set (one) when a compare match occurs between the Timer/Counter0 and the
data in OCROA — Output Compare Register0. OCFOA is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCFOA is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIEOQOA (Timer/Counter0 Compare match Interrupt
Enable), and OCFOA are set (one), the Timer/Counter0 Compare match Interrupt is executed.

« Bit 0 — TOVO: Timer/CounterQ Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/CounterO Overflow Inter-
rupt Enable), and TOVO are set (one), the Timer/Counter0 Overflow interrupt is executed. In
phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at
0x00.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

13. 16-bit Timer/Counter (Timer /Counterl and Timer/Counter3)

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement. The main features are:

13.1 Features
e True 16-bit Design (i.e., Allows 16-bit PWM)
e Three independent Output Compare Units
* Double Buffered Output Compare Registers
* One Input Capture Unit
* Input Capture Noise Canceler
¢ Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period
* Frequency Generator
* External Event Counter
* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counterl - TOV3,
OCF3A, OCF3B, and ICF3 for Timer/Counter3)

13.2 Overview
Many register and bit references in this section are written in general form.

« Alower case “n” replaces the Timer/Counter number, in this case 1 or 3. However, when
using the register or bit defines in a program, the precise form must be used, i.e., TCNT1 for
accessing Timer/Counterl counter value and so on.

» Alower case “X” replaces the Output Compare unit channel, in this case A, B or C. However,
when using the register or bit defines in a program, the precise form must be used, i.e.,
OCRNA for accessing Timer/Countern output compare channel A value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of I/O pins, refer to “Pin Configurations” on page 5. CPU accessible 1/0 Registers,
including 1/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit loca-
tions are listed in the “16-bit Timer/Counter Register Description” on page 135.

A mEIZ@ 113

7679H-CAN-08/08

ATMEL

Figure 13-1. 16-bit Timer/Counter Block Diagram®

Count TOVn
—
Clear (Int.Req.)
Control Logic
Direction clkq, Clock Select
Edge

A
TOP | BOTTOM

Yyvy /__\

Timer/Counter
TCNTn

Detector

(From Prescaler)

OCFnA
r(lnt.Req.)
| Wavefo_rm »| oCnA
Generation
- OCFnB
: (Int.Req.)
m | Values
- Wavefo_rm »| OCnB
] Generation
n
(7))]
B b OCRPB e []
m []
< = OCFnC
= - (Int.Req.)
<DE m
: Waveform ocnc
- Generation o
n
[]
"""""""""""""" : (From Analog
- Comparator Ouput)
- ICFn (Int.Req.)
n
- Edge Noise
ICfn . Detector [Canceler
= ICPn
EEEEEEEEEEnna”
TCCRnA | | TCCRnB | | TCCRnC

Note: 1. Referto Figure 1-2 on page 5 or Figure 1-3 on page 6, Table 9-6 on page 76, and Table 9-15
on page 83 for Timer/Counterl and 3 pin placement and description.

13.2.1 Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnx), and Input Capture Register
(ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-bit
registers. These procedures are described in the section “Accessing 16-bit Registers” on page
116. The Timer/Counter Control Registers (TCCRnx) are 8-bit registers and have no CPU
access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible
in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

114 ATI0CANSG2/64/128 m———

s A TO0CAN32/64/128

13.2.2 Definitions

13.2.3 Compatibility

7679H-CAN-08/08

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCRnx) are compared with the Timer/Counter
value at all time. The result of the compare can be used by the Waveform Generator to generate
a PWM or variable frequency output on the Output Compare pin (OCnx). See “Output Compare
Units” on page 123.. The compare match event will also set the Compare Match Flag (OCFnx)
which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
“Analog Comparator” on page 269.) The Input Capture unit includes a digital filtering unit (Noise
Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRNA Register, the ICRn Register, or by a set of fixed values. When using
OCRNA as TOP value in a PWM mode, the OCRNnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnNA to be used as PWM output.

The following definitions are used extensively throughout the section:

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.
MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65,535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0xOOFF, OxO1FF,
or OxO3FF, or to the value stored in the OCRNA or ICRN Register. The assignment is
dependent of the mode of operation.

TOP

The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit
AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version
regarding:

< All 16-bit Timer/Counter related I/O Registeraddress locations, including Timer Interrupt

Registers.

« Bit locations inside all 16-bitTimer/Counter Registers, including Timer Interrupt Registers.

* Interrupt Vectors.
The following control bits have changed name, but have same functionality and register location:

* PWMnO is changed to WGMnO.
¢ PWMnL1 is changed to WGMn1.
e CTCn is changed to WGMn2.
The following registers are added to the 16-bit Timer/Counter:

< Timer/Counter Control Register C (TCCRnNC).
* Output Compare Register C, @CRnCH and OCRnNCL, combined OCRnNC.

A mEIZ@ 115

ATMEL

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

The following bits are added to the 16-bit Timer/Counter Control Registers:

¢ COMNCL1:0 are added to TCCRNA.
* FOCnA, FOCnB and FOCNC are added to TCCRnC.
* WGMn3 is added to TCCRnB.
Interrupt flag and mask bits for output compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some special
cases.

13.3 Accessing 16-bit Registers

116

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnx 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

13.3.1 Code Examples
The following code examples show how to access the 16-bit timer registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRnx and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit

7679H-CAN-08/08

access.

Assembly Code Examples®

; Set TCNTn to 0x01FF
1di rl7,0x01

1di rle, OxXFF

sts TCNTnH, r17

sts TCNTnL, rl6

; Read TCNTn into rl7:rlé
1lds rl6, TCNTnL

1lds rl7,TCNTnH

C Code Examples®

unsigned int i;

/* Set TCNTn to O0xO01FF */
TCNTNn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit timer registers,
then the result of the access outside the interrupt will be corrupted. Therefore, when both the
main code and the interrupt code update the temporary register, the main code must disable the

interrupts during the 16-bit access.

ATMEL

117

ATMEL

The following code examples show how to do an atomic read of the TCNTn Register contents.
Reading any of the OCRnx or ICRn Registers can be done by using the same principle.

Assembly Code Example®

TIM16_ ReadTCNTn:
; Save global interrupt flag
in r1l8, SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rlé
1lds rl6, TCNTnL
1lds rl7,TCNTnH
; Restore global interrupt flag
out SREG, rl8

ret
C Code Example®

unsigned int TIM16 ReadTCNTn (void)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */
SREG = sreg;

return 1i;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

118 ATI0CANSG2/64/128 m———————

7679H-CAN-08/08

s A TO0CAN32/64/128

The following code examples show how to do an atomic write of the TCNTh Register contents.
Writing any of the OCRnx or ICRn Registers can be done by using the same principle.

Assembly Code Example®

TIM16 WriteTCNTn:
; Save global interrupt flag
in r1l8, SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rlé6
sts TCNTnH, r17
sts TCNTnL, rl6
; Restore global interrupt flag
out SREG, rl8

ret

C Code Example®

void TIM16 WriteTCNTn (unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNTn to i */
TCNTn = i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:r16 register pair contains the value to be writ-
ten to TCNTn.

13.3.2 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers written,

then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

13.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter control Register B (TCCRNB). For details on clock sources and
prescaler, see “Timer/Counter3/1/0 Prescalers” on page 96.

A mEIZ@ 119

7679H-CAN-08/08

13.5 Counter Unit

ATMEL

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

- DATA BUS (s-bit) >
TOVn
(Int.Req.)
Clock Select
_ Count Edge Tn
[TONTnH (8-bity [TCNTAL (8-bit " Clear | ek, Detector [
- Control Logic [«
TCNTn (16-bit Counter) ¢ o rection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clk Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH 1/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnNH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clk;,). The clk;, can be generated from an external or internal clock source,
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see “Modes of Operation” on page 126.

120 ATOI0CANSG2/604/128 m———

7679H-CAN-08/08

s A TO0CAN32/64/128

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

13.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 13-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded.

Figure 13-3. Input Capture Unit Block Diagram

- . DATA BUS (s-bit) >

TEMP (8-bit)

y

ICRnH (8-bit) | ICRnL (8-bit) | [TCNTOH 8-y [TONTRL (8-bit

1 \WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)

7T |

ICNC3 ICES3
Noise Edge
|- [-

ICP3 > anceler Detoctor » ICF3 (Int.Req.)

ACIC* ICNC1 ICES1
ICP1 >l ¢ #

Noise Edge

Canceler "1 Detector » ICF1 (Int.Req.)

ACO* 4’—>

Analog
Comparator

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counterl IC Unit— not
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTR) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (ICIEn = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICFn flag is automatically

A mEIZ@ 121

7679H-CAN-08/08

ATMEL

cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by
writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will
access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter's TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH 1/O location
before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 116.

13.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Only
Timer/Counterl can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 11-1 on page 97). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

13.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRnN Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

13.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high

122 ATOI0CANSG2/64/128 m————

s A TO0CAN32/64/128

priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn flag is not required (if an interrupt handler is used).

13.7 Output Compare Units

7679H-CAN-08/08

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnXx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See “Modes of Operation” on page 126.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e.,
counter resolution). In addition to the counter resolution, the TOP value defines the period time
for waveforms generated by the Waveform Generator.

Figure 13-4 shows a block diagram of the Output Compare unit. The elements of the block dia-
gram that are not directly a part of the Output Compare unit are gray shaded.

A mEIZ@ 123

ATMEL

Figure 13-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit)

1 1 i >
TEMP (8-bit)
— v v
| ocrnxH But.(8-bity | OCRnxL But.(8-bit) | [TonToH 8y [TCNTRL (8-bif
OCRnx Buffer (16-bit Register) TCNTnR (16-bit Counter)
1
—V J’
OCRnxH (8-bit) | OCRnxL (8-bit) |
OCRnNx (16-bit Register)
| = (16-bit Comparator) |
——» OCFnx (Int.Req.)
y
TOP —1
Waveform Generator OCnx
BOTTOM ——»

WGMn3:0 COMnNx1:0

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCRnx (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICRn Register). Therefore OCRnx is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte 1/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 116.

13.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnXx) bit. Forcing compare match will not set the
OCFnx flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare

124 ATI0CANSG2/64/128 m————

s A TO0CAN32/64/128

match had occurred (the COMnx1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

13.7.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnXx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

13.7.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTn when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to OXFFFF.
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1.:0 bits will take effect immediately.

13.8 Compare Match Output Unit

7679H-CAN-08/08

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnNx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 13-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, 1/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR
and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the OCnx
state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset occur,
the OCnx Register is reset to “0”.

A mEIZ@ 125

ATMEL

Figure 13-5. Compare Match Output Unit, Schematic

—D

COMnx1
COMnX0 Waveform D O
FOCnx Generator
o 1
Oan
OCnx 0 Pin
A
%) *—
D
ﬂ<3 PORT
k
[a) > D Q
*—
\ J DDR
clk,q

13.8.1 Compare Output Function

The general 1/0O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 13-1, Table 13-2 and Table 13-3 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See “16-bit Timer/Counter Register Description” on page 135.

The COMnx1:0 bits have no effect on the Input Capture unit.

13.8.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 13-1 on page 136. For fast PWM mode refer to Table 13-2 on
page 136, and for phase correct and phase and frequency correct PWM refer to Table 13-3 on
page 137.

A change of the COMnNx1.:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

13.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output
mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence,

126 ATI0CANSG2/64/128 m—————

s A TO0CAN32/64/128

13.9.1 Normal Mode

while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See “Compare Match Output Unit” on page 125.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 134.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OXFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

13.9.2 Clear Timer on Compare Match (CTC) Mode

7679H-CAN-08/08

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRNA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRnNA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

The timing diagram for the CTC mode is shown in Figure 13-6. The counter value (TCNTn)
increases until a compare match occurs with either OCRNA or ICRn, and then counter (TCNTn)
is cleared.

Figure 13-6. CTC Mode, Timing Diagram

w VNV

OCnhA —
(Toggle) ——— LI L

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

P

(COMNnAL:0=1)

Period I 1 I 2 I 3 I 4 I

A mEIZ@ 127

ATMEL

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn flag according to the register used to define the TOP value. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the TOP value. However,
changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering
feature. If the new value written to OCRNA or ICRn is lower than the current value of TCNTn, the
counter will miss the compare match. The counter will then have to count to its maximum value
(OxFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many
cases this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMNA1:0 = 1). The OChA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCnNA = 1). The waveform generated will have a maximum fre-
quency of focna = fok 110/2 when OCRNA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

f _ fclk_I/O
OCnA ™ 2.N.(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

13.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 =5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on
the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare
Output mode output is cleared on compare match and set at TOP. Due to the single-slope oper-
ation, the operating frequency of the fast PWM mode can be twice as high as the phase correct
and phase and frequency correct PWM modes that use dual-slope operation. This high fre-
quency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or
OCRNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the max-
imum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

R _ log(TOP +1)
FPWM log(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values Ox00FF, 0xO1FF, or 0XO3FF (WGMn3:0 =5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 13-7. The figure

128 ATI0CANSG2/64/128 m——————

s A TO0CAN32/64/128

shows fast PWM mode when OCRnNA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be
set when a compare match occurs.

Figure 13-7. Fast PWM Mode, Timing Diagram

OCRNx/TOP Update and
TOVnN Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

P

Y Y Y

w V]

OCnx J J
OCnx |_| (COMNX1:0 = 3)

Period |<—1 I 2 I 3 I 4—>|<5+el 7 I 8 I

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn flag is set at the same timer clock cycle as TOVn is set when either OCRNA or
ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

(COMNx1:0 =2)

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRnNx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low
value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (OXFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCRNA Register however, is double buffered. This feature allows the OCRNA I/O location
to be written anytime. When the OCRNA 1/O location is written the value written will be put into
the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done
at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRn, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

A mEIZ@ 129

7679H-CAN-08/08

ATMEL

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1.:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (see Table on page 136). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

f — fcIk_I/O
OCnxPWM N - (l + TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnNx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). The waveform
generated will have a maximum frequency of focna = fok 110/2 Wwhen OCRNA is set to zero
(0Ox0000). This feature is similar to the OCnA toggle in CTC mode, except the double buffer fea-
ture of the Output Compare unit is enabled in the fast PWM mode.

13.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0=1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

R _ log(TOP+1)
PCPWM — log(2)

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values Ox00FF, OxO1FF, or OX03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMnN3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-8. The figure
shows phase correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn

130 ATI0CANSG2/64/128 m———————

7679H-CAN-08/08

s A TO0CAN32/64/128

value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx inter-
rupt flag will be set when a compare match occurs.

Figure 13-8. Phase Correct PWM Mode, Timing Diagram

OCRNx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

P 2
TCNTn \\/\\/

/
OCnx (COMNX1:0 = 2)
OCnx (COMNx1:0 = 3)
Period I 1 ~I 2 ~I 3) 4 J

I |

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The interrupt flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCRnNx Registers are written. As the third period shown in Figure 13-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-
ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table on page 137). The
actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as

A mEIZ@ 131

7679H-CAN-08/08

ATMEL

output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Regis-
ter at the compare match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

f _ fcIk_I/O
OCnxPCPWM — 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

13.95 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the compare match between TCNTnh and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 13-
8 and Figure 13-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRnNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and
the maximum resolution is 16-bit (ICRn or OCRnNA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

R _ log(TOP +1)
PFCPWM — Iog(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 13-9. The figure shows phase and frequency correct
PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a
compare match occurs.

132 ATI0CANSG2/64/128 m——————

s A TO0CAN32/64/128

Figure 13-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRNX/TOP Update and
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnx (COMnNx1:0 = 2)
OCnx (COMnNx1:0 = 3)
Period I 1 I 2 I 3 I 4 I

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRNA or ICRn
is used for defining the TOP value, the OCnA or ICFn flag set when TCNTn has reached TOP.
The interrupt flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 13-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRnN, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1.:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table on
page 137). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the compare match between OCRnx and TCNTh when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

f _ fcIk_I/O
OCnxPFCPWM — 2.N-TOP

A mEIZ@ 133

7679H-CAN-08/08

ATMEL

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values.

13.10 Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clky,,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 13-10 shows a timing diagram for the setting of OCFnx.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk,qo
clk,
(clk,/1)
TCNTn —X OCRnx -1 OCRnNx OCRnx + 1 OCRnx + 2
OCRnx OCRnNx Value
OCFnx

Figure 13-11 shows the same timing data, but with the prescaler enabled.

Figure 13-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fgy ,,0/8)

e
(c?lf;,"s) F r r r

TCNTn OCRnx -1 OCRnNx OCRnx +1 X OCRnNXx + 2
OCRnNx OCRnNx Value
OCFnx

Figure 13-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn flag at BOTTOM.

134 ATI0CANSG2/64/128 m————

s A TO0CAN32/64/128

Figure 13-12. Timer/Counter Timing Diagram, no Prescaling

clk

/10

clk,

(clk, /1)

TCNTn

(CTCand FPWM) | ToP-1

TOP

BOTTOM BOTTOM + 1

TCNTn

(PC and PFC PWM) _| ToP-1

TOP

TOP-1 TOP -2

TOVn (FPWM)
and ICFn (ifused
as TOP)

OCRnNx

(Update at TOP) Old OCRnx Value

New OCRnx Value

Figure 13-13 shows the same timing data, but with the prescaler enabled.

Figure 13-13. Timer/Counter Timing Diagram, with Prescaler

RO

clig

clk,
(clk48)

(e _1o/8)

U
.

