DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4316 Quad bilateral switches

File under Integrated Circuits, IC06

FEATURES

- Low "ON" resistance:

$$
160 \Omega \text { (typ.) at } \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}
$$

$$
120 \Omega \text { (typ.) at } \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}
$$

$$
80 \Omega \text { (typ.) at } \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}
$$

- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Output capability: non-standard
- ICC category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4316$ are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4316 have four independent analog switches. Each switch has two input/output terminals (nY, nZ) and an active HIGH select input (nS). When the enable input ($\overline{\mathrm{E}}$) is HIGH, all four analog switches are turned off.

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range;
$\mathrm{V}_{\mathrm{CC}} \gg\left(\mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}\right) \gg \mathrm{V}_{\mathrm{EE}}$. Inputs nY and nZ are electrically equivalent terminals.
V_{CC} and GND are the supply voltage pins for the digital control inputs ($\overline{\mathrm{E}}$ and nS). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT .
The analog inputs/outputs (nY and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit.
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$ may not exceed 10.0 V .
See the " 4016 " for the version without logic level translation.

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$t_{\text {PZH }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{OS} nS to V_{Os}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 19 \\ & 17 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{OS} nS to V_{OS}		$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time \bar{E} to V_{OS} nS to V_{OS}		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
C_{1}	input capacitance		3.5	3.5	pF
CPD	power dissipation capacitance per switch	notes 1 and 2	13	14	pF
C_{S}	max. switch capacitance		5	5	pF

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):

$$
P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}^{2} \times f_{o}\right\}
$$

where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs
$C_{L}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1,4,10,13$	1 Z to 4 Z	independent inputs/outputs
$2,3,11,12$	1 Y to 4 Y	independent inputs/outputs
7	$\overline{\mathrm{E}}$	enable input (active LOW)
8	GND	ground (0 V)
9	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
$15,5,6,14$	1 S to 4 S	select inputs (active HIGH)
16	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

(a)

(b)

Fig. 3 IEC logic symbol.

Quad bilateral switches

FUNCTION TABLE

INPUTS		SWITCH
$\overline{\mathrm{E}}$	nS	
L	L	off
L	H	on
H	X	off

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

Quad bilateral switches

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\mathrm{V}_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm{ }_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {EE }}$	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\begin{aligned} & \pm \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	DC V ${ }_{\text {CC }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ $74 \mathrm{HC} / \mathrm{HCT}$ above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
P_{S}	power dissipation per switch		100	mW	

Note to ratings

To avoid drawing $V_{c c}$ current out of terminal Z, when switch current flows in terminals Y_{n}, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals Z , no V_{cc} current will flow out of terminal Y_{n}. In this case there is no limit for the voltage drop across the switch, but the voltages at Y_{n} and Z may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$\mathrm{V}_{\text {CC }}$	DC supply voltage V_{CC} - GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
$\mathrm{V}_{\text {CC }}$	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_{1}	DC input voltage range	GND		V_{CC}	GND		V_{CC}	V	
V_{S}	DC switch voltage range	V_{EE}		V_{CC}	V_{EE}		V_{CC}	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	e DC and A
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CS
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

Quad bilateral switches

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4316 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74HCT4316.

DC CHARACTERISTICS FOR 74HC/HCT

For $74 \mathrm{HC}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For 74HCT: $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	$\mathrm{T}_{\mathrm{amb}}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS				
		74HC/HCT								V_{Cc} (V)	V_{EE} (V)	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathbf{A}) \end{gathered}$	$V_{\text {is }}$	V_{1}
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
R_{ON}	ON resistance (peak)		$\left\lvert\, \begin{array}{\|l} - \\ 160 \\ 120 \\ 85 \end{array}\right.$	$\begin{aligned} & 320 \\ & 240 \\ & 170 \end{aligned}$		$\begin{aligned} & 400 \\ & 300 \\ & 215 \end{aligned}$		$\begin{array}{\|l\|} \hline- \\ 480 \\ 360 \\ 255 \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { to } \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\overline{\mathrm{V}_{\mathrm{IH}}}$ or $V_{I L}$
RON	ON resistance (rail)		$\begin{aligned} & \hline 160 \\ & 80 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 160 \\ & 140 \\ & 120 \end{aligned}$		$\begin{aligned} & 200 \\ & 175 \\ & 150 \end{aligned}$		$\begin{aligned} & - \\ & 240 \\ & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{EE}	V_{IH} or $V_{\text {IL }}$
RON	ON resistance (rail)		$\begin{array}{\|l} \hline 170 \\ 90 \\ 80 \\ 65 \end{array}$	$\begin{aligned} & 180 \\ & 160 \\ & 135 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \\ & 170 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 205 \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{CC}	V_{IH} or VIL
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\Delta \mathrm{ON}$ resistance between any two channels		$\begin{aligned} & - \\ & 16 \\ & 9 \\ & 6 \end{aligned}$						$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & -4.5 \end{aligned}$		$V_{C C}$ to $V_{E E}$	V_{H} or $V_{I L}$

Notes

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON -resistance becomes extremely non-linear. Therefore it is recommended that these devices are used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.8.

