74LVC245A; 74LVCH245A Octal bus transceiver; 3-state Rev. 7 – 5 April 2012 Prod

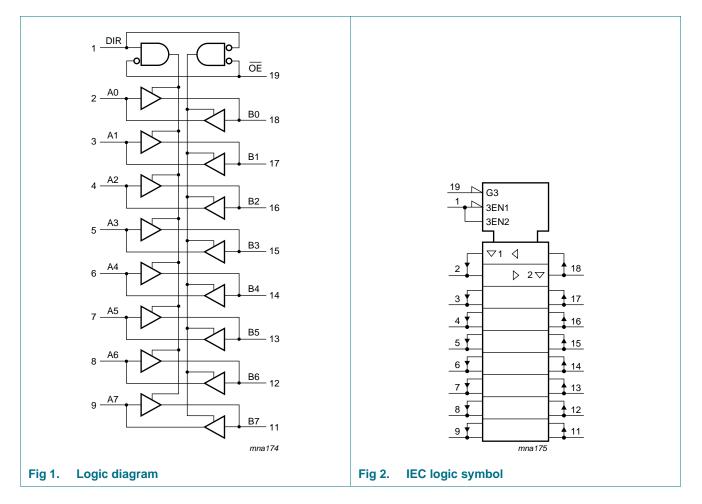
General description 1.

The 74LVC245A; 74LVCH245A are 8-bit transceivers featuring non-inverting 3-state bus compatible outputs in both send and receive directions. The device features an output enable (OE) input for easy cascading and a send/receive (DIR) input for direction control. OE controls the outputs so that the buses are effectively isolated.

Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications.

The 74LVCH245A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

Features and benefits 2.


- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- High-impedance when V_{CC} = 0 V
- Bus hold on all data inputs (74LVCH245A only)
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

3. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC245AD	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1					
74LVCH245AD			body width 7.5 mm						
74LVC245ADB	-40 °C to +125 °C SSOP20		plastic shrink small outline package; 20 leads;	SOT339-1					
74LVCH245ADB			body width 5.3 mm						
74LVC245APW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads;	SOT360-1					
74LVCH245APW			body width 4.4 mm						
74LVC245ABQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced	SOT764-1					
74LVCH245ABQ			very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm						
74LVC245ABX	–40 °C to +125 °C	DHXQFN20U	plastic dual in-line compatible thermal enhanced	SOT1045-1					
74LVCH245ABX			extremely thin quad flat package; no leads; 20 terminals; UTLP based; body $2.5 \times 4.5 \times 0.5$ mm						

4. Functional diagram

All information provided in this document is subject to legal disclaimers.

5. Pinning information

74LVC245A 74LVCH245A Vcc terminal 1 DIR index area 20 [-] 74LVC245A (19 OE 74LVCH245A A0 2) A1 3) (18 B0 DIR 1 20 V_{CC} (17 4) B1 A2 A0 2 19 OE A3 5) (16 B2 A1 3 18 B0 17 B1 A4 6) (15 B3 A2 4 5 16 B2 A3 7 A5 (14 Β4 15 B3 A4 6 8) (13 B5 A6 GND⁽¹⁾ 14 B4 A5 7 9) (12 B6 Α7 A6 8 13 B5 (F P A7 9 12 B6 GND B7 001aak293 GND 10 11 B7 Transparent top view 001aak292 (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Fig 3. Pin configuration for SO20 and (T)SSOP20 Fig 4. Pin configuration for DHVQFN20 and DHXQFN20U

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
DIR	1	direction control
A0 to A7	2, 3, 4, 5, 6, 7, 8, 9	data input/output
GND	10	ground (0 V)
B0 to B7	18, 17, 16, 15, 14, 13, 12, 11	data input/output
OE	19	output enable input (active LOW)
V _{CC}	20	supply voltage

6. Functional description

Table 3.	Function selection ^[1]					
Inputs		Inputs/outputs	Inputs/outputs			
OE	DIR	An	Bn			
L	L	An = Bn	inputs			
L	Н	inputs	Bn = An			
Н	Х	Z	Z			