[ALCEARAT

]] il

(CTC and FPWM) _| TOP-1

TOP

BOTTOM BOTTOM + 1

TCNTn
(PC and PFC PWM) _ |

TOP -1 TOP

TOP -1 TOP -2

TOVn(FPWM)
and ICFn (if used

as TOP)

OCRnNx

(Update at TOP) Old OCRnx Value

New OCRnx Value

13.11 16-bit Timer/Counte r Register Description

WGM10 | TCCR1A

WGM30 | TCCR3A

13.11.1 Timer/Counterl Cont rol Register A— TCCR1A
Bit 7 6 5 4 3 2 1 0
| comia1 | comiao | comiBL | COM1BO |COMICL | COMICO | WGM1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
13.11.2 Timer/Counter3 Cont rol Register A— TCCR3A
Bit 7 6 5 4 3 2 1 0
| comsa1 | comsao | cOM3BL | COM3BO |COM3CL | COM3CO | WGM31
Read/Write R/W RIW R/W R/W RIW R/W RIW RIW
Initial Value 0 0 0 0 0 0 0 0

ATMEL

7679H-CAN-08/08

135

ATMEL

¢ Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
¢ Bit5:4 — COMnB1:0: Compare Output Mode for Channel B

¢ Bit 3;:2 - COMNnCL1:0: Compare Output Mode for Channel C

The COMNnA1:0, COMnB1:0 and COMNC1:0 control the Output Compare pins (OCnA, OCnB
and OCnC respectively) behavior. If one or both of the COMNnAL:0 bits are written to one, the
OCnA output overrides the normal port functionality of the 1/O pin it is connected to. If one or
both of the COMNnB1.:0 bit are written to one, the OCnB output overrides the normal port func-
tionality of the 1/0O pin it is connected to. If one or both of the COMNnCL1:0 bit are written to one,
the OCnC output overrides the normal port functionality of the 1/O pin it is connected to. How-
ever, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or
OCnC pin must be set in order to enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is
dependent of the WGMn3:0 bits setting. Table 13-1 shows the COMnx1:0 bit functionality when
the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 13-1. Compare Output Mode, non-PWM
COMnA1/COMNB1/ COMNAO/COMNBO/ Descrintion
COMNC1 COMNCO P

0 0 Normal port operation, OChA/OCnB/OCnC
disconnected.

0 1 Toggle OCnA/OCnB/OCNnC on Compare Match.

1 0 Clear OCnA/OCnB/OCnC on Compare Match (Set
output to low level).
Set OCnA/OCnB/OCnC on Compare Match (Set

1 1 .
output to high level).

Table 13-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast

PWM mode.
Table 13-2. Compare Output Mode, Fast PWM @
COMnA1/COMNB1/ COMNAO/COMNBO/ Descrintion
COMNC1 COMNCO P
0 0 Normal port operation, OChA/OCnB/OCnC
disconnected.
WGMnN3=0: Normal port operation,
0 1 OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCnC reserved.
1 0 Clear OCnA/OCnB/OCnC on Compare Match
Set OCnA/OCnB/OCnC at TOP
1 1 Set OCnA/OCnB/OCnC on Compare Match
Clear OCnA/OCnB/OCnC at TOP
Note: 1. A special case occurs when OCRnA/OCRNB/OCRNC equals TOP and

COMNnA1/COMNnB1/COMNCL1 is set. In this case the compare match is ignored, but the set or
clear is done at TOP. See “Fast PWM Mode” on page 128. for more details.

135 ATI0CANSG2/64/128 m—————

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

Table 13-3 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Table 13-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM®

COMnA1/COMNnB1/ COMNAO/COMNBO/
COMNC1 COMNCO

Description

Normal port operation, OCnA/OCnB/OCnC

0 0 disconnected.

WGMn3=0: Normal port operation,
OCnA/OCnB/OCNC disconnected.
WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCNC reserved.

Clear OCnA/OCnB/OCnC on Compare Match when
up-counting.

Set OCnA/OCnB/OCnC on Compare Match when
downcounting.

Set OCnA/OCnB/OCnC on Compare Match when up-
counting.

Clear OCnA/OCnB/OCnC on Compare Match when
downcounting.

Note: 1. A special case occurs when OCnhA/OCnB/OCnC equals TOP and
COMNnA1/COMNB1/COMNCL1 is set. See “Phase Correct PWM Mode” on page 130. for more
details.

e Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 13-4. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types
of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page 126.).

A mEIZ@ 137

ATMEL

Table 13-4. Waveform Generation Mode Bit Description)
WGMn2 WGMn1 WGMnNO | Timer/Counter Update of TOVn Flag
Mode | WGMn3 (CTCn) (PWMnl) | (PWMnO) | Mode of Operation ToP OCRnx at Set on

0 0 0 0 0 Normal OxFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit OxO00FF | TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM
3 0 0 1 1 Ei\t’v M. Phase Correct, 10- | o 03rF | TOP BOTTOM
4 0 1 0 0 CTC OCRNA | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit Ox00FF | TOP TOP

6 0 1 1 0 Fast PWM, 9-bit Ox01FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF | TOP TOP

8 1 0 0 0 PWM, Phase and ICRn | BOTTOM BOTTOM

Frequency Correct
9 1 0 0 1 PWM, Phase and OCRnA | BOTTOM BOTTOM
Frequency Correct

10 1 0 1 0 PWM, Phase Correct ICRnN TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM
12 1 1 0 0 CTC ICRN Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRN TOP TOP

15 1 1 1 1 Fast PWM OCRnA | TOP TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and

13.11.3

location of these bits are compatible with previous versions of the timer.

Timer/Counterl Cont rol Register B— TCCR1B

Bit

Read/Write
Initial Value

13.11.4 Timer/Counter3 Cont rol Register B— TCCR3B

138

Bit

Read/Write
Initial Value

7 6 5 4 3 2 1 0
| onca | icest | - | wemis | wemi2 | csi2 Cs11
R/W R/W R R/W RIW RIW RIW R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
| oncs | icess | - | wems3 | weMs2 | CS32 Cs31
R/W R/W R/W RIW RIW RIW R/W
0 0 0 0 0 0 0 0

e Bit 7 — ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is

therefore delayed by four Oscillator cycles when the noise canceler is enabled.

e Bit 6 — ICESn: Input Capture Edge Select

cs10 | TCcRiB

CS30 | TCCR3B

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnNA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

* Bit5 — Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnNB is written.

* Bit 4:3 — WGMn3:2: Waveform Generation Mode
See TCCRnNA Register description.

¢ Bit 2:0 — CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
13-10 and Figure 13-11.

Table 13-5. Clock Select Bit Description

CSn2 CSnl CSn0 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,o/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

13.11.5 Timer/Counterl Cont rol Register C — TCCR1C

7679H-CAN-08/08

Bit 7 6 5 4 3 2 1 0

| Focia | Focie | Focic | - - - - -] Tceric
Read/Write R/W R/W R/W R R R R
Initial Value 0 0 0 0 0 0 0 0

A mEIZ@ 139

13.11.6

13.11.7

13.11.8

140

ATMEL

Timer/Counter3 Cont rol Register C — TCCR3C

Bit 7 6 5 4 3 2 1 0

| Focsa | Focss | Focsc | - - - - - | Tcerac
Read/Write R/W R/W R/W R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCnA: Force Output Compare for Channel A
e Bit 6 — FOCnB: Force Output Compare for Channel B

e Bit5 - FOCNC: Force Output Compare for Channel C

The FOCnhA/FOCNnB/FOCNC bits are only active when the WGMn3:0 bits specifies a non-PWM
mode. However, for ensuring compatibility with future devices, these bits must be set to zero
when TCCRnNA is written when operating in a PWM mode. When writing a logical one to the
FOChA/FOCNnB/FOCNC bit, an immediate compare match is forced on the Waveform Genera-
tion unit. The OCnA/OCnB/OCnC output is changed according to its COMnx1:0 bits setting.
Note that the FOCnA/FOCNnB/FOCNC bits are implemented as strobes. Therefore it is the value
present in the COMnx1:0 bits that determine the effect of the forced compare.

A FOCnA/FOCNnB/FOCNC strobe will not generate any interrupt nor will it clear the timer in Clear
Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCNnB/FOCNC bits are always read as zero.

Timer/Counterl — TCNT1H and TCNTI1L

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNTI1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Timer/Counter3 — TCNT3H and TCNT3L

Bit 7 6 5 4 3 2 1 0
TCNT3[15:8] TCNT3H
TCNT3[7:0] TCNT3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary high byte register
(TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit
Registers” on page 116.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock
for all compare units.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

13.11.9 Output Compare Regi ster A— OCR1AH and OCR1AL

Bit 7 6 5 4 3 2 1 0
OCR1A[15:8] OCR1AH
OCR1A[7:0] OCR1AL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.10 Output Compare Regi ster B— OCR1BH and OCR1BL

Bit 7 6 5 4 3 2 1 0
OCR1B[15:8] OCR1BH
OCR1B[7:0] OCR1BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.11 Output Compare Regi ster C — OCR1CH and OCR1CL

Bit 7 6 5 4 3 2 1 0
OCR1C[15:8] OCR1CH
OCR1CJ[7:0] OCR1CL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.12 Output Compare Regi ster A— OCR3AH and OCR3AL

Bit 7 6 5 4 3 2 1 0
OCR3A[15:8] OCR3AH
OCRS3A[7:0] OCR3AL
Read/Write R/IW R/IW RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.13 Output Compare Regi ster B— OCR3BH and OCR3BL

Bit 7 6 5 4 3 2 1 0
OCR3B[15:8] OCR3BH
OCR3B[7:0] OCR3BL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.14 Output Compare Regi ster C — OCR3CH and OCR3CL

Bit 7 6 5 4 3 2 1 0
OCR3C[15:8] OCR3CH
OCR3CJ[7:0] OCR3CL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary high byte register (TEMP). This temporary register is shared by all the other 16-
bit registers. See “Accessing 16-bit Registers” on page 116.

A mEIZ@ 141

7679H-CAN-08/08

13.11.15

13.11.16

ATMEL

Input Capture Register — ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICR1L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Input Capture Register — ICR3H and ICR3L

Bit 7 6 5 4 3 2 1 0
ICR3[15:8] ICR3H
ICR3[7:0] ICR3L
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counterl). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 116.

13.11.17 Timer/Counterl Interrupt Mask Register — TIMSK1

Bit 7 6 5 4 3 2 1 0
I - | - | et | - OCIEIC | OCIEIB | OCIEIA | TOIEL | TIMSK1

Read/Write R R RIW R RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

13.11.18 Timer/Counter3 Interrupt Mask Register — TIMSK3

142

Bit 7 6 5 4 3 2 1 0
| - | - [wce | - OCIE3C | OCIE3B | OCIE3A | TOIE3 | TIMsk3

Read/Write R R RIW R RIW R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7..6 — Reserved Bits
These bits are reserved for future use.

e Bit5 - ICIEn: Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt
Vector (See “Interrupts” on page 60.) is executed when the ICFn flag, located in TIFRn, is set.

* Bit4 — Reserved Bit
This bit is reserved for future use.

e Bit 3 - OCIENnC: Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 60.) is executed when the OCFnC flag, located in
TIFRnN, is set.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

¢ Bit 2 — OCIENnB: Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 60.) is executed when the OCFnB flag, located in
TIFRN, is set.

¢ Bit1 - OCIEnA: Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 60.) is executed when the OCFnA flag, located in
TIFRN, is set.

¢ Bit 0 — TOIEN: Timer/Counter Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page 60.) is executed when the TOVn flag, located in TIFRn, is set.

13.11.19 Timer/Counterl Interrupt Flag Register — TIFR1

Bit 7 6 5 4 3 2 1 0

I - | - [e | - OCFIC | OCFIB | OCF1A | TOVl | TIFR1
Read/Write R R R/W R RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

13.11.20 Timer/Counter3 Interrupt Flag Register — TIFR3

Bit 7 6 5 4 3 2 1 0
Il - | - | e | - OCF3C | OCF3B | OCF3A | TOV3 | TIFR3

Read/Write R R RIW R RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

* Bit 7..6 — Reserved Bits
These bits are reserved for future use.

e Bit5 - ICFn: Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register
(ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn flag is set when the
counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICFn can be cleared by writing a logic one to its bit location.

* Bit4 — Reserved Bit
This bit is reserved for future use.

e Bit 3— OCFnC: Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register C (OCRNC).

Note that a Forced Output Compare (FOCNC) strobe will not set the OCFnC flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is exe-
cuted. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

A mEIZ@ 143

7679H-CAN-08/08

144

ATMEL

¢ Bit 2 - OCFnB: Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register B (OCRnNB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB flag.

OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

* Bit 1 — OCFnA: Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output
Compare Register A (OCRNA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA flag.

OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

« Bit 0 — TOVn: Timer/Counter Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOVn flag is set when the timer overflows. Refer to Table 13-4 on page 138 for the TOVn
flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed.
Alternatively, TOVn can be cleared by writing a logic one to its bit location.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

14. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main
features are:

14.1 Features
¢ Single Channel Counter
e Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
* Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

14.2 Overview
Many register and bit references in this section are written in general form.

« Alower case “n” replaces the Timer/Countemumber, in this case 2. However, when using
the register or bit defines in a program, the precise form must be used, i.e., TCNT2 for
accessing Timer/Counter2 counter value and so on.

« Alower case “X" replaces the Output Compareunit channel, in this case A. However, when
using the register or bit defines in a program, the precise form must be used, i.e., OCR2A for
accessing Timer/Counter2 output compare channel A value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual
placement of I/O pins, refer to Figure 1-2 on page 5 or Figure 1-3 on page 6. CPU accessible 1/0
Registers, including I/0O bits and 1/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “8-bit Timer/Counter Register Description” on page 157.

A mEIZ@ 145

7679H-CAN-08/08

146

ATMEL

Figure 14-1. 8-bit Timer/Counter2 Block Diagram

A
< :: TCCRnx
count > TOVn
clear (Int.Req.)
—— Control Logic
direction clkq,
7y —® TOSC2
BOTTOM TIC
Oscillator
Prescaler
Yvy TOSC1

OCnx clkyo

Timer/Counter
4—+{ TCNTn | |——|
=0
(Int.Req.)

A
— Waveform

|:__| "] Generation | OCnx
A

DATA BUS

<0 OCRnx

[— clk,
Synchronized Status flags

Synchronization Unit
* e EE— | G

Status flags 9
L > ASSRn A

asynchronous mode
select (ASn)

Y

4

\

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Inter-
rupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register
(TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2).
TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clkry).

The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter
value at all times. The result of the compare can be used by the Waveform Generator to gener-
ate a PWM or variable frequency output on the Output Compare pin (OC2A). See “Output
Compare Unit” on page 148. for details. The compare match event will also set the compare flag
(OCF2A) which can be used to generate an Output Compare interrupt request.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

14.2.1 Definitions

The following definitions are used extensively throughout the section:

BOTTOM
MAX
TOP

The counter reaches the BOTTOM when it becomes zero (0x00).

The counter reaches its MAXimum when it becomes OxFF (decimal 255).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.

14.3 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source is selected by the clock select logic which is controlled by the
clock select (CS22:0) bits located in the Timer/Counter control register (TCCR2).The clock
source clky, is by default equal to the MCU clock, clk;,5. When the AS2 bit in the ASSR Register
is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to
TOSC1 and TOSC2 or directly from TOSCL1. For details on asynchronous operation, see “Asyn-
chronous Status Register — ASSR” on page 160. For details on clock sources and prescaler, see
“Timer/Counter2 Prescaler” on page 163.

14.4 Counter Unit

7679H-CAN-08/08

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure

14-2 shows a block diagram of the counter and its surrounding environment.

Figure 14-2.

DATA BUS

Counter Unit Block Diagram

v

TCNTn

count
-

clear

TOVn
(Int.Req.)

Control Logic
direction

Figure 14-3.

bottom T Tlop

Signal description (internal signals):

count
direction
clear
clk 1,
top

bottom

Increment or decrement TCNT2 by 1.
Selects between increment and decrement.

Clear TCNT2 (set all bits to zero).

Timer/Counter clock.

n
Prescaler

TIC
Oscillator

TOSC2

TOSC1

clkyo

Signalizes that TCNT2 has reached maximum value.

Signalizes that TCNT2 has reached minimum value (zero).

ATMEL

147

ATMEL

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clkr, can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare output
OC2A. For more details about advanced counting sequences and waveform generation, see
“Modes of Operation” on page 150.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM21.:0 bits. TOV2 can be used for generating a CPU interrupt.

14.5 Output Compare Unit

148

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set
the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the
Output Compare Flag generates an Output Compare interrupt. The OCF2A flag is automatically
cleared when the interrupt is executed. Alternatively, the OCF2A flag can be cleared by software
by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the WGM21:0 bits and Compare Output
mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform Generator for
handling the special cases of the extreme values in some modes of operation (“Modes of Oper-
ation” on page 150).

Figure 14-4 shows a block diagram of the Output Compare unit.

Figure 14-4. Output Compare Unit, Block Diagram
DATA BUS

} P

OCRnx TCNTn

iy L1

| = (8-bit Comparator) |

-

OCFnx (Int.Req.)

Y

top —>

botom ______ | Waveform Generator

L]

WGMn1:0 COMNX1:0

P OCnx

FOCn »|

The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is
disabled the CPU will access the OCR2A directly.

