DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4351 8-channel analog multiplexer/demultiplexer with latch

File under Integrated Circuits, IC06

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

FEATURES

- Wide analog input voltage range: $\pm 5 \mathrm{~V}$
- Low "ON" resistance:
80Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
70Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
60Ω (typ.) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical "break before make" built in
- Address latches provided
- Output capability: non-standard
- I ${ }_{\text {CC }}$ category: MSI

GENERAL DESCRIPTION

The $74 \mathrm{HC} / \mathrm{HCT} 4351$ are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The $74 \mathrm{HC} / \mathrm{HCT} 4351$ are 8-channel analog multiplexers/demultiplexers with three select inputs (S_{0} to S_{2}), two enable inputs (\bar{E}_{1} and E_{2}), a latch enable input $(\overline{L E})$, eight independent inputs/outputs $\left(Y_{0}\right.$ to $\left.Y_{7}\right)$ and a common input/output (Z).

With \bar{E}_{1} LOW and E_{2} is HIGH , one of the eight switches is selected (low impedance ON-state) by S_{0} to S_{2}. The data at the select inputs may be latched by using the active LOW latch enable input ($\overline{\mathrm{LE}})$. When $\overline{\mathrm{LE}}$ is HIGH the latch is transparent. When either of the two enable inputs, $\overline{\mathrm{E}}_{1}$ (active LOW) and E_{2} (active HIGH), is inactive, all 8 analog switches are turned off.
$\mathrm{V}_{C C}$ and GND are the supply voltage pins for the digital control inputs (S_{0} to $\mathrm{S}_{2}, \overline{\mathrm{LE}}, \overline{\mathrm{E}}_{1}$ and E_{2}). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y_{0} to Y_{7}, and Z) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit.
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .
For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

$\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	turn "ON" time $\overline{\mathrm{E}}_{1}$, E_{2} or S_{n} to $\mathrm{V}_{\text {os }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	27	35	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{E}}_{1}$, E_{2} or S_{n} to $\mathrm{V}_{\text {os }}$		21	23	ns
C_{1}	input capacitance		3.5	3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per switch	notes 1 and 2	25	25	pF
C_{S}	max. switch capacitance independent (Y) common (Z)		$\begin{aligned} & 5 \\ & 25 \end{aligned}$	$\begin{aligned} & 5 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in μW):
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{C}_{\mathrm{S}}=$ max. switch capacitance in pF
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
2. For HC the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}

For HCT the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-channel analog multiplexer/demultiplexer with latch

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4	Z	common
3,14	n.c.	not connected
7	$\overline{\mathrm{E}}_{1}$	enable input (active LOW)
8	E_{2}	enable input (active HIGH)
9	$\mathrm{~V}_{\mathrm{EE}}$	negative supply voltage
10	GND	ground (0 V)
11	$\overline{\mathrm{LE}}$	latch enable input (active LOW)
$15,13,12$	$\mathrm{~S}_{0}$ to S_{2}	select inputs
$17,18,19,16,1,6,2,5$	Y_{0} to Y_{7}	independent inputs/outputs
20	$\mathrm{~V}_{\mathrm{CC}}$	positive supply voltage

Fig. 1 Pin configuration.

Fig. 2

Fig. 3 IEC logic symbol.

8-channel analog multiplexer/demultiplexer with latch

FUNCTION TABLE

INPUTS						CHANNEL ON
\bar{E}_{1}	E_{2}	$\overline{\text { LE }}$	S_{2}	S_{1}	S_{0}	
H	X	X	X	X	X	none
X	L	X	X	X	X	none
L	H	H	L	L	L	Y_{0}
L	H	H	L	L	H	Y_{1}
L	H	H	L	H	L	Y_{2}
L	H	H	L	H	H	Y_{3}
L	H	H	H	L	L	Y_{4}
L	H	H	H	L	H	Y_{5}
L	H	H	H	H	L	Y_{6}
L	H	H	H	H	H	Y_{7}
L	H	L	X	x	X	(1)
X	X	\downarrow	x	x	X	(2)

Notes

1. Last selected channel "ON".
2. Selected channels latched.
3. $\mathrm{H}=\mathrm{HIGH}$ voltage level

L = LOW voltage level
X = don't care
$\downarrow=$ HIGH-to-LOW $\overline{\text { LE }}$ transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Fig. 4 Functional diagram.