Quad bilateral switches

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC								$V_{C c}$ (V)	V_{EE} (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ 2.4 \\ 3.2 \\ 4.3 \end{array}$		1.5 3.15 4.2 6.3		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \\ \hline \end{array}$		V	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 9.0 \end{array}$			
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\begin{array}{\|l\|} \hline 0.8 \\ 2.1 \\ 2.8 \\ 4.3 \end{array}$	$\begin{array}{\|l} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$	V	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
$\pm I_{1}$	input leakage current			$\begin{aligned} & \hline 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 1.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mid= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{array}{\|l\|} \hline V_{S} \mid= \\ V_{C C}-V_{E E} \\ \text { (see Fig.11) } \\ \hline \end{array}$
ICC	quiescent supply current			$\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \end{array}$		$\begin{array}{\|l} 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$

Quad bilateral switches

AC CHARACTERISTICS FOR 74HC

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HC								$\begin{array}{\|l} \mathrm{v}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{array}$	$\begin{array}{\|l} \mathrm{V}_{\mathrm{EE}} \\ (\mathrm{~V}) \end{array}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
tPHL/ t ${ }_{\text {PLH }}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$		$\begin{array}{\|l\|} \hline 17 \\ 6 \\ 5 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ 12 \\ 10 \\ 8 \end{array}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{array}{\|l\|} \hline 90 \\ 18 \\ 15 \\ 12 \\ \hline \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 61 \\ & 22 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 205 \\ 41 \\ 35 \\ 37 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 255 \\ 51 \\ 43 \\ 47 \end{array}$		$\begin{array}{\|l} \hline 310 \\ 62 \\ 53 \\ 56 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs 19, } 20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	$\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{nS} \text { to } \mathrm{V} \end{aligned}$		$\begin{aligned} & 52 \\ & 19 \\ & 15 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \\ 34 \\ \hline \end{array}$		$\begin{aligned} & \hline 220 \\ & 44 \\ & 37 \\ & 43 \end{aligned}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \\ 51 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs 19, } 20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \hline \begin{array}{l} \text { turn "OFF" } \\ \text { time } \\ \overline{\mathrm{E}} \text { to } \mathrm{V}_{\text {os }} \end{array} \end{aligned}$		$\begin{array}{\|l} \hline 63 \\ 23 \\ 18 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 220 \\ 44 \\ 37 \\ 39 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 49 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 330 \\ 66 \\ 56 \\ 59 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { (see Figs 19, } 20 \text { and } \\ \text { 21) } \\ \hline \end{array}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \hline \begin{array}{l} \text { turn "OFF" } \\ \text { time } \\ \text { nS to } V_{\text {os }} \end{array} \end{aligned}$		$\begin{aligned} & 55 \\ & 20 \\ & 16 \\ & 18 \end{aligned}$	$\begin{array}{\|l\|} \hline 175 \\ 35 \\ 30 \\ 36 \end{array}$		$\begin{aligned} & \hline 220 \\ & 44 \\ & 37 \\ & 45 \end{aligned}$		$\begin{array}{\|l\|} \hline 265 \\ 53 \\ 45 \\ 54 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } 20 \text { and } \\ & \text { 21) } \end{aligned}$

Quad bilateral switches

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground $=0$)

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HCT								V_{Cc} (V)	$V_{E E}$ (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{aligned} & \hline 4.5 \\ & \text { to } \\ & 5.5 \\ & \hline \end{aligned}$			
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$			
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	$V_{C C}$ or GND	
$\pm \mathrm{l}_{\mathrm{S}}$	analog switch OFF-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{\text {IL }}$	$\begin{aligned} & V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & (\text { see Fig. 10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{S}$	analog switch ON-state current			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \hline V_{S} \mid= \\ & V_{C C}-V_{E E} \\ & \text { (see Fig.11) } \\ & \hline \end{aligned}$
I_{CC}	quiescent supply current			$\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \end{array}$		$\begin{aligned} & \hline 80.0 \\ & 160.0 \end{aligned}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -5.0 \end{aligned}$	$V_{C C}$ or GND	$\begin{aligned} & \hline \mathrm{V}_{\text {is }}=V_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{aligned} & 4.5 \\ & \text { to } \\ & 5.5 \end{aligned}$	0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2.1 \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note

1. The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given here.

To determine $\Delta \mathrm{I}_{\mathrm{CC}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nS	0.50
$\overline{\mathrm{E}}$	0.50

Fig. 8 Test circuit for measuring R_{ON}.