145.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the
OCF2A flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare
match had occurred (the COM2AL1:0 bits settings define whether the OC2A pin is set, cleared or
toggled).

14.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

14.5.3 Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2A should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2A value is to use the Force Output Com-
pare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare value.
Changing the COM2A1:0 bits will take effect immediately.

14.6 Compare Match Output Unit

7679H-CAN-08/08

The Compare Output mode (COM2AL1:0) bits have two functions. The Waveform Generator
uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare
match. Also, the COM2AL1.:0 bits control the OC2A pin output source. Figure 14-5 shows a sim-
plified schematic of the logic affected by the COM2A1:0 bit setting. The 1/0O Registers, 1/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control regis-
ters (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the
OC2A state, the reference is for the internal OC2A Register, not the OC2A pin.

A mEIZ@ 149

ATMEL

Figure 14-5. Compare Match Output Unit, Schematic

e

COMnx1
COMnx0 Waveform D Q
FOCnx Generator
— 1
OCnx
OCnx 0 Pin
A
»D Q
) L4
=)
g PORT
%
.7
\/ DDR
clk;o

14.6.1 Compare Output Function
The general 1/0O port function is overridden by the Output Compare (OC2A) from the Waveform
Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is vis-
ible on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state before the
output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of
operation. See “8-bit Timer/Counter Register Description” on page 157.

14.6.2 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM2AL1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the
OC2A Register is to be performed on the next compare match. For compare output actions in
the non-PWM modes refer to Table 14-2 on page 158. For fast PWM mode, refer to Table 14-3
on page 158, and for phase correct PWM refer to Table 14-4 on page 159.

A change of the COM2A1.:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2A strobe bits.

14.7 Modes of Operation

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is
defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output
mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM2A1:0 bits control whether the PWM
output generated should be inverted or not (inverted or non-inverted PWM). For nhon-PWM
modes the COM2A1.:0 bits control whether the output should be set, cleared, or toggled at a
compare match (See “Compare Match Output Unit” on page 149.).

150 ATI0CAN32/64/128 m————————————

s A TO0CAN32/64/128

1471

14.7.2

Normal Mode

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 155.

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 flag, the timer resolution can be increased by software. There
are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

7679H-CAN-08/08

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 14-6. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter
(TCNT2) is cleared.

Figure 14-6. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

-

y y

o V1V Vi

OCnx —
(Toggle)

(COMnx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the
TOP value. However, changing the TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2A is lower than the current
value of TCNTZ2, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can
occur.

151

ATMEL

14.7.3

152

AT90CAN32/64/128

ATMEL

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of focoa =
fax o2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

f _ fc||<_|/o

OCnx ™ 2. N- (1 + OCRnXx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency
PWM waveform generation option. The fast PWM differs from the other PWM option by its sin-
gle-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare
match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation,
the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 14-7. The TCNT2 value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2A and TCNT2.

Figure 14-7. Fast PWM Mode, Timing Diagram

OCRnx Interrupt Flag Set

OCRnx Update and
TOVn Interrupt Flag Set

AN /
/ / % d
OoCnx (COMNXL:0 = 2)

OCnx |_| (COMnx1:0 = 3)
Periodl-—ll2l3l4lclel7—>|

7679H-CAN-08/08

s A TO0CAN32/64/128

The Timer/Counter Overflow Flag (TOV?2) is set each time the counter reaches MAX. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin.
Setting the COM2A1.:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2A1.:0 to three (See Table 14-3 on page 158). The actual
OC2A value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare
match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

f — fcIk_I/O
OCnxPWM N - 256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform
generated will have a maximum frequency of f .5 = ok 10/2 Wwhen OCR2A is set to zero. This
feature is similar to the OC2A toggle in CTC mode, exce_pt the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match
between TCNT2 and OCR2A while upcounting, and set on the compare match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-8.
The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2.

A mEIZ@ 153

7679H-CAN-08/08

ATMEL

Figure 14-8. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

-t
-
-t
¢
-
¢
-t
-

e S INSTNAINA

OCnx |_| |_ (COMNx1:0 = 2)
OCnx |_| |_| |— (COMnNx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The
interrupt flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM2A1:0 to three (See Table 14-4 on page 159).
The actual OC2A value will only be visible on the port pin if the data direction for the port pin is
set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the
compare match between OCR2A and TCNT2 when the counter increments, and setting (or
clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

f - fclk_I/O
OCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-8 on page 154 OCnx has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

* OCRZ2A changes its value from MAX, like inFigure 14-8 on page 154. When the OCR2A
value is MAX the OCn pin value is the same as the result of a down-counting compare

154 ATI0CAN3G2/64/128 m—————————————

s A TO0CAN32/64/128

match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the
result of an up-counting Compare Match.

< The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the

way up.

14.8 Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky,)
is therefore shown as a clock enable signal. In asynchronous mode, clk; should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when interrupt flags are
set. Figure 14-9 contains timing data for basic Timer/Counter operation. The figure shows the
count sequence close to the MAX value in all modes other than phase correct PWM mode.

Figure 14-9. Timer/Counter Timing Diagram, no Prescaling

clk,q

clky,
(clk, /1)

TCNTn

TOVn

B

L

L

L

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 14-10 shows the same timing data, but with the prescaler enabled.

Figure 14-10. Timer/Counter Timing Diagram, with Prescaler (fyy ,,0/8)

clk,q

clk,,

(clk,o/8)

TCNTn

TOVn

I

-

uuuuuuunuuuuuuy

-

LUUUUUUL

LUUULIUL

MAX -1

MAX

BOTTOM

>< BOTTOM + 1

Figure 14-11 shows the setting of OCF2A in all modes except CTC mode.

7679H-CAN-08/08

ATMEL

155

156

ATMEL

Figure 14-11. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fy ,0/8)

clk,q

clky,
(clk,o/8)

TCNTn

OCRnNX

OCFnx

UUUUUUUL

-

-

L

OCRnx -1

OCRnNx

OCRnx + 1

>< OCRnNx + 2

OCRnNx Value

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Figure 14-12 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 14-12. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (foy_yo/8)

- (JUULUIUIYUTU U UUg U b UL
(cﬂm) r r

TCNTn
(CTC) TOP-1 TOP BOTTOM X BOTTOM + 1

clk

OCRnX TOP

OCFnx

14.9 8-bit Timer/Counter Register Description

14.9.1 Timer/Counter2 Cont rol Register A~ TCCR2A

Bit 7 6 5 4 3 2 1 0
| Focaa | weM20 | COM2AL | COM2A0 | WGM21 | CS22 cs21 CS20 | TCCR2A

Read/Write w RIW RIW R/W RIW RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2AL1:0 hits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2AL1.:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

* Bit6, 3-WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used. Modes of operation supported
by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and

A mEIZ@ 157

7679H-CAN-08/08

ATMEL

two types of Pulse Width Modulation (PWM) modes. See Table 14-1 and “Modes of Operation”

on page 150.
Table 14-1. Waveform Generation Mode Bit Description”
Mode WGM21 | WGM20 | Timer/Counter . TOP Update of TOV2 Flag
(CTC2) (PWM2) | Mode of Operation OCR2A at Seton

0 0 0 Normal OXFF Immediate MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2A Immediate MAX
3 1 1 Fast PWM OxFF TOP MAX

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.

However, the functionality and location of these bits are compatible with previous versions of
the timer.

e Bit5:4 — COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the 1/0 pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be
set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM21.:0 bit setting. Table 14-2 shows the COM2AL1:0 bit functionality when the WGM21.:0 bits
are set to a normal or CTC mode (non-PWM).

Table 14-2. Compare Output Mode, hon-PWM Mode
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on compare match.
1 0 Clear OC2A on compare match.
1 1 Set OC2A on compare match.

Table 14-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM

mode.
Table 14-3. Compare Output Mode, Fast PWM Mode™®
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match.
Set OC2A at TOP.
1 1 Set OC2A on compare match.
Clear OC2A at TOP.
Note: 1. A special case occurs when OCR2A equals TOP and COM2AL1 is set. In this case, the com-

pare match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on page 152
for more details.

158

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 14-4 shows the COM21:0 bit functionality when the WGM21.:0 bits are set to phase cor-
rect PWM mode.

Table 14-4. Compare Output Mode, Phase Correct PWM Mode™®

COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match when up-counting.
Set OC2A on compare match when downcounting.
1 1 Set OC2A on compare match when up-counting.

Clear OC2A on compare match when downcounting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2AL1 is set. In this case, the com-
pare match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on
page 153 for more details.

* Bit 2:0 — CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
14-5.

Table 14-5. Clock Select Bit Description

CSs22 Cs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clko5/(No prescaling)
0 1 0 clky,5/8 (From prescaler)
0 1 1 clko5/32 (From prescaler)
1 0 0 clkr,5/64 (From prescaler)
1 0 1 clk,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

14.9.2 Timer/Counter2 Register — TCNT2

Bit 7 6 5 4 3 2 1 0

| TCNT2[7:0] | Tent2
Read/Write R/W R/W RIW RIW RIW RIW RIW R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare
match on the following timer clock. Modifying the counter (TCNT2) while the counter is running,
introduces a risk of missing a compare match between TCNT2 and the OCR2A Register.

14.9.3 Output Compare Register A — OCR2A

Bit 7 6 5 4 3 2 1 0

| OCR2A[7:0] | ocrea
Read/Write RIW RIW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

A mEIZ@ 159

7679H-CAN-08/08

ATMEL

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

14.10 Asynchronous operation of the Timer/Counter2

14.10.1

160

Asynchronous Status Register — ASSR

Bit 7 6 5 4 3 2 1 0
| - | | - EXCLK AS2 TCN2UB | OCR2UB | TCR2UB | AsSR

Read/Write R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0

* Bit7..5 — Reserved Bits
These bits are reserved for future use.

* Bit 4 — EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input
buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead
of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is
selected. Note that the crystal Oscillator will only run when this bit is zero.

* Bit 3 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the 1/O clock, clk,s and the crystal
Oscillator connected to the Timer/Counter2 Oscillator (TOSC) does nor run. When AS2 is written
to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer/Counter2
Oscillator (TOSC) or from external clock on TOSC1 depending on EXCLK setting. When the
value of AS2 is changed, the contents of TCNT2, OCR2A, and TCCR2A might be corrupted.

e Bit2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

e Bit 1 - OCR2UB: Output Co mpare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

« Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading
TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the tem-
porary storage register is read.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

14.10.2 Asynchronous Operation of Timer/Counter2
When Timer/Counter2 operates asynchronously, some considerations must be taken.

* Warning: When switching between asynchionous and synchronous clocking of
Timer/Counter2, the timer registers TCNT2, OCR2A, and TCCR2A might be corrupted. A
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

Select clock source by setting AS2 and EXCLK as appropriate.

Write new values to TCNT2, OCR2A, and TCCR2A.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.

Clear the Timer/Counter2 interrupt flags.

f. Enable interrupts, if needed.

* The Oscillator is optimized for use with a32.768 kHz watch crystal. The CPU main clock
frequency must be more than four times the Oscillator or external clock frequency.

« When writing to one of the registers TCNT2, C@CR2A, or TCCR2A, the value is transferred to
a temporary register, and latched after two positive edges on TOSC1. The user should not
write a new value before the contents of the temporary register have been transferred to its
destination. Each of the three mentioned registers have their individual temporary register,
which means that e.g. writing to TCNT2 does not disturb an OCR2A write in progress. To
detect that a transfer to the destination register has taken place, the Asynchronous Status
Register — ASSR has been implemented.

® o0 o

When entering Power-save or Extended Starby mode after having written to TCNT2,
OCR2A, or TCCR2A, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if the Output Compare2
interrupt is used to wake up the device, since the Output Compare function is disabled during
writing to OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep
mode before the OCR2UB bit returns to zero, the device will never receive a compare match
interrupt, and the MCU will not wake up.

If Timer/Counter2 is used towake the device up from Power-save or Extended Standby
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the
device will fail to wake up. If the user is in doubt whether the time before re-entering Power-
save mode is sufficient, the following algorithm can be used to ensure that one TOSCL1 cycle
has elapsed:

a. Write a value to TCCR2A, TCNT2, or OCR2A.
b. Wait until the corresponding Update Busy flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

When the asynchronousoperation is selected, the 32.768 kHz Oscillator for Timer/Counter2
is always running, except in Power-down and Standby modes. After a Power-up Reset or
wake-up from Power-down or Standby mode, the user should be aware of the fact that this
Oscillator might take as long as one second to stabilize. The user is advised to wait for at
least one second before using Timer/Counter2 after power-up or wake-up from Power-down
or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after
a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

A mEIZ@ 161

7679H-CAN-08/08

ATMEL

« Description of wake up from Power-save mode when the timer is clocked asynchronously:
When the interrupt condition is met, the wake up process is started on the following cycle of
the timer clock, that is, the timer is always advanced by at least one before the processor can
read the counter value. After wake-up, the MCU is halted for four cycles, it executes the
interrupt routine, and resumes execution from the instruction following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be
done through a register synchronized to the internal I/O clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O
clock (clk,o) again becomes active, TCNT2 will read as the previous value (before entering
sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from
Power-save mode is essentially unpredictable, as it depends on the wake-up time. The
recommended procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2A or TCCR2A.

b. Wait for the corresponding Update Busy Flag to be cleared.

c. Read TCNT2.
During asynchronous operation, the synchonization of the interrupt flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of

the interrupt flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.

14.10.3 Timer/Counter2 Interrupt Mask Register — TIMSK2

Bit 7 6 5 4 3 2 1 0

I - 1 - 1 - 1 - - - OCIE2A | TOIE2 | TIMSK2
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..2 — Reserved Bits
These bits are reserved for future use.

e Bit 1 — OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the
Timer/Counter2 Interrupt Flag Register — TIFR2.

e Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Interrupt
Flag Register — TIFR2.

14.10.4 Timer/Counter2 Interrupt Flag Register — TIFR2

Bit 7 6 5 4 3 2 1 0

I - | - | - | - - - OoCF2A | TOV2 | TIFR2
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

162 ATOI0CANSG2/604/128 m———

s A TO0CAN32/64/128

* Bit 7..2 — Reserved Bits
These bits are reserved for future use.

e Bit 1 - OCF2A: Output Compare Flag 2 A

The OCF2A hit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2 (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

e Bit0 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

14.11 Timer/Counter2 Prescaler

Figure 14-13. Prescaler for Timer/Counter2

AS2 EXCLK

TOSC2 ¢ Enable

32 kHz
Oscillator|

10-BIT T/C PRESCALER

Clear
A

TOSC1

clkpe/8
clky,g/32
clky,o/64
clky,s/128
clky,4/256
clky,/1024

EXCLK

PSR2

[€<— O
<

CS20
CSs21
Cs22

524

TIMER/COUNTER2 CLOCK SOURCE
clkp,

The clock source for Timer/Counter2 is named clky,s. Clkrog is by default connected to the main
system I/O clock clk,5. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously

clocked from the TOSC oscillator or TOSC1 pin. This enables use of Timer/Counter2 as a Real
Time Counter (RTC).

A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an indepen-
dent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz
crystal. Setting AS2 and resetting EXCLK enables the TOSC oscillator.

A mEIZ@ 163

7679H-CAN-08/08

ATMEL

Figure 14-14. Timer/Counter2 Crystal Oscillator Connections

12-22 pF
TOSC2
32768 KHz [
& | Tosc1
12 -22 pF
GND

A external clock can also be used using TOSCL1 as input. Setting AS2 and EXCLK enables this
configuration.

Figure 14-15. Timer/Counter2 External Clock Connections

NC —— - TOSC2
External
Clock —— - TOSC1
Signal

For Timer/Counter2, the possible prescaled selections are: clk,5/8, clky,5/32, clky,5/64,
clky,5/128, clky,5/256, and clk;,s/1024. Additionally, clk;,g as well as 0 (stop) may be selected.
Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a pre-

dictable prescaler.

14.11.1 General Timer/Counter Control Register - GTCCR

Bit 7 6 5 4 3 2 1 0
| tsm | = | = | = = = PSR2 | PSR310 | GTCCR

Read/Write RIW R R R R R RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 — PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 — TSM: Timer/Counter Syn-
chronization Mode” on page 98 for a description of the Timer/Counter Synchronization mode.

164 ATI0CANSG2/64/128 m————

7679H-CAN-08/08

s A TO0CAN32/64/128

15. Output Compare Modulator - OCM

15.1 Overview
Many register and bit references in this section are written in general form.

« A lower case “n” replaces the Timer/Counter number, in this case 0 and 1. However, when
using the register or bit defines in a program, the precise form must be used, i.e., TCNTO for
accessing Timer/CounterQ counter value and so on.

« A lower case “X” replaces the Output Compareunit channel, in this case A or C. However,
when using the register or bit defines in a program, the precise form must be used, i.e.,
OCROA for accessing Timer/Counter0 output compare channel A value and so on.

The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier
frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit
Timer/Counterl and the Output Compare Unit of the 8-bit Timer/Counter0. For more details
about these Timer/Counters see “16-bit Timer/Counter (Timer/Counterl and Timer/Counter3)”
on page 113 and “8-bit Timer/Counter0 with PWM” on page 99.

Figure 15-1. Output Compare Modulator, Block Diagram

Timer/Counter 1 ocCicC

Pin

OCOA/OC1C / PB7
Timer/Counter O OCOA

When the modulator is enabled, the two output compare channels are modulated together as
shown in the block diagram (Figure 15-1).