Fig. 5 Schematic diagram (one switch).

8-channel analog multiplexer/demultiplexer with latch

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages are referenced to $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$ (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
$\mathrm{V}_{\text {CC }}$	DC supply voltage	-0.5	+11.0	V	
$\pm \mathrm{I}_{\text {IK }}$	DC digital input diode current		20	mA	for $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {SK }}$	DC switch diode current		20	mA	for $\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{l}_{\text {S }}$	DC switch current		25	mA	for $-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm \mathrm{I}_{\text {EE }}$	DC V $\mathrm{EEE}^{\text {current }}$		20	mA	
$\pm \mathrm{l}_{\mathrm{CC} ;} \pm \mathrm{l}_{\mathrm{GND}}$	DC V ${ }_{\text {cc }}$ or GND current		50	mA	
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$	
$\mathrm{P}_{\text {tot }}$	power dissipation per package plastic DIL		750	mW	for temperature range: -40 to $+125^{\circ} \mathrm{C}$ 74HC/HCT above $+70^{\circ} \mathrm{C}$: derate linearly with $12 \mathrm{~mW} / \mathrm{K}$
	plastic mini-pack (SO)		500	mW	above $+70^{\circ} \mathrm{C}$: derate linearly with $8 \mathrm{~mW} / \mathrm{K}$
P_{S}	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing $V_{C C}$ current out of terminal Z, when switch current flows in terminals Y_{n}, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no V_{cc} current will flow out of terminals Y_{n}. In this case there is no limit for the voltage drop across the switch, but the voltages at Y_{n} and Z may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	74HC			74HCT			UNIT	CONDITIONS
		min.	typ.	max.	min.	typ.	max.		
$\mathrm{V}_{\text {CC }}$	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
$\mathrm{V}_{\text {CC }}$	DC supply voltage $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
V_{1}	DC input voltage range	GND		V_{CC}	GND		V_{CC}	V	
V_{S}	DC switch voltage range	V_{EE}		V_{CC}	V_{EE}		V_{CC}	V	
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+85	-40		+85	${ }^{\circ} \mathrm{C}$	DC
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-40		+125	-40		+125	${ }^{\circ} \mathrm{C}$	CHARACTERISTICS
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		6.0	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \\ & 250 \end{aligned}$		6.0	500	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V} \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

Fig. 6 Guaranteed operating area as a function of the supply voltages for 74 HC 4351 .

Fig. 7 Guaranteed operating area as a function of the supply voltages for 74 HCT 4351 .

DC CHARACTERISTICS FOR 74HC/HCT
For $74 \mathrm{HC}: \quad \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V
For $74 \mathrm{HCT}: \mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=4.5$ and $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=2.0,4.5,6.0$ and 9.0 V