Fig. 9 Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$ for $\mathrm{V}_{\text {is }}=0$ to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

Quad bilateral switches

AC CHARACTERISTICS FOR 74HCT
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								$\begin{array}{\|l} \left\lvert\, \begin{array}{l} V_{c c} \\ (V) \end{array}\right. \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	OTHER
		+25			-40 TO +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
tphL $/$ tpLH	propagation delay $V_{\text {is }} \text { to } V_{\text {os }}$		6	$\begin{array}{\|l} \hline 12 \\ 8 \end{array}$		$\begin{aligned} & \hline 15 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 18 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PzH }}$	turn "ON" time $\overline{\mathrm{E}}$ to V_{os}		$\begin{array}{\|l\|} \hline 22 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & 44 \\ & 42 \end{aligned}$		$\begin{aligned} & 55 \\ & 53 \end{aligned}$		$\begin{aligned} & 66 \\ & 63 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
$t_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$		$\begin{array}{\|l\|} \hline 28 \\ 21 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 56 \\ 42 \end{array}$		$\begin{array}{\|l\|} \hline 70 \\ 53 \end{array}$		$\begin{aligned} & 84 \\ & 63 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0 \\ & -4.5 \end{aligned}$	(see Figs 19, 20 and 21)
$\mathrm{t}_{\text {pzH }}$	$\begin{array}{\|l} \hline \text { turn "ON" time } \\ \mathrm{nS} \text { to } \mathrm{V}_{\text {os }} \\ \hline \end{array}$		$\begin{array}{\|l} \hline 20 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 34 \end{aligned}$		$\begin{array}{\|l} 53 \\ 43 \\ \hline \end{array}$		$\begin{aligned} & 60 \\ & 51 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$
tpzL	$\begin{array}{\|l} \hline \text { turn "ON" time } \\ \mathrm{nS} \text { to } \mathrm{V}_{\text {os }} \\ \hline \end{array}$		$\begin{aligned} & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 50 \\ & 34 \end{aligned}$		$\begin{array}{\|l} \hline 63 \\ 43 \end{array}$		$\begin{array}{\|l\|} \hline 75 \\ 51 \end{array}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \hline \end{array}$	(see Figs 19, 20 and 21)
$\mathrm{t}_{\text {PHZ }}$ t tLZ	turn "OFF" time $\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 46 \end{aligned}$		$\begin{aligned} & \hline 63 \\ & 58 \end{aligned}$		$\begin{aligned} & 75 \\ & 69 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } \\ & 20 \text { and 21) } \end{aligned}$
tphz/ tpLz	$\begin{aligned} & \text { turn "OFF" time } \\ & \text { nS to } V_{\text {os }} \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ 40 \end{array}$		$\begin{aligned} & 55 \\ & 50 \end{aligned}$		$\begin{aligned} & 66 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Figs 19, } \\ & 20 \text { and 21) } \end{aligned}$

Quad bilateral switches

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	V_{Cc} (V)	V_{EE} (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $\mathrm{f}=1 \mathrm{kHz}$	$\begin{aligned} & 0.80 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	sine-wave distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{aligned} & 2.40 \\ & 1.20 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline-2.25 \\ -4.5 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.14) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{array}{\|l\|} \hline-50 \\ -50 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} \\ & \mathrm{f}=1 \mathrm{MHz} \text { (see Figs } 12 \text { and } 15 \text {) } \end{aligned}$
	crosstalk between any two switches	$\begin{array}{\|l\|} \hline-60 \\ -60 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{\|l} \hline 2.25 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}=1 \mathrm{MHz} ;(\text { see Fig. } 16 \text {) } \end{aligned}$
$\mathrm{V}_{(p-p)}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{array}{\|l\|} \hline 110 \\ 220 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$		$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \underline{\Omega} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}$ ($\overline{\mathrm{E}}$ or nS , square-wave between V_{CC} and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig.17)
$\mathrm{f}_{\text {max }}$	minimum frequency response $(-3 \mathrm{~dB})$	$\begin{array}{\|l\|} \hline 150 \\ 160 \end{array}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|l} -2.25 \\ -4.5 \end{array}$	note 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 13 and 14)
C_{S}	maximum switch capacitance	5	pF				

Notes

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {OS }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

General note

$V_{\text {is }}$ is the input voltage at an $n Y$ or $n Z$ terminal, whichever is assigned as an input.
$\mathrm{V}_{\text {os }}$ is the output voltage at an nY or nZ terminal, whichever is assigned as an output.

Test conditions:

$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 12 Typical switch "OFF" signal feed-through as a function of frequency.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

Fig. 16 Test circuit for measuring crosstalk between any two switches.
(a) channel ON condition; (b) channel OFF condition.

The crosstalk is defined as follows (oscilloscope output):

Fig. 17 Test circuit for measuring crosstalk between control and any switch.

Quad bilateral switches

AC WAVEFORMS

Fig. 18 Waveforms showing the input ($\mathrm{V}_{\text {is }}$) to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.

TEST CIRCUIT AND WAVEFORMS

Fig. 20 Test circuit for measuring AC performance.

Fig. 21 Input pulse definitions.

Conditions

TEST	SWITCH	$\mathrm{V}_{\text {is }}$
$\mathrm{t}_{\mathrm{PZH}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PLZ}}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
74 HC	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

Definitions for Figs 20 and 21:
$C_{L}=$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T}=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint to t_{r}, t_{f} with 50% duty factor.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