15.2 Description

The Output Compare unit 1C and Output Compare unit OA shares the PB7 port pin for output.
The outputs of the Output Compare units (OC1C and OCOA) overrides the normal PORTB7
Register when one of them is enabled (i.e., when COMnx1:0 is not equal to zero). When both
OC1C and OCOA are enabled at the same time, the modulator is automatically enabled.

When the modulator is enabled the type of modulation (logical AND or OR) can be selected by
the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the
COMnNx1:0 bit setting.

The functional equivalent schematic of the modulator is shown on Figure 15-2. The schematic
includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

A mEIZ@ 165

7679H-CAN-08/08

ATMEL

Figure 15-2. Output Compare Modulator, Schematic

COMOA1 vee
COMOAO Di

COomM1Co

?

(FromT/IC1 —m D Q
Waveform Generator)

Pin

(From T/ICO ——m D Q OCOA/OC1C/PB7

Waveform Generator)

S Be .

PORTB7 DDRB7

DATABUS

1521 Timing Example
Figure 15-3 illustrates the modulator in action. In this example the Timer/Counterl is set to oper-
ate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform mode with toggle
Compare Output mode (COMnx1:0 = 1).

Figure 15-3. Output Compare Modulator, Timing Diagram

L

OocCi1cC
(FPWM Mode) |

I
e || LUUIUDUUDUUILUTUUU UL
eI 1]

(Period) +— 1 5 2 3

In this example, Timer/Counter0 provides the carrier, while the modulating signal is generated
by the Output Compare unit C of the Timer/Counterl.

166 ATOI0CAN32/64/128 m——————

s A TO0CAN32/64/128

15.2.2 Resolution of the PWM Signal

7679H-CAN-08/08

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is
equal to the number of system clock cycles of one period of the carrier (OCOA). In this example
the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure
15-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2
high time is one cycle longer than the period 3 high time, but the result on the PB7 output is
equal in both periods.

A mEIZ@ 167

ATMEL

16. Serial Peripheral Interface — SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
AT90CAN32/64/128 and peripheral devices or between several AVR devices. The
AT90CAN32/64/128 SPI includes the following features:

16.1 Features
¢ Full-duplex, Three-wire Synchronous Data Transfer

* Master or Slave Operation

* LSB First or MSB First Data Transfer

¢ Seven Programmable Bit Rates

¢ End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

Figure 16-1. SPI Block Diagram®

MISO
y wisol
M
clkio MSB LSB 2
e .« o s 9
l 8 BIT SHIFT REGISTER 9
READ DATA BUFFER 2
DIVIDER o
121418/16/32/64/128 . ; =
A4 O
(@]
L 4 4 CLOCK z
SPI CLOCK (MASTER) | o
SELECT CLOCK ¢ S oK
LOGIC M
><‘ [3 7 S Y -*
N| x| x SS
& & & 3
[hd [m]
=l ow| X
25 8
4MSTR
SPI CONTROL +SPE
_ Wiy E lD—: 6' % Y &
w Q < 8 ol o] O @ ol ol o o
2l O S »| » a 2| O o 9 *
N
vy v > [SPI CONTROL REGISTER
| SPI STATUS REGISTER |
‘ . 8 %
A
v v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Referto Figure 1-2 on page 5 or Figure 1-3 on page 6, and Table 9-6 on page 76 for SPI pin
placement.

168 ATI0CAN32/64/128 m———————

7679H-CAN-08/08

s A TO0CAN32/64/128

The interconnection between Master and Slave CPUs with SPI is shown in Figure 16-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In
— Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 16-2. SPI Master-slave Interconnection
MSB_MASTER LSB 50 wmiso MSB SLAVE LSB

A

8 BIT SHIFT REGISTER |——¢+—————+———| 8 BIT SHIFT REGISTER T

IMOSI MOSI:

SHIFT
ENABLE

SPI 'SCK sck
CLOCK GENERATOR g —

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high period should be:

— Low period: Longer than 2 CPU clock cycles,

— High period: Longer than 2 CPU clock cycles.

A mEIZ@ 169

7679H-CAN-08/08

ATMEL

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden

according to Table 16-1. For more details on automatic port overrides, refer to “Alternate Port
Functions” on page 71.

Table 16-1. SPI Pin Overrides?

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined
SEK User Defined Input
SS User Defined Input
Note:

1. See “Alternate Functions of Port B” on page 76 for a detailed description of how to define the
direction of the user defined SPI pins.

170 AT90CANSG2/64/128 m——————

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the
SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits
for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI with DDB2 and DDR_SPI

with DDRB.

Assembly Code Example®

SPI_MasterInit:
; Set MOSI and SCK output, all others input
1di r17, (1<<DD_MOSI) | (1<<DD_SCK)
out DDR_SPI,rl7
; Enable SPI, Master, set clock rate fck/16

1di rl7, (L<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR,r17
ret

SPI_MasterTransmit:
; Start transmission of data (rlé6)
out SPDR, rl6

Wait_Transmit:

; Wait for transmission complete

in rl7,SPSR

sbrs rl7,SPIF

rjmp Wait Transmit
ret

C Code Example®

void SPI MasterInit (void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI MasterTransmit (char cData)
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)));

Note: 1. The example code assumes that the part specific header file is included.

ATMEL

171

ATMEL

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example®

SPI SlaveInit:
; Set MISO output, all others input

1di rl7, (1<<DD_MISO)
out DDR_SPI,rl7

; Enable SPI

1di rl7, (1<<SPE)

out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6, SPDR

ret

C Code Example®

void SPI SlavelInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE);

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)));
/* Return data register */

return SPDR;

Note: 1. The example code assumes that the part specific header file is included.

16.2 SS Pin Functionality

16.2.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (S_S) pin is always input. When SSis
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which

172 ATO0CANSG2/64/128 m————

s A TO0CAN32/64/128

16.2.2 Master Mode

means that it will not receive incoming data. Note that the SPI logic will be reset once the sSS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SSis configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS'is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the Ss pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR hitin SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

16.2.3 SPI Control Register — SPCR

7679H-CAN-08/08

Bit 7 6 5 4 3 2 1 0

| SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO | SPCR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the
Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

* Bit5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
* Bit4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,

A mEIZ@ 173

ATMEL

and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

e Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 16-3 and Figure 16-4 for an example. The CPOL functionality is sum-
marized below:

Table 16-2. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

e Bit 2 — CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 16-3 and Figure 16-4 for an example. The CPOL
functionality is summarized below:

Table 16-3. CPHA Functionality
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

e Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have

no effect on the Slave. The relationship between SCK and the clk,q frequency f., is shown in

the following table:

Table 16-4.

SPI2X SPR1 SPRO
0

Relationship Between SCK and the Oscillator Frequency

SCK Frequency
foio/4

foiio/16

feinio/64

fonio/ 128

foiiof2

feiwio/8

foiiof32

foiio/64

Pk |k |k |lOo|o|o
R |lkr|lOoO|lO|k |k |lOo|oO
P | O|kr|O|kRr |O|F |O

174 ATI0CANSG2/64/128 m————

s A TO0CAN32/64/128

16.2.4 SPI Status Register — SPSR

Bit 7 6 5 4 3 2 1 0

| spr WCOL - - - - - sPi2x | sPsRr
Read/Write R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SSis an input and is driven low when the SPI is
in Master mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLlIision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

e Bit5..1 — Res: Reserved Bits
These bits are reserved bits in the AT90CAN32/64/128 and will always read as zero.

« Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 16-4). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f.,/4
or lower.

The SPI interface on the AT90CAN32/64/128 is also used for program memory and EEPROM
downloading or uploading. See “SPI Serial Programming Overview” on page 348 for serial pro-
gramming and verification.

16.2.5 SPI Data Register — SPDR

16.3 Data Modes

7679H-CAN-08/08

Bit 7 6 5 4 3 2 1 0

I SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO I SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X X X X X Undefined

e Bits 7:0 - SPD7:0: SPI Data

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
16-3 and Figure 16-4. Data bits are shifted out and latched in on opposite edges of the SCK sig-

A mEIZ@ 175

ATMEL

nal, ensuring sufficient time for data signals to stabilize. This is clearly seen by summarizing
Table 16-2 and Table 16-3, as done below:

Table 16-5. CPOL Functionality

Leading Edge Trailing Edge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Figure 16-3. SPI Transfer Format with CPHA =0

o 0| L L L L L L L
e L L L L

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

[=

MSB first (DORD =0) MSB Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit 6 MSB

H X
O K

o9 T

— A A
>

Figure 16-4. SPI Transfer Format with CPHA =1
mode 1
| modes
A H
X 2

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0 _<:>_<‘

ST

L L
L) L] L
-
=

a
3

MISO PIN

]
_ D
s /

MSB first (DORD = 0) MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD = 1) LSB Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 MSB

_

176 ATI0CANSG2/64/128 m——————————

7679H-CAN-08/08

s A TO0CAN32/64/128

17. USART (USARTO and USART1)

17.1 Features

17.2 Overview

17.3 Dual USART

7679H-CAN-08/08

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device. The main features are:

¢ Full Duplex Operation (Independent Serial Receive and Transmit Registers)
¢ Asynchronous or Synchronous Operation

* Master or Slave Clocked Synchronous Operation

* High Resolution Baud Rate Generator

* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

¢ Odd or Even Parity Generation and Parity Check Supported by Hardware

* Data OverRun Detection

* Framing Error Detection

* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete , TX Data Register Empty and RX Complete
* Multi-processor Communication Mode

* Double Speed Asynchronous Communication Mode

Many registers and bit references in this section are written in general form.

* Alower case “n” replaces the USART number, in this case 0 or 1. However, when using the
register or bit defines in a program, the precise form must be used, i.e., UDRO for accessing
USARTO I/O data value and so on.

The AT90CAN32/64/128 has two USART’s, USARTO and USARTL1. The functionality for both
USART's is described below. USARTO and USART1 have different I/O registers as shown in
“Register Summary” on page 405.

A simplified block diagram of the USARTnN Transmitter is shown in Figure 17-1. CPU accessible
I/O Registers and I/O pins are shown in bold.

A mEIZ@ 177

ATMEL

Figure 17-1. USARTn Block Diagram &

Clock Generator

UBRRN[H:L]

Y

BAUD RATE GENERATOR -t

CLKio

Y

['synC Locic PIN

CONTROL [

| XCKn

RxDn

|—> DATA PIN P
;:D_» RECEIVE SHIFT REGISTER RECOVERY conTrROL [

PARITY
CHECKER

UDRnN (Receive)

I Transmitter :
) X
: UDRnN (Transmit) CONTROL |
+ PARITY I

ol | GENERATOR |
o) | PIN | o
o | TRANSMIT SHIFT REGISTER . CONTROL IV TxDn
<C >
'<T: | |
o I Receiver |

I > cLock RX |

| RECOVERY CONTROL |

| |

| |

| < i

| |

| |

| |

| |

UCSRAN UCSRBn UCSRCn

Note: 1. Referto Figure 1-2 on page 5 or Figure 1-3 on page 6, Table 9-15 on page 83, and Table 9-10
on page 79 for USARTn pin placement.

The dashed boxes in the block diagram separate the three main parts of the USARTn (listed
from the top): Clock Generator, Transmitter and Receiver. Control registers are shared by all
units. The Clock Generation logic consists of synchronization logic for external clock input used
by synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USARTn module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRnN). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

178 ATI0CANSG2/64/128 m———————

s A TO0CAN32/64/128

17.4 Clock Generation

1741

7679H-CAN-08/08

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USARTN supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USARTnN
Control and Status Register C (UCSRNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnNA Register. When using synchronous mode (UMSELnN = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 17-2 shows a block diagram of the clock generation logic.

Figure 17-2. USARTN Clock Generation Logic, Block Diagram

u2Xn
(feikiq)

UBRRN+1

Prescaling
Down-Counter

A

1 /2 > /4 1 /2 >

clkj, — txn clk

DDR_
Y }

Sync Edge

xn cki Register Detector

XCKn A
pin | Xncko

f

DDR_XCKn UCPOLN

'

A

UMSELN

\

rxn clk

Signal description:

txn clk Transmitter clock (Internal Signal).

rxn clk Receiver base clock (Internal Signal).

xn cki Input from XCK pin (internal Signal). Used for synchronous slave
operation.

xn cko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

felk,, System 1/O Clock frequency.

Internal Clock Genera tion — Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 17-2.

The USARTN Baud Rate Register (UBRRN) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fclk,), is loaded with the UBRRn value each time the counter has counted down to zero or
when the UBRRnNL Register is written. A clock is generated each time the counter reaches zero.
This clock is the baud rate generator clock output (= fclkiol(UBRRn+1)). The Transmitter divides
the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator
output is used directly by the Receiver’s clock and data recovery units. However, the recovery

A mEIZ@ 179

17.4.2

17.4.3 External Clock

180

ATMEL

units use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELN, U2Xn and DDR_XCKn bits.

Table 17-1 contains equations for calculating the baud rate (in bits per second) and for calculat-
ing the UBRRn value for each mode of operation using an internally generated clock source.

Table 17-1. Equations for Calculating Baud Rate Register Setting
Equation for Calculating Baud Equation for Calculating
Operating Mode Rate UBRRnN Value
Asynchronous Normal mode fCLKio f ;
BAUD = ——F————— _ 'CLKio
(U2Xn = 0) v 16(UBRRn+ 1) UBRRN = T68AUD ~
Asynchronous Double Speed fCLKio fCLKi 0
BAUD = ———rre—————r BRRn = -
mode (U2Xn = 1) UD = gUBRRN+ 1) UBRRN = g8AUD
_ feLkio _ fLkio
Synchronous Master mode BAUD = E(TB'W'T) UBRRn = 2BAUD

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps).
felk, System 1/O Clock frequency.
UBRRnN Contents of the UBRRnH and UBRRnNL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table 17-9
(see page 200).

Double Speed Operation (U2X)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 17-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

f feLkio
XCKn< T4

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Note that fclkiO depends on the stability of the system clock source. It is therefore recommended
to add some margin to avoid possible loss of data due to frequency variations.

17.4.4 Synchronous Clock Operation
When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 17-3. Synchronous Mode XCKn Timing.

UCPOLn =1
XCKn
RxDn / TxDn X kX X X
UCPOLN =0 Sample
XCKn
RxDn / TxDn X \X X X
L Sample

The UCPOLN bit UCRSNC selects which XCKn clock edge is used for data sampling and which
is used for data change. As Figure 17-3 shows, when UCPOLn is zero the data will be changed
at rising XCKn edge and sampled at falling XCKn edge. If UCPOLnN is set, the data will be
changed at falling XCKn edge and sampled at rising XCKn edge.

17.5 Serial Frame

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking.

1751 Frame Formats
The USARTN accepts all 30 combinations of the following as valid frame formats:

1 start bit

* 5,6, 7,8, or9 data bits

* no, even or odd parity bit

* 1 or 2 stop bits
A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.

Figure 17-4 illustrates the possible combinations of the frame formats. Bits inside brackets are
optional.

A mEIZ@ 181

7679H-CAN-08/08

ATMEL

Figure 17-4. Frame Formats

‘Q FRAME 9‘
(IDLE) \ St/ 0 X 1 X 2 X 3 X 4 X[S] X [6]X[7] X [S]X[P]/Spl [sz]& (St/IDLE)
St Start bit, always low.
(n) Data bits (0 to 8).
P Parity bit. Can be odd or even.
Sp Stop bit, always high.
IDLE No transfers on the communication line (RxDn or TxDn).

An IDLE line must be high.

The frame format used by the USARTN is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnNB and UCSRnNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USARTN Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USARTnN Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection
between one or two stop bits is done by the USARTn Stop Bit Select (USBSn) bit. The Receiver
ignores the second stop bit. An FEn (Frame Error) will therefore only be detected in the cases
where the first stop bit is zero.

17.5.2 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows:
Peven = d,_1®...®d;©d, ®d; ®d; ®0
Pogd = d,_1®...®d;©d, ®d; ®d, @1
Peven Parity bit using even parity
podd Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

17.6 USART Initialization

The USARTN has to be initialized before any communication can take place. The initialization
process normally consists of setting the baud rate, setting frame format and enabling the Trans-
mitter or the Receiver depending on the usage. For interrupt driven USARTn operation, the
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn flag can be used
to check that the Transmitter has completed all transfers, and the RXCn flag can be used to

1822 ATI0CANSG2/64/128 m———————

s A TO0CAN32/64/128

check that there are no unread data in the receive buffer. Note that the TXCn flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USARTO initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Assembly Code Example @)

USARTO_ Init:
; Set baud rate
sts UBRROH, rl7
sts UBRROL, rlé6
; Set frame format: 8data, no parity & 2 stop bits
1di rl6, (0<<UMSELO) | (0<<UPMO) | (1<<USBSO0) | (3<<UCSZ0)
sts UCSROC, rle6
; Enable receiver and transmitter
1ldi rl6, (1<<RXENO) | (1<<TXENO)
sts UCSROB, rlé6

ret

C Code Example @

void USARTO Init (unsigned int baud)

{
/* Set baud rate */
UBRROH = (unsigned char) (baud>>8);
UBRROL = (unsigned char) baud;
/* Set frame format: 8data, no parity & 2 stop bits */
UCSROC = (0<<UMSELO) | (0<<UPMO0) | (1<<USBS0) | (3<<UCSZ0);
/* Enable receiver and transmitter */

UCSROB = (1<<RXENO) | (1<<TXENO);

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other I/O modules.