SYMBOL	PARAMETER	Tamb $\left(^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS				
		74HC/HCT								$V_{c c}$ (V)	V_{EE} (V)	$\begin{gathered} \mathbf{I}_{\mathbf{S}} \\ (\mu \mathrm{A}) \end{gathered}$	$\mathrm{V}_{\text {is }}$	V_{1}
		+25			-40 to +85		$\begin{gathered} -40 \text { to } \\ +125 \end{gathered}$							
		min.	typ.	max.	min.	max.	min.	max.						
$\mathrm{R}_{\text {ON }}$	ON resistance (rail)		$\begin{aligned} & 100 \\ & 90 \\ & 70 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \\ & 130 \end{aligned}$		$\begin{aligned} & 225 \\ & 200 \\ & 165 \end{aligned}$		$\begin{aligned} & 270 \\ & 240 \\ & 195 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	$V_{C C}$ to V_{EE}	$V_{\text {IN }}$ or VIL
R_{ON}	ON resistance (rail)		$\begin{array}{\|l\|} \hline 150 \\ 80 \\ 70 \\ 60 \end{array}$	$\begin{aligned} & - \\ & 140 \\ & 120 \\ & 105 \end{aligned}$		$\begin{aligned} & - \\ & 175 \\ & 150 \\ & 130 \end{aligned}$		$\begin{aligned} & - \\ & 210 \\ & 180 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \end{array}$	V_{EE}	V_{IH} or V_{IL}
$\mathrm{R}_{\text {ON }}$	ON resistance (rail)		$\begin{array}{\|l\|} \hline 150 \\ 90 \\ 80 \\ 65 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline- \\ 160 \\ 140 \\ 120 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline- \\ 200 \\ 175 \\ 150 \end{array}$		$\begin{array}{\|l} \hline- \\ 240 \\ 210 \\ 180 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \Omega \\ \Omega \\ \Omega \\ \Omega \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 1000 \\ 1000 \\ 1000 \\ \hline \end{array}$	V_{CC}	V_{IH} or V_{IL}
$\Delta \mathrm{R}_{\mathrm{ON}}$	maximum $\Delta \mathrm{ON}$ resistance between any two channels		- 9 8 6						$\begin{aligned} & \hline \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { to } \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$	V_{IH} or V_{IL}

Notes to DC characteristics

1. At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V , the analog switch ON -resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
2. For test circuit measuring R_{ON} see Fig.8.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	Tamb $\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS			
		74HC								V_{cc} (V)	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$	$\begin{aligned} & \hline 1.2 \\ & 2.4 \\ & 3.2 \\ & 4.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.5 \\ 3.15 \\ 4.2 \\ 6.3 \end{array}$		$\begin{aligned} & \hline 1.5 \\ & 3.15 \\ & 4.2 \\ & 6.3 \end{aligned}$		V	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
V_{IL}	LOW level input voltage		$\begin{aligned} & 0.8 \\ & 2.1 \\ & 2.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \end{aligned}$		$\begin{array}{\|l\|} \hline 0.5 \\ 1.35 \\ 1.8 \\ 2.7 \end{array}$		$\begin{aligned} & \hline 0.5 \\ & 1.35 \\ & 1.8 \\ & 2.7 \end{aligned}$	V	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 9.0 \end{aligned}$			
± 1	input leakage current			$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 1.0 \\ 2.0 \end{array}$	$\mu \mathrm{A}$	$\begin{aligned} & 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $\mathrm{V}_{\text {IL }}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}} \mid= \\ \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ \text { (see Fig.10) } \\ \hline \end{array}$
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current all channels			0.4		4.0		4.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mathrm{I}= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.10) } \end{aligned}$
$\pm \mathrm{l}_{\mathrm{S}}$	analog switch ON-state current			0.4		4.0		4.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mathrm{I}^{2} \\ & \mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see Fig.11) } \end{aligned}$
I_{CC}	quiescent supply current			$\begin{aligned} & 8.0 \\ & 16.0 \end{aligned}$		$\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & \hline 6.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

AC CHARACTERISTICS FOR 74HC
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right.$)							UNIT	TEST CONDITIONS		
		74HC								$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & (\mathrm{~V}) \end{aligned}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
tPHL/ $\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & \mathrm{V}_{\text {is }} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{aligned} & \hline 14 \\ & 5 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 8 \end{aligned}$		$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 10 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & R_{L}=\infty ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig.17) } \end{aligned}$
tpzH/ tpzL	$\begin{aligned} & \text { turn "ON" time } \\ & \overline{\mathrm{E}}_{1} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & \hline 85 \\ & 31 \\ & 25 \\ & 28 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ 55 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 375 \\ 75 \\ 64 \\ 69 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 83 \end{array}$	ns	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$	$\begin{array}{\|l} \hline \text { turn "ON" time } \\ \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{array}$		$\begin{array}{\|l\|} \hline 85 \\ 31 \\ 25 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 300 \\ 60 \\ 51 \\ 55 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 375 \\ 75 \\ 64 \\ 69 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 83 \\ \hline \end{array}$	ns	2.0 4.5 6.0 4.5	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tpzH/ tpzL	turn "ON" time $\overline{\mathrm{LE}}$ to V_{os}		$\begin{aligned} & 91 \\ & 33 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \\ & 55 \end{aligned}$		$\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 69 \end{array}$		$\begin{array}{\|l} \hline 450 \\ 90 \\ 77 \\ 83 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tPzH/ tPZL	$\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & 88 \\ & 32 \\ & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 60 \\ & 51 \\ & 50 \end{aligned}$		$\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 63 \end{array}$		$\begin{array}{\|l\|} \hline 450 \\ 90 \\ 77 \\ 75 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \text { turn "OFF" time } \\ & \overline{\mathrm{E}}_{1} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{aligned} & 69 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 40 \end{array}$		$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \\ & 50 \end{aligned}$		$\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 60 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time E_{2} to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & \hline 72 \\ & 26 \\ & 21 \\ & 19 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 50 \\ 43 \\ 40 \\ \hline \end{array}$		$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \\ & 50 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 375 \\ 75 \\ 64 \\ 60 \\ \hline \end{array}$	ns	$\begin{array}{\|l\|} \hline 2.0 \\ 4.5 \\ 6.0 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 18 \text {) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \text { turn "OFF" time } \\ & \overline{\mathrm{LE}} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{aligned} & 83 \\ & 30 \\ & 24 \\ & 26 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 45 \\ \hline \end{array}$		$\begin{aligned} & \hline 345 \\ & 69 \\ & 59 \\ & 56 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 415 \\ 83 \\ 71 \\ 68 \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tpHz/ tpLZ	$\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{aligned} & 80 \\ & 29 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 275 \\ 55 \\ 47 \\ 48 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 345 \\ 69 \\ 59 \\ 60 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 415 \\ 83 \\ 71 \\ 72 \\ \hline \end{array}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

SYMBOL	PARAMETER	Tamb (${ }^{\circ} \mathrm{C}$)							UNIT	TEST CONDITIONS		
		74HC								$V_{c c}$ (V)	V_{EE} (V)	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {su }}$	set-up time S_{n} to $\overline{\mathrm{LE}}$	$\begin{aligned} & \hline 60 \\ & 12 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 17 \\ & 6 \\ & 5 \\ & 9 \end{aligned}$			$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \\ & 23 \end{aligned}$		$\begin{aligned} & 90 \\ & 18 \\ & 15 \\ & 27 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 19 \text {) } \end{aligned}$
t_{h}	hold time S_{n} to $\overline{\mathrm{LE}}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & -8 \\ & -3 \\ & -2 \\ & -4 \end{aligned}$			5 5 5 5		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
tw	$\overline{\mathrm{LE}}$ minimum pulse width HIGH	$\begin{aligned} & 100 \\ & 20 \\ & 17 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 11 \\ & 1 \\ & 3 \\ & 7 \end{aligned}$			$\begin{aligned} & \hline 125 \\ & 25 \\ & 21 \\ & 31 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 30 \\ & 26 \\ & 38 \end{aligned}$	ns	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. } 19 \text {) } \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HCT
Voltages are referenced to GND (ground =0)