17.7 Data Transmission — USART Transmitter
The USARTN Transmitter is enabled by setting the Transmit Enable (TXENRN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USARTnN and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-

A mEIZ@ 183

7679H-CAN-08/08

ATMEL

chronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

17.71 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USARTO transmit function based on polling of the
Data Register Empty (UDREO) flag. When using frames with less than eight bits, the most signif-
icant bits written to the UDRO are ignored. The USARTO has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16.

Assembly Code Example @

USARTO_Transmit:
; Wait for empty transmit buffer
1lds rl7, UCSROA
sbrs rl7, UDREO
rjmp USARTO_ Transmit
; Put data (rl6) into buffer, sends the data
sts UDRO, rlé6

ret

C Code Example

void USARTO_Transmit (unsigned char data)

{
/* Wait for empty transmit buffer */
while (! (UCSRAO & (1<<UDREO))) ;
/* Put data into buffer, sends the data */
UDRO = data;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for the transmit buffer to be empty by checking the UDREO flag, before
loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized, the
interrupt routine writes the data into the buffer.

188 ATI0CANSG2/64/128 m——————

s A TO0CAN32/64/128

17.7.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in UCS-
RnB before the low byte of the character is written to UDRnN. The following code examples show
a transmit function that handles 9-bit characters. For the assembly code, the data to be sent is
assumed to be stored in registers R17:R16.

Assembly Code Example M@

USARTO_Transmit:
; Wait for empty transmit buffer
1lds rl8, UCSROA
sbrs rl8, UDREO
rjmp USARTO Transmit
; Copy 9th bit from rl17-bit0 to TXB80 via T-bit of SREG
lds rl8, UCSROB
bst rl7, O
bld rl8, TXB8O0
sts UCSROB, rl8
; Put LSB data (rl6) into buffer, sends the data
sts UDRO, rlé6

ret

C Code Example (W@

void USARTO_Transmit (unsigned int data)
{
/* Wait for empty transmit buffer */
while (! (UCSROA & (1<<UDREO0))) ;
/* Copy 9th bit to TXB8 */
UCSROB &= ~(1<<TXB80) ;
if (data & 0x0100)
UCSROB |= (1<<TXB80) ;
/* Put data into buffer, sends the data */
UDRO = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSROB is static. For example, only the TXB80 bit of the UCSRBO Register is
used after initialization.

2. The example code assumes that the part specific header file is included.

The ninth bit can be used for indicating an address frame when using multi processor communi-
cation mode or for other protocol handling as for example synchronization.

17.7.3 Transmitter Flags and Interrupts

The USARTnN Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

A mEIZ@ 185

7679H-CAN-08/08

ATMEL

The Data Register Empty (UDRERN) flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEN) bit in UCSRBn is written to one, the
USARTN Data Register Empty Interrupt will be executed as long as UDRERN is set (provided that
global interrupts are enabled). UDRERN is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREN or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Complete Interrupt Enable (TXCIEN) bit in UCSRnNB is set, the USARTn
Transmit Complete Interrupt will be executed when the TXCn flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn flag, this is done automatically when the interrupt
is executed.

17.7.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMnN1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

17.75 Disabling the Transmitter
The disabling of the Transmitter (setting the TXENN to zero) will not become effective until ongo-
ing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

17.8 Data Reception — USART Receiver
The USARTN Receiver is enabled by writing the Receive Enable (RXENN) bit in the UCSRnB
Register to one. When the Receiver is enabled, the normal pin operation of the RxDn pin is over-
ridden by the USARTnN and given the function as the Receiver’s serial input. The baud rate,
mode of operation and frame format must be set up once before any serial reception can be
done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer clock.

17.8.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, i.e., a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn 1/O location.

188 ATI0CAN32/64/128 m———————

s A TO0CAN32/64/128

The following code example shows a simple USARTO receive function based on polling of the
Receive Complete (RXCO0) flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRO will be masked to zero. The USARTO has to be initialized
before the function can be used.

Assembly Code Example @

USARTO_Receive:
; Wait for data to be received

1lds rl8, UCSROA

sbrs rl8, RXCO

rjmp USARTO_Receive

; Get and return received data from buffer

1ds rlé6, UDRO

ret

C Code Example

unsigned char USARTO_Receive (void)
{
/* Wait for data to be received */
while (! (UCSROA & (1<<RXCO0))) ;
/* Get and return received data from buffer */

return UDRO;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the RXCO flag,
before reading the buffer and returning the value.

17.8.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCS-
RnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and UPEn
Status Flags as well. Read status from UCSRnNA, then data from UDRn. Reading the UDRn 1/O
location will change the state of the receive buffer FIFO and consequently the TXB8n, FEn,
DORnN and UPERN bits, which all are stored in the FIFO, will change.

A mEIZ@ 187

7679H-CAN-08/08

ATMEL

The following code example shows a simple USARTO receive function that handles both nine bit
characters and the status bits.

Assembly Code Example @

USARTO_Receive:
; Wait for data to be received
lds rl8, UCSROA
sbrs rl8, RXCO
rjmp USARTO Receive
; Get status and 9th bit, then data from buffer
1lds rl7, UCSROB
1lds rlé6, UDRO
; If error, return -1
andi rl18, (1<<FEO0) | (1<<DORO) | (1<<UPEO0)
breq USARTO0 ReceiveNoError
1di rl7, HIGH(-1)
1di rle, LOW(-1)
USARTO0_ReceiveNoError:
; Filter the 9th bit, then return
1sr rl7
andi rl7, 0x01

ret

C Code Example @

unsigned int USARTO Receive (void)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSROA & (1<<RXCO))) ;
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSROA;
resh = UCSROB;
resl = UDRO;
/* If error, return -1 */
if (status & (1<<FEO) | (1<<DORO0) | (1<<UPEO))
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. The example code assumes that the part specific header file is included.

The receive function example reads all the I/O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

188 ATI0CANSG2/64/128 m———————

7679H-CAN-08/08

s A TO0CAN32/64/128

17.8.3

17.8.4

17.8.5

Receive Complete Flag and Interrupt

The USARTnN Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled (RXENnN = 0),
the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USARTNn
Receive Complete interrupt will be executed as long as the RXCn flag is set (provided that glo-
bal interrupts are enabled). When interrupt-driven data reception is used, the receive complete
routine must read the received data from UDRn in order to clear the RXCn flag, otherwise a new
interrupt will occur once the interrupt routine terminates.

Receiver Error Flags

Parity Checker

7679H-CAN-08/08

The USARTN Receiver has three error flags: Frame Error (FEn), Data OverRun (DORnN) and
Parity Error (UPEN). All can be accessed by reading UCSRnA. Common for the error flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the error flags, the UCSRnA must be read before the receive
buffer (UDRnN), since reading the UDRnN I/O location changes the buffer read location. Another
equality for the error flags is that they can not be altered by software doing a write to the flag
location. However, all flags must be set to zero when the UCSRnNA is written for upward compat-
ibility of future USART implementations. None of the error flags can generate interrupts.

The Frame Error (FEN) flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn flag is zero when the stop bit was correctly read (as one),
and the FEn flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn flag
is not affected by the setting of the USBSn bit in UCSRNC since the Receiver ignores all, except
for the first, stop bits. For compatibility with future devices, always set this bit to zero when writ-
ing to UCSRnNA.

The Data OverRun (DORNn) flag indicates data loss due to a receiver buffer full condition. A Data
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in
the Receive Shift Register, and a new start bit is detected. If the DORn flag is set there was one
or more serial frame lost between the frame last read from UDRn, and the next frame read from
UDRnN. For compatibility with future devices, always write this bit to zero when writing to UCS-
RnA. The DORn flag is cleared when the frame received was successfully moved from the Shift
Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 182 and “Parity Checker” on page 189.

The Parity Checker is active when the high USARTn Parity mode (UPMn1) bit is set. Type of
Parity Check to be performed (odd or even) is selected by the UPMnO bit. When enabled, the
Parity Checker calculates the parity of the data bits in incoming frames and compares the result
with the parity bit from the serial frame. The result of the check is stored in the receive buffer
together with the received data and stop bits. The Parity Error (UPEN) flag can then be read by
software to check if the frame had a Parity Error.

A mEIZ@ 189

ATMEL

The UPERN bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRN) is read.

17.8.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver will
no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

17.8.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn flag
is cleared.

The following code example shows how to flush the receive buffer.

Assembly Code Example @

USARTO_Flush:
lds rl6, UCSROA
sbrs rlée, RXCO
ret
lds rlé6, UDRO
rjmp USARTO Flush

C Code Example @

void USARTO Flush (void)

{

unsigned char dummy;
while (UCSROA & (1<<RXCO)) dummy = UDRO;

}

Note: 1. The example code assumes that the part specific header file is included.

17.9 Asynchronous Data Reception
The USARTnN includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

17.9.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 17-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-

190 ATOI0CANSG2/64/128 m———

s A TO0CAN32/64/128

izontal arrows illustrate the synchronization variation due to the sampling process. Note the
larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (i.e., no communication activity).

Figure 17-5. Start Bit Sampling

RxDn IDLE START BIT O

e | 1 PRt DT Pt

(U2Xn = 0) o 1 2 6 7 [8]9J1wo]u 12 13 14 15 16

bt f
e Pt Lo 1T

(U2Xn =1)

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-
ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

~

17.9.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 17-6 shows the sampling of the data bits and

the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 17-6. Sampling of Data and Parity Bit

< 4
!
!

PRINNOTEY T
I

Sample H—Lﬂ
1

(U2xn =1)

B
I& L1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

w
o —p 5 —

A mEIZ@ 191

7679H-CAN-08/08

ATMEL

Figure 17-7 shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 17-7. Stop Bit Sampling and Next Start Bit Sampling

RxDn STOP 1 (A) (B) ©)

Sample H‘*{ T T

(U2Xn = 0) 1

Sample H—Lﬂ

(U2Xn = 1)

6 “n 01 01 01

't
ldd b

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEnN) flag will be set.

N — W —P

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 17-7. For Double Speed mode the first low level must be delayed to
(B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

17.9.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 17-2) base frequency, the Receiver will not be able to synchronize the frames to the start
bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

___(D+1)S Ripg = = 222)S
Rslow = S-1+D-S+S: ast (D+1)S+ 5
D Sum of character size and parity size (D =5 to 10 bit)
S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed mode.

Se Flrst sample number used for majority voting. S = 8 for normal speed and
= 4 for Double Speed mode.

Swu Middle sample number used for majority voting. S,, = 9 for normal speed and
Sy = 5 for Double Speed mode.

Ryow IS the ratio of the slowest incoming data rate that can be accepted in relation to
the receiver baud rate.

Riast s the ratio of the fastest incoming data rate that can be accepted in relation to the
receiver baud rate.

Table 17-2 and Table 17-3 list the maximum receiver baud rate error that can be tolerated. Note
that Normal Speed mode has higher toleration of baud rate variations.

192 ATO90CANSG2/64/128 m————

s A TO0CAN32/64/128

Table 17-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn = 0)
(Data + I?’arity Bit) Rojow (%) | Reast (%) Max Total Error (%) RRe:(?;vneﬁf E?r?)? ?gA)a)X
5 93.20 106.67 +6.67/-6.8 +3.0
6 94.12 105.79 +5.79/-5.88 +25
7 94.81 105.11 +5.11/-5.19 +2.0
8 95.36 104.58 +4.58/-4.54 +2.0
9 95.81 104.14 +4.14/-4.19 +15
10 96.17 103.78 +3.78/-3.83 +15

Table 17-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(U2xn = 1)
(Data + Il?’arity Bit) Roow (%) | Rpast (%) | Max Total Error (%) R;;:(;Ti]vn;f E?reodr ?A‘sz
5 94.12 105.66 +5.66/-5.88 +25
6 94.92 104.92 +4.92/-5.08 +2.0
7 95.52 104,35 +4.35/-4.48 +15
8 96.00 103.90 +3.90/-4.00 +15
9 96.39 103.53 +3.53/-3.61 +15
10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRRn value
that gives an acceptable low error can be used if possible.

17.10 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a filtering
function of incoming frames received by the USARTn Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

A mEIZ@ 193

7679H-CAN-08/08

17.10.1

17.10.2

194

MPCM Protocol

Using MPCM

ATMEL

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When
the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXBn = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit charac-
ter frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnNA is set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame.
In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.
3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If
S0, it clears the MPCMn bit in UCSRNA, otherwise it waits for the next address byte and
keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is received.
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets
the MPCMn bit and waits for a new address frame from master. The process then
repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using N and N+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver use the same character size set-
ting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

17.11 USART Regist er Description

17111

17.11.2

17.11.3

17.11.4

7679H-CAN-08/08

USARTO I/O Data Register — UDRO

Bit 7 6 5 4 3 2 1 0
RXBO[7:0] UDRO (Read)
TXBO[7:0] UDRO (Write)
Read/Write R/IW R/W R/IW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

USARTL1 I/O Data Register — UDR1

Bit 7 6 5 4 3 2 1 0
RXB1[7:0] UDR1 (Read)
TXB1[7:0] UDR1 (Write)
Read/Write RIW RIW RIW R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — RxBn7:0: Receive Data Buffer (read access)
e Bit 7:0 — TxBn7:0: Transmit Data Buffer (write access)
The USARTnN Transmit Data Buffer Register and USARTNn Receive Data Buffer Registers share
the same 1/O address referred to as USARTN Data Register or UDRn. The Transmit Data Buffer
Register (TXBn) will be the destination for data written to the UDRn Register location. Reading
the UDRnN Register location will return the contents of the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to
zero by the Receiver.

The transmit buffer can only be written when the UDREN flag in the UCSRnA Register is set.
Data written to UDRn when the UDRER flag is not set, will be ignored by the USARTn Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed.

USARTO Control and Status Register A — UCSROA

Bit 7 6 5 4 3 2 1 0
| rxco | Txco | ubreo | FEO DORO UPEO u2xo | MPCMO | UCsRoA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

USARTL1 Control and Status Register A— UCSR1A

Bit 7 6 5 4 3 2 1 0
| rxci | Txc1 | ubre1l | FEL DOR1 UPE1 u2x1 | MPCM1 | UCSRIA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

e Bit 7 - RXCn: USARTn Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn flag can be
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

A mEIZ@ 195

17.11.5

196

ATMEL

¢ Bit 6 — TXCn: USARTn Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn flag can generate a Transmit Complete interrupt (see descrip-
tion of the TXCIEn bit).

e Bit5—- UDREn: USARTn Data Register Empty

The UDRERN flag indicates if the transmit buffer (UDRN) is ready to receive new data. If UDREn is
one, the buffer is empty, and therefore ready to be written. The UDRERN flag can generate a Data
Register Empty interrupt (see description of the UDRIEN bit).

UDRER is set after a reset to indicate that the Transmitter is ready.

e Bit4 - FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received. l.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRN) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnNA.

¢ Bit 3 - DORnN: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRnNA.

e Bit 2 - UPEn: USARTNnN Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRN) is read. Always set this bit to zero when writing to UCSRnA.

e Bit1-U2Xn: Double the USARTNn Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

¢ Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USARNT Receiver that do not contain address
information will be ignored. The Transmitter is unaffected by the MPCMn setting. For more
detailed information see “Multi-processor Communication Mode” on page 193.

USARTO Control and Status Register B— UCSR0B

Bit 7 6 5 4 3 2 1 0

| rxciEo | TXCIEO | UDRIEO | RXENO | TXENO | UCSZ02 | RXB80 | TxB80 | UCSROB
Read/Write R/W R/W R/W RIW R/W RIW R R/W
Initial Value 0 0 0 0 0 0 0 0

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

17.11.6 USARTL1 Control and Status Register B— UCSR1B

Bit 7 6 5 4 3 2 1 0

| rxciEl | TXCIE1 | UDRIEL | RXEN1 | TXEN1 | UCSZ12 | RXB81 | TxB81 | UCSR1B
Read/Write R/W R/W RIW RIW RIW RIW R R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USARTn Receive Complete inter-
rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG
is written to one and the RXCn bit in UCSRnNA is set.

e Bit 6 — TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete inter-
rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG
is written to one and the TXCn bit in UCSRnNA is set.

e Bit5 - UDRIEn: USARTn Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRER flag. A Data Register Empty interrupt will
be generated only if the UDRIERN bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRERn bit in UCSRNA is set.

e Bit 4 — RXENnN: Receiver Enable

Writing this bit to one enables the USARTn Receiver. The Receiver will override normal port
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

¢ Bit 3 - TXENnN: Transmitter Enable

Writing this bit to one enables the USARTnN Transmitter. The Transmitter will override normal
port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENnN
to zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

¢ Bit 2 - UCSZn2: Character Size
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

* Bit 1 - RXB8n: Receive Data Bit 8
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

e Bit 0 — TXB8n: Transmit Data Bit 8
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

17.11.7 USARTO Control and Status Register C — UCSROC

Bit 7 6 5 4 3 2 1 0

| - [uwsElo| upmoi | uPmMOO | USBSO | UCSZO1 | UCSZ00 |UCPOLO | UCSROC
Read/Write R R/W R/W RIW RIW RIW R/W R/W
Initial Value 0 0 0 0 0 1 1 0

A mEIZ@ 197

7679H-CAN-08/08

17.11.8

198

ATMEL

USARTL1 Control and Status Register C — UCSR1C

Bit 7 6 5 4 3 2 1 0

| - [uwskLi| upmil | uPmio | USBSL | UCSZ11 | UCSZ10 |UCPOIL | UCSRIC
Read/Write R R/W R/W RIW RIW RIW R/W R/W
Initial Value 0 0 0 0 0 1 1 0

* Bit 7 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, these bit must be written
to zero when UCSRNC is written.