SYMBOL	PARAMETER	Tamb ${ }^{\circ}{ }^{\text {C }}$)							UNIT	TEST CONDITIONS			
		74HCT								$V_{c c}$ (V)	$V_{E E}$ (V)	V_{1}	OTHER
		+25			-40 to +85		-40 to +125						
		min.	typ.	max.	min.	max.	min.	max.					
V_{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	$\begin{array}{\|l\|l\|} \hline 4.5 \\ \text { to } \\ 5.5 \\ \hline \end{array}$			
VIL	LOW level input voltage		1.2	0.8		0.8		0.8	V	$\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$			
± 1	input leakage current			0.1		1.0		1.0	$\mu \mathrm{A}$	5.5	0	V_{CC} or GND	
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current per channel			0.1		1.0		1.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or VIL	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}{ }^{1}= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch OFF-state current all channels			0.4		4.0		4.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or $V_{I L}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}} \mid= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.10) } \\ & \hline \end{aligned}$
$\pm \mathrm{l}_{\text {S }}$	analog switch ON-state current			0.4		4.0		4.0	$\mu \mathrm{A}$	10.0	0	V_{IH} or V_{IL}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}{ }^{1}= \\ & \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \\ & \text { (see } \\ & \text { Fig.11) } \end{aligned}$
ICC	quiescent supply current			$\begin{array}{\|l\|} \hline 8.0 \\ 16.0 \end{array}$		$\begin{array}{\|l\|} \hline 80.0 \\ 160.0 \end{array}$		$\begin{aligned} & 160.0 \\ & 320.0 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & -5.0 \end{aligned}$	V_{CC} or GND	$\begin{aligned} & \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \\ & \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	$\mu \mathrm{A}$	$\begin{array}{\|l} \hline 4.5 \\ \text { to } \\ 5.5 \end{array}$	0	$\begin{aligned} & V_{C C} \\ & -2.1 \mathrm{~V} \end{aligned}$	other inputs at V_{CC} or GND

Note to HCT types

1. The value of additional quiescent supply current $\left(\Delta I_{C C}\right)$ for a unit load of 1 is given here. To determine $\Delta \mathrm{I}_{\mathrm{Cc}}$ per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$\bar{E}_{1}, \mathrm{E}_{2}$	0.50
$\frac{S_{n}}{\mathrm{LE}}$	0.50

8-channel analog multiplexer/demultiplexer with latch

AC CHARACTERISTICS FOR 74HCT
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$							UNIT	TEST CONDITIONS		
		74HCT								$\begin{array}{\|l} \mathrm{v}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{array}$	$\begin{aligned} & V_{\mathrm{EEE}} \\ & \text { (V) } \end{aligned}$	OTHER
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { propagation delay } \\ & \mathrm{V}_{\text {is }} \text { to } \mathrm{V}_{\text {os }} \end{aligned}$		$\begin{array}{\|l\|} \hline 6 \\ 4 \end{array}$	$\begin{aligned} & 12 \\ & \hline 8 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$		$\begin{aligned} & 18 \\ & 12 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.17) } \end{aligned}$
tpzH $^{\text {t }}$ PzL	turn "ON" time \bar{E}_{1} to $V_{\text {os }}$		$\begin{array}{\|l\|} \hline 40 \\ 31 \end{array}$	$\begin{aligned} & \hline 75 \\ & 60 \end{aligned}$		$\begin{array}{\|l\|} \hline 94 \\ 75 \end{array}$		$\begin{aligned} & 113 \\ & 90 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$	$\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{array}{\|l\|} \hline 35 \\ 26 \end{array}$	$\begin{aligned} & 70 \\ & 50 \end{aligned}$		$\begin{array}{\|l\|} \hline 88 \\ 63 \end{array}$		$\begin{aligned} & \hline 105 \\ & 75 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$	$\begin{array}{\|l} \hline \text { turn "ON" time } \\ \hline \mathrm{LE} \text { to } \mathrm{V}_{\text {os }} \end{array}$		$\begin{aligned} & 42 \\ & 37 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \end{aligned}$		$\begin{aligned} & 94 \\ & 75 \end{aligned}$		$\begin{aligned} & \hline 113 \\ & 90 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PzH }} / \mathrm{t}_{\text {PzL }}$	$\begin{aligned} & \text { turn "ON" time } \\ & \mathrm{S}_{\mathrm{n}} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & 39 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 60 \end{aligned}$		$\begin{aligned} & 94 \\ & 75 \end{aligned}$		$\begin{array}{\|l} \hline 113 \\ 90 \end{array}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
tPHZ ${ }^{\text {tpLZ }}$	turn "OFF" time \bar{E}_{1} to $V_{\text {os }}$		$\begin{aligned} & \hline 27 \\ & 20 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \end{aligned}$		$\begin{array}{\|l\|} \hline 69 \\ 50 \end{array}$		$\begin{aligned} & \hline 83 \\ & 60 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \text { turn "OFF" time } \\ & \mathrm{E}_{2} \text { to } \mathrm{V}_{\mathrm{os}} \end{aligned}$		$\begin{aligned} & 32 \\ & 26 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$		$\begin{aligned} & 75 \\ & 63 \end{aligned}$		$\begin{aligned} & 90 \\ & 75 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time $\overline{\mathrm{LE}}$ to $\mathrm{V}_{\text {os }}$		$\begin{aligned} & \hline 33 \\ & 30 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$		$\begin{array}{\|l\|} \hline 75 \\ 69 \end{array}$		$\begin{aligned} & 90 \\ & 83 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \end{aligned}$
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	turn "OFF" time S_{n} to $V_{\text {os }}$		$\begin{array}{\|l\|l\|} \hline 33 \\ 29 \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 55 \end{array}$		$\begin{array}{\|l\|} \hline 81 \\ 69 \end{array}$		$\begin{array}{\|l\|} \hline 98 \\ 83 \end{array}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.18) } \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {su }}$	set-up time S_{n} to $\overline{L E}$	$\begin{aligned} & \hline 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 6 \\ & \hline 7 \end{aligned}$			$\begin{aligned} & \hline 15 \\ & 18 \end{aligned}$		$\begin{aligned} & \hline 18 \\ & 21 \end{aligned}$	ns	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$
th	hold time S_{n} to $\overline{L E}$	$\begin{array}{\|l\|} \hline 5 \\ 5 \end{array}$	$\begin{array}{\|l\|} \hline-1 \\ -2 \end{array}$			$\begin{array}{\|l\|} \hline 5 \\ 5 \end{array}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \\ & \hline \end{aligned}$
tw	$\overline{\overline{L E}}$ minimum pulse width HIGH	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 13 \\ & 13 \end{aligned}$			$\begin{array}{\|l\|} \hline 31 \\ 31 \end{array}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	ns	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \\ \hline \end{array}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega ; \\ & C_{L}=50 \mathrm{pF} \\ & \text { (see Fig.19) } \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

Fig. 8 Test circuit for measuring R R ${ }_{\text {ON }}$.

Fig. 9 Typical Ron as a function of input voltage $V_{\text {is }}$ for $V_{\text {is }}=0$ to $V_{C C}-V_{E E}$.

Fig. 10 Test circuit for measuring OFF-state current.