¢ Bit6 — UMSELN: USARTN Mode Select
This bit selects between asynchronous and synchronous mode of operation.

Table 17-4. UMSELn Bit Settings

UMSELN Mode
0 Asynchronous Operation
1 Synchronous Operation

e Bit5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMnO setting.
If a mismatch is detected, the UPEn Flag in UCSRNnA will be set.

Table 17-5. UPMn Bits Settings

UPMn1 UPMnNO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

« Bit 3 - USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

Table 17-6. USBSn Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

17.11.9

¢ Bit 2:1 — UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits
(Character SizZe) in a frame the Receiver and Transmitter use.

Table 17-7.

UCSZn Bits Settings

UCSZn2

UCSzZnl

uCcSzn0

Character Size

0

0 0

5-bit

6-bit

7-bit

8-bit

Reserved

Reserved

Reserved

0
0
0
1
1
1
1

Rk |o|lo|lr|r|O

R |lo|lRr|O|lR|O|F

9-bit

e Bit 0 — UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is

used. The UCPOLN bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

Table 17-8. UCPOLn Bit Settings
UCPOLN Transmitted Data Qhanged Received Data ngpled
(Output of TxDn Pin) (Input on RxDn Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge

USARTO Baud Rate Registers — UBRROL and UBRROH

17.11.10 USART1 Baud Rate Registers — UBRR1L and UBRR1H

7679H-CAN-08/08

Bit 15 14 13 12 11 10 9 8
- | -1 -1 -] UBRRO[11:8] UBRROH
UBRRO[7:0] UBRROL
7 6 5 4 3 2 1 0
Read/Write R R R R RIW RIW R/W RIW
R/W R/W RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0
0 0 0 0 0 0 0
Bit 15 14 13 12 11 10 9 8
- -1 - 1 -] UBRR1[11:8] UBRR1H
UBRR1[7:0] UBRRIL
7 6 5 4 3 2 1 0
Read/Write R R R R RIW RIW R/W R/W
R/W R/W R/W RIW RIW RIW RIW R/W
Initial Value 0 0 0 0 0 0 0
0 0 0 0 0 0 0

ATMEL

199

ATMEL

* Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnNH is written.

e Bit 11:0 - UBRRnN11:0: USARTn Baud Rate Register

This is a 12-bit register which contains the USARTn baud rate. The UBRRnNH contains the four
most significant bits, and the UBRRNL contains the eight least significant bits of the USARTnN
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud
rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate prescaler.

17.12 Examples of Ba ud Rate Setting

For standard crystal, resonator and external oscillator frequencies, the most commonly used
baud rates for asynchronous operation can be generated by using the UBRRn settings in Table
17-9 up to Table 17-12. UBRRn values which yield an actual baud rate differing less than 0.5%
from the target baud rate, are bold in the table. Higher error ratings are acceptable, but the
Receiver will have less noise resistance when the error ratings are high, especially for large
serial frames (see “Asynchronous Operational Range” on page 192). The error values are calcu-
lated using the following equation:

BaudRate

eror] = (1.- g o) 1009,
Table 17-9. Examples of UBRRn Settings for Commonly Frequencies
Baud felk,, = 1.0000 MHz felk,, = 1.8432 MHz fclk;, = 2.0000 MHz
Rate U2Xn=0 uz2xXn=1 uz2xXn=0 uz2Xn=1 uz2Xn=0 u2Xn=1
(bps) UBRRnN |Error UBRRn Error UBRRnN Hrror UBRRnN Error UBRRnN Error UBRRn Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - - -
500k - - - - - - - - - - - -
M - - - - - - - - - - - -
Max. ® 62.5 Kbps 125 Kbps 115.2 Kbps 230.4 Kbps 125 Kbps 250 Kbps
Note: 1. UBRRnNn =0, Error = 0.0%

200

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 17-10. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud fclk,, = 3.6864 MHz felk,, = 4.0000 MHz fclk,, = 7.3728 MHz
Rate U2Xn =0 Uz2Xn =1 Uz2xXn =0 uzxn=1 uz2xXn =0 uz2xXn =1
(bps) UBRRn |Error UBRRn Error UBRRn Error UBRRn Etrror UBRRn Error UBRRn Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
500k - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
M - - - - - - - - - - 0 -7.8%
Max.® 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps
Note: 1. UBRRn =0, Error = 0.0%

201

7679H-CAN-08/08

ATMEL

ATMEL

Table 17-11. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud felk,, = 8.0000 MHz felk,, = 10.000 MHz felk,, = 11.0592 MHz

Rate uz2Xn=0 Uzxn=1 uz2xn=0 uzxn=1 uz2xn=0 uzxn=1
(bps) UBRRnN |Error UBRRn Error UBRRnN Error UBRRnN Etror UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 259 0.2% 520 0.0% 287 0.0% 575 0.0%
4800 103 0.2% 207 0.2% 129 0.2% 259 0.2% 143 0.0% 287 0.0%
9600 51 0.2% 103 0.2% 64 0.2% 129 0.2% 71 0.0% 143 0.0%
14.4k 34 -0.8% 68 0.6% 42 0.9% 86 0.2% 47 0.0% 95 0.0%
19.2k 25 0.2% 51 0.2% 32 -1.4% 64 0.2% 35 0.0% 71 0.0%
28.8k 16 2.1% 34 -0.8% 21 -1.4% 42 0.9% 23 0.0% 47 0.0%
38.4k 12 0.2% 25 0.2% 15 1.8% 32 -1.4% 17 0.0% 35 0.0%
57.6k 8 -3.5% 16 2.1% 10 -1.5% 21 -1.4% 11 0.0% 23 0.0%
76.8k 6 -7.0% 12 0.2% 7 1.9% 15 1.8% 8 0.0% 17 0.0%
115.2k 3 8.5% 8 -3.5% 4 9.6% 10 -1.5% 5 0.0% 11 0.0%
230.4k 1 8.5% 3 8.5% 2 -16.8% 4 9.6% 2 0.0% 5 0.0%
250k 1 0.0% 3 0.0% 2 -33.3% 4 0.0% 2 -7.8% 5 -7.8%
500k 0 0.0% 1 0.0% - - 2 -33.3% - - 2 -7.8%
M - - 0 0.0% - - - - - - - -
Max. @ 0.5 Mbps 1 Mbps 625 Kbps 1.25 Mbps 691.2 Kbps 1.3824 Mbps

Note: 1. UBRRn =0, Error = 0.0%

202 ATOOCANS2/0A]12S o ——

s A TO0CAN32/64/128

Table 17-12. Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud felk,, = 12.0000 MHz felk,, = 14.7456 MHz felk,, = 16.0000 MHz

Rate u2xn=0 u2xn=1 U2xn=0 uU2xn=1 U2xn=0 uz2xn=1
(bps) UBRRnN |Error UBRRn Error UBRRnN Hrror UBRRnN Error UBRRnN Error UBRRn Error

2400 312 -0.2% 624 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%
4800 155 0.2% 312 -0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%
9600 77 0.2% 155 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%
14.4k 51 0.2% 103 0.2% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%
19.2k 38 0.2% 77 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
28.8k 25 0.2% 51 0.2% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%
38.4k 19 -2.5% 38 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
57.6k 12 0.2% 25 0.2% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%
76.8k 9 2.7% 19 -2.5% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
115.2k 6 -8.9% 12 0.2% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
230.4k 2 11.3% 6 -8.9% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
250k 2 0.0% 5 0.0% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%
500k - - 2 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%
1M - - - - 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%
Max. @ 750 Kbps 1.5 Mbps 921.6 Kbps 1.8432 Mbps 1 Mbps 2 Mbps

Note: 1. UBRRn =0, Error = 0.0%

A mEIZ@ 203

7679H-CAN-08/08

18. Two-wire Serial Interface

18.1 Features

ATMEL

* Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
* Both Master and Slave Operation Supported

* Device can Operate as Transmitter or Receiver

* 7-bit Address Space allows up to 128 Different Slave Addresses

e Multi-master Arbitration Support

e Up to 400 kHz Data Transfer Speed

¢ Slew-rate Limited Output Drivers

* Noise Suppression Circuitry Rejects Spikes on Bus Lines

¢ Fully Programmable Slave Address with General Call Support

* Address Recognition Causes Wake-up when AVR is in Sleep Mode

18.2 Two-wire Serial Interface Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 18-1. TWI Bus Interconnection

SDA
SCL

18.2.1 TWI Terminology

Device 1 Device 2 Device3 | Device n

VCC

R1 R2

[
|

A

The following definitions are frequently encountered in this section.

Table 18-1. TWI Terminology

Term

Description

Master

The device that initiates and terminates a transmission. The master also generates the
SCL clock

Slave

The device addressed by a master

Transmitter

The device placing data on the bus

Receiver

The device reading data from the bus

204 ATOOCANS2/0A]12S e —

7679H-CAN-08/08

s A TO0CAN32/64/128

18.2.2 Electrical Interconnection

As depicted in Figure 18-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to pull the line
high. Note that all AVR devices connected to the TWI bus must be powered in order to allow any
bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 369. Two
different sets of specifications are presented there, one relevant for bus speeds below 100 kHz,
and one valid for bus speeds up to 400 kHz.

18.3 Data Transfer and Frame Format

18.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 18-2. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

18.3.2 START and STOP Conditions

7679H-CAN-08/08

The master initiates and terminates a data transmission. The transmission is initiated when the
master issues a START condition on the bus, and it is terminated when the master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behaviour, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

A mEIZ@ 205

18.3.3

18.3.4

206

ATMEL

Figure 18-3. START, REPEATED START and STOP Conditions

START STOP START REPEATED START STOP

Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed slave is busy, or for some other reason can not service the mas-
ter's request, the SDA line should be left high in the ACK clock cycle. The master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 18-4. Address Packet Format

Addr MSB AddrLSB R/W

/XKWXX/

START

Data Packet Format

All data packets transmitted on the TWI bus are 9 bits long, consisting of one data byte and an
acknowledge bit. During a data transfer, the master generates the clock and the START and
STOP conditions, while the receiver is responsible for acknowledging the reception. An

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Acknowledge (ACK) is signalled by the receiver pulling the SDA line low during the ninth SCL
cycle. If the receiver leaves the SDA line high, a NACK is signalled. When the receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 18-5. Data Packet Format

|
| Data MSB DataLSB ACK |

. | .
Aggregate N | p !
SDA N\ | |
| |

. | .
SDA from N |
Transmitter \ | !
| |

,,,,,, ! 1
SDA from a) |
Receiver /| !
| |
SCL from | |

Master ! (B

i L 2 ! 8 9 i STOP, REPEATED
SLA+R/W ! Data Byte ; START or Next

| |

Data Byte

18.3.5 Combining Address and Data Packets Into a Transmission

SDA

Addr MSB

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the master and the slave. The slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the master is too fast for the
slave, or the slave needs extra time for processing between the data transmissions. The slave
extending the SCL low period will not affect the SCL high period, which is determined by the
master. As a consequence, the slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 18-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 18-6. Typical Data Transmission

Addr LSB R/W ACK Data MSB Data LSB ACK

START

OO X O X -
EINAVANNIVAVAVANEEVAVANIYAVAVANY

8 9 1 2 7 8 9

SLA+R/W Data Byte STOP

18.4 Multi-master Bus Systems, Ar bitration and Synchronization

7679H-CAN-08/08

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

A mEIZ@ 207

208

ATMEL

« An algorithm must be implemented allowingonly one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves,
i.e., the data being transferred on the bus must not be corrupted.

 Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the master with the shortest high period. The low period of the combined clock is equal to
the low period of the master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 18-7. SCL Synchronization between Multiple Masters

| |
| |
e
SCL from [)/ \
master A ! / }
|
|
SCL from 0T \ A N
master B I \ | } S
I 1
| | } |
| | |
SCL Bus } Wi }
Line | /| |
.
| \
‘ \

low TBhlgh
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the master had output, it has
lost the arbitration. Note that a master can only lose arbitration when it outputs a high SDA value
while another master outputs a low value. The losing master should immediately go to slave
mode, checking if it is being addressed by the winning master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one master remains, and this may take many
bits. If several masters are trying to address the same slave, arbitration will continue into the
data packet.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

AT90CAN32/64/128

Figure 18-8. Arbitration Between two Masters
Master A loses

|| \ Arbitration, SDA,# SDA
SDA from |
\

Master A

\
SDA from | |
Master B \ / \ \ / \
SDA Line \ | / \ | / \
\

EE T\ L

Note that arbitration is not allowed between:

« A REPEATED START condition and a data bit
* A STOP condition and a data bit
« A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

18.5 Overview of the TWI Module

The TWI module is comprised of several submodules, as shown in Figure 18-9. All registers
drawn in a thick line are accessible through the AVR data bus.

A mEIZ@ 209

7679H-CAN-08/08

185.1

18.5.2

210

ATMEL

Figure 18-9. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
4 4
y y
Bus Interface Unit Bit Rate Generator
START / STOP . .
Control Spike Suppression Prescaler
L . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Ack (TWBR)
J A A
y 4 /
Address Match Unit Control Unit
Address Register Status Register Control Register
(TWAR) i e (TWSR) (TWCR)
Address Comparator State Machine and TWI
P Status control uUnit

SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pullups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

CLKio
16 + 2(TWBR) - 4

SCL frequency = TWPS

« TWBR = Value of the TWI Bit Rate Register
* TWPS = Value of the prescaler bits in the TWI Status Register

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than 10, the
master may produce an incorrect output on SDA and SCL for the reminder of the byte. The prob-
lem occurs when operating the TWI in Master mode, sending Start + SLA + R/W to a slave (a
slave does not need to be connected to the bus for the condition to happen).

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

18.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

18.5.4 Address Match Unit

18.5.5 Control Unit

7679H-CAN-08/08

The Address Match unit checks if received address bytes match the 7-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a master. If another interrupt (e.g., INTO)
occurs during TWI Power-down address match and wakes up the CPU, the TWI aborts opera-
tion and return to it's idle state. If this cause any problems, ensure that TWI Address Match is the
only enabled interrupt when entering Power-down.

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,
the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

» After the TWI has transmitteda START/REPEATED START condition

« After the TWI has transmitted SLA+R/W

« After the TWI has transmitted an address byte

 After the TWI has lost arbitration

» After the TWI has been addressed by own slave address or general call

« After the TWI has received a data byte

» After a STOP or REPEATED START has beenreceived while still addressed as a slave

A mEIZ@ 211

ATMEL

* When a bus error has occured due to an illegal START or STOP condition

18.6 TWI Register Description

18.6.1

18.6.2

212

TWI Bit Rate Register - TWBR

Bit 7 6 5 4 3 2 1 0

I TWBR7 | TWBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO I TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7.0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See “Bit Rate Generator
Unit” on page 210 for calculating bit rates.

TWI Control Register - TWCR

Bit 7 6 5 4 3 2 1 0
| Twint | TWEA | TWSTA | TWSTO | TwwC | TWEN - TWIE | TWCR

Read/Write R/W R/W R/W RIW R RIW R RIW

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
master access by applying a START condition to the bus, to generate a receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the
bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

e Bit7—TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI interrupt vector. While the TWINT flag is set, the SCL low period is stretched. The TWINT
flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

e Bit6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the ACK pulse. If the TWEA bit is written to one, the
ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-wire
Serial Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

e Bit5 - TWSTA: TWI START Condition Bit

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

18.6.3

7679H-CAN-08/08

The application writes the TWSTA bit to one when it desires to become a master on the Two-
wire Serial Bus. The TWI hardware checks if the bus is available, and generates a START con-
dition on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition
is detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

e Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the Two-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

e Bit3-TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

e Bit2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the 1/O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

+ Bit1 - Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be written to
zero when TWCR is written.

e Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT flag is high.

TWI Status Register - TWSR

Bit 7 6 5 4 3 2 1 0

I TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 | TWPSO I TWSR
Read/Write R R R R R R R/W R/W
Initial Value 1 1 1 1 1 0 0 0

e Bits 7.3 - TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the Two-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both the
5-bit status value and the 2-bit prescaler value. The application designer should mask the pres-
caler bits to zero when checking the Status bits. This makes status checking independent of
prescaler setting. This approach is used in this datasheet, unless otherwise noted.

* Bit 2 — Res: Reserved Bit
This bit is reserved and will always read as zero.

A mEIZ@ 213

18.6.4

18.6.5

214

ATMEL

* Bits 1.0 - TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 18-2. TWI Bit Rate Prescaler

TWPS1 TWPSO Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 210. The value of TWPS1.0 is used
in the equation.

TWI Data Register - TWDR

Bit 7 6 5 4 3 2 1 0

I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write RIW R/IW RIW R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI interrupt flag (TWINT) is set by hardware. Note that the Data Register
cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains sta-
ble as long as TWINT is set. While data is shifted out, data on the bus is simultaneously shifted
in. TWDR always contains the last byte present on the bus, except after a wake up from a sleep
mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case of a lost
bus arbitration, no data is lost in the transition from Master to Slave. Handling of the ACK bit is
controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

e Bits 7.0 - TWD: TWI Data Register
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the TWI Serial Bus.

TWI (Slave) Address Register —- TWAR

Bit 7 6 5 4 3 2 1 0

| twas | Twas | Twas4 TWA3 TWA2 TWAL TWAO |TWGCE | TWAR
Read/Write R/W R/W R/W RIW R/W R/W R/W RIW
Initial Value 1 1 1 1 1 1 1 0

e Bits 7.1 - TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit. The TWAR should be loaded with
the 7-bit slave address to which the TWI will respond when programmed as a slave transmitter
or receiver, and not needed in the master modes. In multimaster systems, TWAR must be set in
masters which can be addressed as slaves by other masters.

e Bit0 - TWGCE: TWI General Call Recognition Enable Bit

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

TWGCE is used to enable recognition of the general call address (0x00). There is an associated
address comparator that looks for the slave address (or general call address if enabled) in the
received serial address. If a match is found, an interrupt request is generated. If set, this bit
enables the recognition of a General Call given over the TWI Serial Bus.

18.7 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT flag in
order to detect actions on the TWI bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 18-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a master wishes to transmit a single data byte to a slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

Figure 18-10. Interfacing the Application to the TWI

in a Typical Transmission

1. Application 3. Check TWSR to see if 5. Check TWSR to see if SLA+W 7. Check TWSR to see if data
5 writes to TWCR || START was sent. Application was sent and ACK received. was sent and ACK received.
T to initiate loads SLA+W into TWDR, and Application loads data into TWDR, Application loads appropriate
o < . . . R K .
= .8 | transmission of loads appropriate control signals and loads appropriate control signals control signals to send STOP
f(" é,:’ START. into TWCR, making sure that into TWCR, making sure that TWINT into TWCR, making sure that
TWINT is written to one. is written to one. TWINT is written to one.

TWI bus START - SLA+W A - Data A STOP
2. TWINT set. 4. TWINT set. 6. TWINT set. . T'\’;\ﬂ'ﬁ?_tiz .
TWI Status code indicates Status code indicates Status code indicates
START condition sent SLA+W sendt, data sent,
Hardware) :
Action ACK received ACK received

1. The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after

7679H-CAN-08/08

ATMEL

215

ATMEL

the application has cleared TWINT, the TWI will initiate transmission of the START
condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

3. The application software should now examine the value of TWSR, to make sure that
the START condition was successfully transmitted. If TWSR indicates otherwise, the
application software might take some special action, like calling an error routine.
Assuming that the status code is as expected, the application must load SLA+W into
TWDR. Remember that TWDR is used both for address and data. After TWDR has
been loaded with the desired SLA+W, a specific value must be written to TWCR,
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value to
write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as
long as the TWINT bit in TWCR is set. Imnmediately after the application has cleared
TWINT, the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a slave acknowledged the
packet or not.

5. The application software should now examine the value of TWSR, to make sure that
the address packet was successfully transmitted, and that the value of the ACK bit was
as expected. If TWSR indicates otherwise, the application software might take some
special action, like calling an error routine. Assuming that the status code is as
expected, the application must load a data packet into TWDR. Subsequently, a specific
value must be written to TWCR, instructing the TWI hardware to transmit the data
packet present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has successfully
been sent. The status code will also reflect whether a slave acknowledged the packet
or not.

7. The application software should now examine the value of TWSR, to make sure that
the data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some spe-
cial action, like calling an error routine. Assuming that the status code is as expected,
the application must write a specific value to TWCR, instructing the TWI hardware to
transmit a STOP condition. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears
the flag. The TWI will not start any operation as long as the TWINT bit in TWCR is set.
Immediately after the application has cleared TWINT, the TWI will initiate transmission
of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

« When the TWI has finished an operation and exyects application response, the TWINT flag is
set. The SCL line is pulled low until TWINT is cleared.

216 ATOOCANS2/0A]128 o —

s A TO0CAN32/64/128

* When the TWINT flag is set, the user must ypdate all TWI Registers with the value relevant
for the next TWI bus cycle. As an example, TWDR must be loaded with the value to be
transmitted in the next bus cycle.

« After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a
one to TWINT clears the flag. The TWI will then commence executing whatever operation
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made for example by using include-files.

Assembly Code Example Example Comments
1di rl6e, (1<<TWINT) TWCR = (1<<TWINT)
(1<<TWSTA) (1<<TWSTA) .
1 (1< <TWEN) (l<<TWEN) Send START condition
sts TWCR, rlé6
waitl:
1lds rlé6, TWCR . Wait for TWINT flag set. This indicates that
hil '{TWCR & (1<<TWINT H . .
2 sbrs rle, TWINT while (1((L<<))) the START condition has been transmitted
rjmp waitl
1lds rlée, TWSR .
andi +16. O0xF8 if ((TWSR & O0xF8) != START) Check value of TWI Status Register. Mask
R le ! START ERROR () ; prescaler bits. If status different from START
cpi 1o, go to ERROR
brne ERROR
3| 1ai rils, SLA W
sts TWDR, rlé6 TWDR = SLA W; Load SLA_W into TWDR Register. Clear
1di rl6, (1<<TWINT) | TWCR = (1<<TWINT) | (1<<TWEN) ; TWINT bit in TWCR to start transmission of
(1<<TWEN) address
sts TWCR, rleé6
wait2: Wait for TWINT flag set. This indicates that
ait for ag set. This indicates tha
14 16, TWCR . .
4 bs rlg TWINT while (! (TWCR & (1<<TWINT))); |the SLA+W has been transmitted, and
s .rs r . ',c2 ACK/NACK has been received.
rjmp wai
1lds rle, TWSR .
andi r16, OxF8 if ((TWSR & OxF8)!= MT SLA ACK) Check value of TWI Status Register. Mask
. 161 MT SLA ACK ERROR () ; prescaler bits. If status different from
;Pl ERR(')R —PhA_ MT_SLA_ACK go to ERROR
rne
5| 141 r16, DATA
TWDR = DATA;
sts TWDR, rl6 / . .
1di r16, (1<<TWINT) | TWCR = (1<<TWINT) | (L<<TWEN) ; Lpgd DATA into TWDR Reg!stgr. Clear TWINT
' (1<<TWEN) bit in TWCR to start transmission of data
sts TWCR, rlé6
wait3: while (! (TWCR & (1<<TWINT))) ; . L
1ds 16 TWCR Wait for TWINT flag set. This indicates that
6 b 16 ! TWINT the DATA has been transmitted, and
s lrs r X 1,23 ACK/NACK has been received.
rjmp wai
1ds = rl6, TWSR ; Check value of TWI Status Register. Mask
di 16, 0xF8 if ((TWSR & OxF8) !=MT_DATA ACK) |Checkvalueo atus Register. Mas
anl . r16 M>T< DATA ACK ERROR () ; prescaler bits. If status different from
Epl Lo, Mi_ — MT_DATA_ACK go to ERROR
7 rne ERROR
1d4i rl6, (1<<TWINT) TWCR = (1<<TWINT)
1<<TWEN 1<<TWEN . .
ElZ:TWST())) EliZTWSTC))) ; Transmit STOP condition
sts TWCR, rlé6

7679H-CAN-08/08

ATMEL

217

ATMEL

18.8 Transmission Modes

18.8.1

218

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R Read bit (high level at SDA)

W: Write bit (low level at SDA)

A Acknowledge bit (low level at SDA)

A Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 18-12 to Figure 18-18, circles are used to indicate that the TWINT flag is set. The num-
bers in the circles show the status code held in TWSR, with the prescaler bits masked to zero. At
these points, actions must be taken by the application to continue or complete the TWI transfer.
The TWI transfer is suspended until the TWINT flag is cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 18-3 to Table 18-6. Note that the prescaler bits are masked to zero in
these tables.

Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a slave receiver (see
Figure 18-11). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

Figure 18-11. Data Transfer in Master Transmitter Mode

Device 1 Device 2 .
MASTER SLAVE Device3 | Device n
TRANSMITTER RECEIVER V
CcC
R1 R2
SDA -« >
SCL -« B
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA | TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT flag. The TWI
will then test the Two-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 18-3). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 18-3.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

A mEIZ@ 219

ATMEL

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

Table 18-3. Status Codes for Master Transmitter Mode
(S_lz\a/\\t/usngode Status of the} Two—wire Serial Bus Application Software Response '
. and Two-wire Serial Interface To TWCR Next Action Taken by TWI Hardware
Prescaler Bits Hardware Tol/from TWDR
are 0 STA STO | TWINT | TWEA
0x08 A START condition has been|Load SLA+W X 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition has |Load SLA+W or X 0 1 X SLA+W will be transmitted;
been transmitted ACK or NOT ACK will be received
Load SLA+R X 0 1 X SLA+R will be transmitted;
Logic will switch to master receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
NOT ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x28 Data byte has been transmitted; |Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x30 Data byte has been transmitted; |Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will be
NOT ACK has been received received
No TWDR actionor |1 0 1 X Repeated START will be transmitted
No TWDR actionor |0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x38 Arbitration lost in SLA+W or data |No TWDR actionor |0 0 1 X Two-wire Serial Bus will be released and not addressed
bytes slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free
220 ATO0CANS2/6A] 1 2S o ——

7679H-CAN-08/08

Figure 18-12. Formats and States in the Master Transmitter Mode

MT

AT90CAN32/64/128

Successfull
transmission S SLA

DATA

receiver

to a slave

Next transfer

started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

Other master

AorA continues
\ _
Other master
A

continues

TOD

Rs SLA ' w

MR

A P
\
Other master
AorA

continues

To corresponding
states in slave mode

From master to slave

From slave to master

7679H-CAN-08/08

ATMEL

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

221

18.8.2

222

ATMEL

Master Receiver Mode

In the Master Receiver Mode, a number of data bytes are received from a slave transmitter (see
Figure 18-13). In order to enter a Master mode, a START condition must be transmitted. The for-
mat of the following address packet determines whether Master Transmitter or Master Receiver
mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted,
MR mode is entered. All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

Figure 18-13. Data Transfer in Master Receiver Mode

Device 1 Device 2 .
MASTER SLAVE Device3 | Device n
RECEIVER TRANSMITTER v
CcC
R1 R2
SDA = >
SCL = B
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA | TWSTO TWWC TWEN = TWIE

value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT flag. The TWI will
then test the Two-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT flag is set by hardware, and the
status code in TWSR will be 0x08 (See Table 18-3). In order to enter MR mode, SLA+R must be
transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the follow-
ing value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 18-12. Received data can be read from the TWDR Register when the TWINT
flag is set high by hardware. This scheme is repeated until the last byte has been received. After
the last byte has been received, the MR should inform the ST by sending a NACK after the last
received data byte. The transfer is ended by generating a STOP condition or a repeated START
condition. A STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR
value

TWINT

TWEA

TWSTA

TWSTO

TWWC

TWEN

TWIE

1

X

1

0

X

1

0

X

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access the
same slave again, or a new slave without transmitting a STOP condition. Repeated START
enables the master to switch between slaves, Master Transmitter mode and Master Receiver

mode without losing control over the bus.

Figure 18-14. Formats and States in the Master Receiver Mode

MR

Successfull

reception S SLA

from a slave
receiver

Next transfer

started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

From master to slave

From slave to master

7679H-CAN-08/08

ATMEL

A DATA A DATA A P
\
- Rs SLA
/
A P
A
,
> > MT
-+ Other master - Other master
AorA continues A continues
/
Other master
A continues
To corresponding
@ states in slave mode
- Any number of data bytes
DATA A and their associated acknowledge bits
This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero
223

ATMEL

Table 18-4. Status Codes for Master Receiver Mode
(S;\a/l\t/uSsR()Zode Status of the Two-wire Serial Bus Application Software Response
P . and Two-wire Serial Interface To TWCR Next Action Taken by TWI Hardware
rescaler Bits Hard Tol/from TWDR
are 0 arcware STA STO | TWINT | TWEA
0x08 A START condition has been|Load SLA+R X 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition has |Load SLA+R or X 0 1 X SLA+R will be transmitted
been transmitted ACK or NOT ACK will be received
Load SLA+W X 0 1 X SLA+W will be transmitted
Logic will switch to master transmitter mode
0x38 Arbitration lost in SLA+R or NOT |[No TWDR actionor |0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR actionor |0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR actionor |1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR actionor |0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
18.8.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a master transmitter (see
Figure 18-15). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.
Figure 18-15. Data Transfer in Slave Receiver Mode
Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n
RECEIVER TRANSMITTER v
ccC
R1 R2
SDA = >
SCL - >
224 ATOOCANS2/6A] 1 2S o ——

7679H-CAN-08/08

s A TO0CAN32/64/128

7679H-CAN-08/08

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWA6 | TWA5 \ TWA4 \ TWA3 | TWA2 | TWAL \ TWAO TWGCE
value Device's Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 18-5.
The slave receiver mode may also be entered if arbitration is lost while the TWI is in the master
mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1") to SDA
after the next received data byte. This can be used to indicate that the slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the Two-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily
isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT flag is cleared
(by writing it to one). Further data reception will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte
present on the bus when waking up from these sleep modes.

A mEIZ@ 225

Table 18-5.

ATMEL

Status Codes for Slave Receiver Mode

Status Code

Status of the Two-wire Serial Bus

Application Software Response

gr\é\gzgl)e rBits | 2nd Two-wire Serial Interface Hard- Toffrom TWDR To TWCR Next Action Taken by TWI Hardware
are 0 ware STA STO | TWINT | TWEA
0x60 Own SLA+W has been received,; No TWDR actionor | X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as mas-|No TWDR action or | X 0 Data byte will be received and NOT ACK will be
ter; own SLA+W has been returned
received; ACK has been returned |No TWDR action X 0 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR actionor X 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as mas-|No TWDR action or | X 0 Data byte will be received and NOT ACK will be
ter; General call address has been returned
received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own|Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 Data byte will be received and ACK will be returned
0x88 Previously addressed with own|Read data byte or 0 0 Switched to the not addressed slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA,
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1";
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 Switched to the not addressed slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA,
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated|Read data byte or 0 0 1 0 Switched to the not addressed slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as|Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA,
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1";
a START condition will be transmitted when the bus
becomes free
226 ATOI0CANS2/6A] 1 2S o —

7679H-CAN-08/08

Figure 18-16. Formats and States in the Slave Receiver Mode

AT90CAN32/64/128

Reception of the ' - T
own slave address S SLA 0 W A DATA A DATA A PorS
and one or more * -= ==
data bytes. All are
acknowledged
@ @
Y
Last data byte received —
is not acknowledged A PorS
\
Arbitration lost as master
and addressed as slave A
Y o
Reception of the general call
address and one or more data General Call A DATA A DATA A PorS
bytes y - - -
Y
Last data byte received is _
not acknowledged A PorS
\
Arbitration lost as master and
addressed as slave by general call A
- Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

7679H-CAN-08/08

prescaler bits are zero or masked to zero

ATMEL

227

18.8.4

228

ATMEL

Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a master receiver (see
Figure 18-17). All the status codes mentioned in this section assume that the prescaler bits are
zero or are masked to zero.

Figure 18-17. Data Transfer in Slave Transmitter Mode

Device 1 Device 2 .
MASTER Device 3

stcave | | wmaster | | Device3 | ... Device n
TRANSMITTER RECEIVER

VCC

R1 R2

[
|

SDA

A

SCL =

\J

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG | TWAS ‘ TWA4 ‘ TWA3 | TWA2 | TWAL ‘ TWAO TWGCE
value Device’'s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond when
addressed by a master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgment of the device’s own slave address or the general call address. TWSTA and
TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 18-6.
The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is in the
Master mode (see state 0xBO0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State OxCO or state OxC8 will be entered, depending on whether the master receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed slave
mode, and will ignore the master if it continues the transfer. Thus the master receiver receives
all “1” as serial data. State OxC8 is entered if the master demands additional data bytes (by
transmitting ACK), even though the slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the master).

ATOOCANS2/0A/1 2 s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

Table 18-6.

While TWEA is zero, the TWI does not respond to its own slave address. However, the Two-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the Two-wire
Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the Two-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last byte

present on the bus when waking up from these sleep modes.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface Hard-
ware

Application Software Response

To/from TWDR

To TWCR

STA

STO

TWINT

TWEA

Next Action Taken by TWI Hardware

O0xA8

Own SLA+R has been received,;
ACK has been returned

Load data byte or

Load data byte

0

1

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xBO

Arbitration lost in SLA+R/W as mas-
ter; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received
Data byte will be transmitted and ACK should be received

0xCOo

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

O [X X|X X|X X

o

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1";

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK has
been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1";

a START condition will be transmitted when the bus
becomes free

7679H-CAN-08/08

ATMEL

229

ATMEL

Figure 18-18. Formats and States in the Slave Transmitter Mode

Reception of the . -7 —
own slave address S SLA \ R A DATA A DATA A PorS
and one or * 3 -— ==
more data bytes
G

Arbitration lost as master i
and addressed as slave A

' _—.— = -
Last data byte transmitted. ,
Switched to not addressed A Alll's | PorS
slave (TWEA ="0) -— - -

- Any number of data bytes
From master to slave DATA A

From slave to master

18.8.5

Table 18-7.

Miscellaneous States

and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

There are two status codes that do not correspond to a defined TWI state, see Table 18-7.