Fig. 11 Test circuit for measuring ON-state current.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT
Recommended conditions and typical values
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	typ.	UNIT	$V_{c c}$ (V)	V_{EE} (V)	$V_{i s(p-p)}$ (V)	CONDITIONS
	sine-wave distortion $f=1 \mathrm{kHz}$	$\begin{array}{\|l\|} \hline 0.04 \\ 0.02 \end{array}$	$\begin{array}{\|l\|} \hline \% \\ \% \end{array}$	$\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} -2.25 \\ -4.5 \end{array}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$
	sine-wave distortion $\mathrm{f}=10 \mathrm{kHz}$	$\begin{array}{\|l\|} \hline 0.12 \\ 0.06 \end{array}$	$\begin{array}{\|l\|} \hline \% \\ \% \\ \hline \end{array}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (see Fig. 14) } \end{aligned}$
	switch "OFF" signal feed-through	$\begin{aligned} & \hline-50 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline-2.25 \\ & -4.5 \end{aligned}$	note 1	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Figs 12 and 15)
$\mathrm{V}_{(\mathrm{p}-\mathrm{p})}$	crosstalk voltage between control and any switch (peak-to-peak value)	$\begin{aligned} & 120 \\ & 220 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ -4.5 \end{array}$		$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ;$ $\mathrm{f}=1 \mathrm{MHz}\left(\overline{\mathrm{E}}_{1}, \mathrm{E}_{2} \text { or } \mathrm{S}_{\mathrm{n}},\right.$ square-wave between $V_{C C}$ and GND, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$) (see Fig.16)
$\mathrm{f}_{\text {max }}$	minimum frequency response (-3dB)	$\begin{aligned} & \hline 160 \\ & 170 \end{aligned}$	MHz MHz	$\begin{aligned} & \hline 2.25 \\ & 4.5 \end{aligned}$	$\begin{aligned} & -2.25 \\ & -4.5 \end{aligned}$	note 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (see Figs 13 and 14)
C_{S}	maximum switch capacitance independent (Y) common (Z)	$\begin{aligned} & 5 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$				

Notes to AC characteristics

1. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level $(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega)$.
2. Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.
$V_{\text {is }}$ is the input voltage at a Y_{n} or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Y_{n} or Z terminal, whichever is assigned as an output.

Test conditions:
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$;
$R_{L}=50 \Omega ; R_{\text {source }}=1 \mathrm{k} \Omega$.

Fig. 13 Typical frequency response.

Fig. 14 Test circuit for measuring sine-wave distortion and minimum frequency response.

Fig. 15 Test circuit for measuring switch "OFF" signal feed-through.

The crosstalk is defined as follows (oscilloscope output):

Fig. 16 Test circuit for measuring crosstalk between control and any switch.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC WAVEFORMS

Fig. 17 Waveforms showing the input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays.

HC : $\mathrm{V}_{\mathrm{M}}=50 \%$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.
HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 18 Waveforms showing the turn-ON and turn-OFF times.
$H C: V_{M}=50 \% ; V_{1}=G N D$ to $V_{C c}$.
HCT: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3 V .

Fig. 19 Waveforms showing the set-up and hold times from S_{n} inputs to $\overline{L E}$ input, and minimum pulse width of $\overline{\mathrm{LE}}$.

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	$\mathbf{V}_{\text {is }}$
$\mathrm{t}_{\text {PZH }}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\text {PLZ }}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			OTHER	
74 HC	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$\mathrm{R}_{\mathrm{T}} \quad=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\max }$, there is no constraint on t_{r}, t_{f} with 50% duty factor.

Fig. 20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	$\mathbf{V}_{\text {is }}$
$\mathrm{t}_{\mathrm{PZH}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PZL}}$	V_{CC}	V_{EE}
$\mathrm{t}_{\mathrm{PHZ}}$	V_{EE}	V_{CC}
$\mathrm{t}_{\mathrm{PLZ}}$	V_{CC}	V_{EE}
others	open	pulse

FAMILY	AMPLITUDE	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{t}_{\mathbf{r}} ; \mathbf{t}_{\mathbf{f}}$	
			$\mathbf{f}_{\text {max }} ;$ PULSE WIDTH	OTHER
	V_{CC}	50%	$<2 \mathrm{~ns}$	6 ns
74 HCT	3.0 V	1.3 V	$<2 \mathrm{~ns}$	6 ns

$C_{L} \quad=\quad$ load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).
$R_{T} \quad=$ termination resistance should be equal to the output impedance Z_{O} of the pulse generator.
$t_{r}=t_{f}=6 n s$; when measuring $f_{\text {max }}$, there is no constraint on t_{r}, t_{f} with 50% duty factor.

Fig. 21 Input pulse definitions.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