Status 0xF8 indicates that no relevant information is available because the TWINT flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed slave mode and to clear the TWSTO flag (no other bits in TWCR
are affected). The SDA and SCL lines are released, and no STOP condition is transmitted.

Miscellaneous States

Status Code
(TWSR)

Status of the Two-wire Serial Bus

Application Software Response

) and Two-wire Serial Interface To TWCR Next Action Taken by TWI Hardware
Prescaler Bits Hard Tol/from TWDR
are 0 araware STA | STO | TWINT ‘ TWEA
OxF8 No relevant state information|No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0"
0x00 Bus error due to an illegal START |No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condition
or STOP condition is sent on the bus. In all cases, the bus is released and
TWSTO is cleared.
230 ATO0CANS2/6A] 1 2S o ——

7679H-CAN-08/08

s A TO0CAN32/64/128

18.8.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

7679H-CAN-08/08

1.
2.
3.
4.

The transfer must be initiated
The EEPROM must be instructed what location should be read
The reading must be performed
The transfer must be finished

Note that data is transmitted both from master to slave and vice versa. The master must instruct
the slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another master can alter the data pointer in the EEPROM between steps 2 and 3, and the
master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 18-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter

Master Receiver

o o
S SLA+W A ADDRESS A | Rs SLA+R A DATA X =
S = START Rs = REPEATED START P =STOP

Transmitted from master to slave

ATMEL

Transmitted from slave to master

231

ATMEL

18.9 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simulta-
neously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a slave receiver.

Figure 18-20. An Arbitration Example

Device 1 Device 2 Device 3 .
MASTER SLAVE SLAVE | Device n
TRANSMITTER RECEIVER RECEIVER

VCC

R1 R2

[
|

SDA

A

SCL =

\J

Several different scenarios may arise during arbitration, as described below:

* Two or more masters are performing identicd communication with the same slave. In this
case, neither the slave nor any of the masters will know about the bus contention.

« Two or more masters are accessing the same slavewith different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters
trying to output a one on SDA while another master outputs a zero will lose the arbitration.
Losing masters will switch to not addressed slave mode or wait until the bus is free and
transmit a new START condition, depending on application software action.

< Two or more masters ae accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to slave mode to check if they are
being addressed by the winning master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

232 ATOOCANS2/04]/128 o ——

AT90CAN32/64/128

This is summarized in Figure 18-21. Possible status values are given in circles.

Figure 18-21. Possible Status Codes Caused by Arbitration

START SLA

Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own N X
Address / General Call ° 0x38
received

w| TWI bus will be released and not addressed slave mode will be entered
7| A START condition will be transmitted when the bus becomes free

Yes

Direction Write 0x68/0x78 | Data byte will be received and NOT ACK will be returned

" Data byte will be received and ACK will be returned

Read

» | Last data byte will be transmitted and NOT ACK should be received
0xBO Data byte will be transmitted and ACK should be received

A mEl 233
7679H-CAN-08/08 E— O

ATMEL

19. Controller Area Network - CAN

19.1 Features

19.2 CAN Protocol

19.21

234

Principles

The Controller Area Network (CAN) protocol is a real-time, serial, broadcast protocol with a very
high level of security. The ATO0CAN32/64/128 CAN controller is fully compatible with the CAN
Specification 2.0 Part A and Part B. It delivers the features required to implement the kernel of
the CAN bus protocol according to the ISO/OSI Reference Model:

e The Data Link Layer
- the Logical Link Control (LLC) sublayer
- the Medium Access Control (MAC) sublayer
e The Physical Layer
- the Physical Signalling (PLS) sublayer
- not supported - the Physical Medium Attach (PMA)
- not supported - the Medium Dependent Interface (MDI)
The CAN controller is able to handle all types of frames (Data, Remote, Error and Overload) and
achieves a bitrate of 1 Mbit/s.

* Full Can Controller

* Fully Compliant with CAN Stardard rev 2.0 Aand rev 2.0 B

¢ 15 MOb (Message Object) with their own:
— 11 bits of Identifier Tag (rev 2.0 A), 29 bits of Identifier Tag (rev 2.0 B)
— 11 bits of Identifier Mask (rev 2.0 A), 29 bits of Identifier Mask (rev 2.0 B)
— 8 Bytes Data Buffer (Static Allocation)
— Tx, Rx, Frame Buffer or Automatic Reply Configuration
— Time Stamping

¢ 1 Mbit/s Maximum Transfer Rate at 8 MHz

e TTC Timer

« Listening Mode (for Spying or Autobaud)

The CAN protocol is an international standard defined in the ISO 11898 for high speed and ISO
11519-2 for low speed.

CAN is based on a broadcast communication mechanism. This broadcast communication is
achieved by using a message oriented transmission protocol. These messages are identified by
using a message identifier. Such a message identifier has to be unique within the whole network
and it defines not only the content but also the priority of the message.

The priority at which a message is transmitted compared to another less urgent message is
specified by the identifier of each message. The priorities are laid down during system design in
the form of corresponding binary values and cannot be changed dynamically. The identifier with
the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by each node
observing the bus level bit for bit. This happens in accordance with the "wired and" mechanism,

ATOOCANS2/0A/ 1 2E s ——

7679H-CAN-08/08

s A TO0CAN32/64/128

by which the dominant state overwrites the recessive state. The competition for bus allocation is
lost by all nodes with recessive transmission and dominant observation. All the "losers" automat-
ically become receivers of the message with the highest priority and do not re-attempt
transmission until the bus is available again.

19.2.2 Message Formats

The CAN protocol supports two message frame formats, the only essential difference being in
the length of the identifier. The CAN standard frame, also known as CAN 2.0 A, supports a
length of 11 bits for the identifier, and the CAN extended frame, also known as CAN 2.0 B, sup-
ports a length of 29 bits for the identifier.

19.2.2.1 Can Standard Frame

Figure 19-1. CAN Standard Frames

Data Frame
Busldle I 11-bit denifer 4-bit DLC ’ . CRCI IACK lnermisson, Busidle
SOF ID10.0 RTR}IDE| 10 DLCA.0 0-8bytes 15-hit CRC del. ACK del. | 7 bits : 3bits : (Indefinite)
Interframe Arbitration Control Data CRC ACK End of Interframe
- - —4 G— " —<— —X] D<F— 2N — < DK < - — =
Space Field Field Field Field Field Frame Space

Remote Frame

" Busldie 11-bit identifier 4-bit DLC . cre], . JAcK lntermission, Busldle
ISOF D10.0 RTRIIDE| 10 | picg.o | 15HitCRC del,lACKIdeI.l This T 3bis | (indefine)

-~ MY MR D R o E DR R D"~ -
A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-
lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission
Request (RTR)" bit used to distinguish between the data frame and the data request frame
called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit
and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the
"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data
field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following
"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK
slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as
a dominant bit by the receivers which have at this time received the data correctly. Correct mes-
sages are acknowledged by the receivers regardless of the result of the acceptance test. The
end of the message is indicated by "End Of Frame (EOF)". The "Intermission Frame Space
(IFS)" is the minimum number of bits separating consecutive messages. If there is no following
bus access by any node, the bus remains idle.

A mEIZ@ 235

7679H-CAN-08/08

ATMEL

19.2.2.2 CAN Extended Frame

Figure 19-2. CAN Extended Frames

Data Frame

‘Bus Idle 11-hit base identifier 18-bit identifier extension 4-hit DLC . CRC ACK| Intermission, Bus Idle
ISOF IDT28.18 SRR| IDE D17..0 RTIRp i1 | 10 | picao 0-8(b(ytes 15-0it CRC e |ACK| | Thits VL I(Indeﬂmte)

ts

Interframe Arbitration Control Data CRC ACK End of Interframe _
O D K B < fai PR D e D
Space > Field Field Field Field Field Frame Space

Remote Frame

VBuisI&e 11-bit base identifier 7 18-bit identifier extension 4-hit DLC . CRC ACK| Intermission, Bu;dlg -
ISOF IDT28.18 SRRYIDE D17..0 RTRI il | 0| pieso | 15DICRC e |ACK|deI| Tos " 3bis) (ndefnte)

e D K MR o e R DR e " -
A message in the CAN extended frame format is likely the same as a message in CAN standard
frame format. The difference is the length of the identifier used. The identifier is made up of the
existing 11-bit identifier (base identifier) and an 18-bit extension (identifier extension). The dis-
tinction between CAN standard frame format and CAN extended frame format is made by using
the IDE bit which is transmitted as dominant in case of a frame in CAN standard frame format,
and transmitted as recessive in the other case.

19.2.2.3 Format Co-existence
As the two formats have to co-exist on one bus, it is laid down which message has higher priority
on the bus in the case of bus access collision with different formats and the same identifier /
base identifier: The message in CAN standard frame format always has priority over the mes-
sage in extended format.

There are three different types of CAN modules available:

— 2.0A - Considers 29 bit ID as an error
— 2.0B Passive - Ignores 29 bit ID messages
— 2.0B Active - Handles both 11 and 29 bit ID Messages

19.2.3 CAN Bit Timing
To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize throughout
the entire frame. This is done at the beginning of each message with the falling edge SOF and
on each recessive to dominant edge.

19.2.3.1 Bit Construction
One CAN bit time is specified as four non-overlapping time segments. Each segment is con-
structed from an integer multiple of the Time Quantum. The Time Quantum or TQ is the smallest
discrete timing resolution used by a CAN node.

236 ATOOCANS2/0A/128 e —

s A TO0CAN32/64/128

Figure 19-3. CAN Bit Construction

Y NN pay 8 B oy N oy I N B

TransmissionPoint & @ ® ¢ 6 6 & 9 6 6 6 9 0 & 0 9 0 0 0 9 0 0 0 9 0 O 0 9 o

o / I\I

Nominal CAN Bit Time

< >
Time Quantum
(producer)
Segments
(producer)

[svwe _seq] PROP_SEG | PHASE_SEG_1 | PHASE_SEG_2 |

L, propagation ﬂ

delay

19.2.3.2 Synchronization Segment
The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a bit state
change between the previous bit and the current bit, then the bus state change is expected to
occur within this segment by the receiving nodes.

19.2.3.3 Propagation Time Segment
This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and through the
transceivers of the bus nodes.

19.2.3.4 Phase Segment 1
Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

19.2.35 Sample Point
The sample point is the point of time at which the bus level is read and interpreted as the value
of the respective bit. Its location is at the end of Phase Segment 1 (between the two Phase
Segments).

19.2.3.6 Phase Segment 2
This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at least as
long as the Information Processing Time (IPT) and may not be more than the length of Phase
Segment 1.

19.2.3.7 Information Processing Time
It is the time required for the logic to determine the bit level of a sampled bit.

A mEIZ@ 237

7679H-CAN-08/08

19.2.3.8

19.2.3.9

19.2.3.10

19.2.3.11

19.2.3.12

19.2.4

238

ATMEL

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN.
Since Phase Segment 2 also begins at the sample point and is the last segment in the bit time,
PS2 minimum shall not be less than the IPT.

Bit Lengthening
As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2
may be shortened to compensate for oscillator tolerances. If, for example, the transmitter oscilla-
tor is slower than the receiver oscillator, the next falling edge used for resynchronization may be
delayed. So Phase Segment 1 is lengthened in order to adjust the sample point and the end of
the bit time.

Bit Shortening
If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling
edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in
order to adjust the sample point for bit N+1 and the end of the bit time

Synchronization Jump Width
The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resyn-
chronization Jump Width.
This segment may not be longer than Phase Segment 2.

Programming the Sample Point
Programming of the sample point allows "tuning" of the characteristics to suit the bus.
Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchronization Jump
Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the
bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such
as ceramic resonators may be used.
Late sampling allows more Time Quanta in the Propagation Time Segment which allows a
poorer bus topology and maximum bus length.

Synchronization
Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The bit time
is restarted from that edge.
Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the Syn-
chronization Segment in a message.

Arbitration
The CAN protocol handles bus accesses according to the concept called “Carrier Sense Multiple
Access with Arbitration on Message Priority”.
During transmission, arbitration on the CAN bus can be lost to a competing device with a higher
priority CAN ldentifier. This arbitration concept avoids collisions of messages whose transmis-
sion was started by more than one node simultaneously and makes sure the most important
message is sent first without time loss.
The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a
data frame and a remote frame with the same identifier are initiated at the same time, the data
frame prevails over the remote frame (c.f. RTR bit).
AT O0C AN 3 2/6A/ 1 2:S s ———

7679H-CAN-08/08

s A TO0CAN32/64/128

Figure 19-4. Bus Arbitration
Arbitration lost

node A Jvl ------------
TXCAN | | | | Node A loses the bus
Node B wins the bus

mow | | L L]
CAN bus | | L] L]]

SOF ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 IDO RTR IDE ---------

19.2.5 Errors
The CAN protocol signals any errors immediately as they occur. Three error detection mecha-
nisms are implemented at the message level and two at the bit level:

19.25.1 Error at Message Level
e Cyclic Redundancy Check (CRC)
The CRC safeguards the information in the frame by adding redundant check bits at the
transmission end. At the receiver these bits are re-computed and tested against the received
bits. If they do not agree there has been a CRC error.

Frame Check
This mechanism verifies the structure of the transmitted frame by checking the bit fields
against the fixed format and the frame size. Errors detected by frame checks are designated
"format errors".

ACK Errors
As already mentioned frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the message an
ACK error is indicated.

19.2.5.2 Error at Bit Level
* Monitoring
The ability of the transmitter to detect errors is based on the monitoring of bus signals. Each
node which transmits also observes the bus level and thus detects differences between the
bit sent and the bit received. This permits reliable detection of global errors and errors local to
the transmitter.

* Bit Stuffing
The coding of the individual bits is tested at bit level. The bit representation used by CAN is
"Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency in bit coding. The
synchronization edges are generated by means of bit stuffing.

19.25.3 Error Signalling
If one or more errors are discovered by at least one node using the above mechanisms, the cur-
rent transmission is aborted by sending an "error flag". This prevents other nodes accepting the
message and thus ensures the consistency of data throughout the network. After transmission
of an erroneous message that has been aborted, the sender automatically re-attempts
transmission.

A mEIZ@ 239

7679H-CAN-08/08

ATMEL

19.3 CAN Controller

Figure 19-5.

The CAN controller implemented into AT90CAN32/64/128 offers V2.0B Active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering and
message management. For each message to be transmitted or received this module contains
one so called message object in which all information regarding the message (e.qg. identifier,
data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to be sent
and which are to be received. Only if the CAN controller receives a message whose identifier
matches with one of the identifiers of the programmed (receive-) message objects the message
is stored and the application is informed by interrupt. Another advantage is that incoming remote
frames can be answered automatically by the full-CAN controller with the corresponding data
frame. In this way, the CPU load is strongly reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can be
handled.

CAN Controller Structure

X

120 Bytes

Size=

e

— <

[Control Low priority

I Status

Buffer MOb i - IDtag+IDmask
I~ Time Stamp

|IIII|
Ay
F"'IT
1

17
\ L
V.

MOb i
. MOb

. Scanning

__Control
I Status

Buffer MOb2 - IDtag+IDmask
I~ Time Stamp

. | Gen. Control _|
— Gen. Status —
— Enable MOb —{|| LCC Internal

— Interrupt -

MOb2 — P MAC TXCAN
| Bit Timing | < Internal

| LineError || PLS RxCAN

— CAN Timer —

|IIII|
Ay
F"'IT
!

17
\ L
V.

__Control
I Status

Buffer MOb1 - IDtag+IDmask
I~ Time Stamp

|IIII|
Ay
F"'IT
!

CAN Channel

MOb1

__Control
I Status

Buffer MObO ~ IDtag+IDmask
I~ Time Stamp

|IIII|
Ay
F"'IT
!

17
\ L
V.

MObO
CAN Data Buffers Message Objets High priority

%/—/

Mailbox

240 ATOOCANS2/0A/128 e ——

7679H-CAN-08/08

s A TO0CAN32/64/128

19.4 CAN Channel

19.4.1 Configuration
The CAN channel can be in:
+ Enabled mode
In this mode:

— the CAN channel (internal TXCAN & RxXCAN) is enabled,
— the input clock is enabled.
« Standby mode
In standby mode:
— the transmitter constantly provides a recessive level (on internal TXCAN) and the
receiver is disabled,
— input clock is enabled,
— the registers and pages remain accessible.
¢ Listening mode
This mode is transparent for the CAN channel:
— enables a hardware loop back, internal TXCAN on internal RXCAN
— provides a recessive level on TXCAN output pin
— does not disable RXCAN input pin
— freezes TEC and REC error counters

Figure 19-6. Listening Mode

internal

TxCAN

TXCAN

LISTEN »—*

internal 1 . RXCAN
RXCAN =

19.4.2 Bit Timing
FSM’s (Finite State Machine) of the CAN channel need to be synchronous to the time quantum.
So, the input clock for bit timing is the clock used into CAN channel FSM'’s.

Field and segment abbreviations:

« BRP: Baud Rate Prescaler.

¢ TQ: Time Quantum (outputof Baud Rate Prescaler).

* SYNS: SYNchronization Segment is 1 TQ long.

* PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.
« PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.

« PHS2: PHase Segment 2 is programmable to be< PHS1 and > INFORMATION
PROCESSING TIME.

* INFORMATION PROCESSING TIME is 2 TQ.
* SJW: (Re) Synchroni