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+6.5	V
input clamping current	V _I < 0 V	-50	-	mA
input voltage		<u>[1]</u> –0.5	+6.5	V
output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
output voltage	output HIGH or LOW	[2] -0.5	V _{CC} + 0.5	V
	output 3-state	[2] -0.5	+6.5	V
output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
supply current		-	100	mA
ground current		-100	-	mA
storage temperature		-65	+150	°C
total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	<u>[3]</u>	500	mW
	supply voltage input clamping current input voltage output clamping current output voltage output current supply current ground current storage temperature	$\begin{tabular}{ c c } & $$ supply voltage & $$ V_I < 0 V$ \\ $$ input clamping current & $$ V_O > V_{CC} \ or \ V_O < 0 V$ \\ $$ output clamping current & $$ output HIGH \ or \ LOW$ \\ $$ output voltage & $$ output 3-state$ \\ $$ output current & $$ V_O = 0 V \ to \ V_{CC}$ \\ $$ supply current $$ ground current $$ storage temperature $$ \end{tabular}$	supply voltage-0.5input clamping current $V_1 < 0 V$ -50input voltage[1] -0.5output clamping current $V_0 > V_{CC}$ or $V_0 < 0 V$ -output voltageoutput HIGH or LOW[2] -0.5output current $V_0 = 0 V$ to V_{CC} -output current $V_0 = 0 V$ to V_{CC} -supply currentground current-100storage temperature-65	supply voltage-0.5+6.5input clamping current $V_1 < 0 V$ -50 -input voltage[1] -0.5+6.5output clamping current $V_0 > V_{CC}$ or $V_0 < 0 V$ -±50output voltageoutput HIGH or LOW[2] -0.5 $V_{CC} + 0.5$ output current $V_0 = 0 V$ to V_{CC} -±50output current $V_0 = 0 V$ to V_{CC} -±50supply current-100-ground current-100storage temperature-65+150

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] The output voltage ratings may be exceeded if the output current ratings are observed.

[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K.

For (T)SSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.

For DHVQFN20 and DHXQFN20U packages: above 60 °C derate linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5.	Recommended operating conditi	ons				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	output HIGH or LOW	0	-	V _{CC}	V
		output 3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.2 V to 2.7 V	0	-	20	ns/V
		V_{CC} = 2.7 V to 3.6 V	0	-	10	ns/V
Δt/ΔV	input transition rise and fall rate				-	

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	85 °C	-40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	1
V _{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
VIL	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	input voltage	V_{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
÷	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$						
		$I_{O} = -100 \ \mu\text{A};$ $V_{CC} = 1.65 \ \text{V} \text{ to } 3.6 \ \text{V}$	$V_{CC}-0.2$	-	-	$V_{CC}-0.3$	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	I_{O} = 100 µA; V _{CC} = 1.65 V to 3.6 V	-	-	0.2	-	0.3	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	-	0.65	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V
		I_0 = 12 mA; V_{CC} = 2.7 V	-	-	0.4	-	0.6	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V
l _l	input leakage current	V _I = 5.5 V or GND; [2] V _{CC} = 3.6 V	-	±0.1	±5	-	±20	μA

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40) °C to +85	S°C	–40 °C to	o +125 ℃	Uni
				Min	Typ[1]	Max	Min	Max	_
l _{oz}	OFF-state output current	$ \begin{array}{l} V_I = V_{IH} \text{ or } V_{IL}; \\ V_O = 5.5 \text{ V or GND}; \\ V_{CC} = 3.6 \text{ V} \end{array} $	<u>[3]</u>	-	±0.1	±5	-	±20	μA
OFF	power-off leakage current	$V_{\rm I}~or~V_{\rm O}$ = 5.5 V; $V_{\rm CC}$ = 0.0 V		-	±0.1	±10	-	±20	μA
I _{CC}	supply current			-	0.1	10	-	40	μA
∆l _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$		-	5	500	-	5000	μA
CI	input capacitance	$V_{CC} = 0 V \text{ to } 3.6 V;$ V _I = GND to V _{CC}		-	4.0	-	-	-	pF
C _{I/O}	input/output capacitance	$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_I = GND \text{ to } V_{CC}$		-	10	-	-	-	pF
I _{BHL}	bus hold	V _{CC} = 1.65; V _I = 0.58 V	[4][5]	10	-	-	10	-	μA
	LOW current	$V_{CC} = 2.3; V_I = 0.7 V$		30	-	-	25	-	μA
		$V_{CC} = 3.0; V_{I} = 0.8 V$		75	-	-	60	-	μA
I _{BHH}	bus hold	$V_{CC} = 1.65; V_I = 1.07 V$	[4][5]	-10	-	-	-10	-	μΑ
	HIGH current	$V_{CC} = 2.3; V_I = 1.7 V$		-30	-	-	-25	-	μΑ
		$V_{CC} = 3.0; V_{I} = 2.0 V$		-75	-	-	-60	-	μΑ
I _{BHLO}	bus hold	V _{CC} = 1.95 V		200	-	-	200	-	μA
	LOW overdrive	V _{CC} = 2.7 V		300	-	-	300	-	μA
	current	V _{CC} = 3.6 V	[4][6]	500	-	-	500	-	μΑ
I _{BHHO}	bus hold	V _{CC} = 1.95 V		-200	-	-	-200	-	μA
	HIGH	V _{CC} = 2.7 V		-300	-	-	-300	-	μA
	overdrive current	V _{CC} = 3.6 V	[4][6]	-500	-	-	-500	-	μA

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

[2] The bus hold circuit is switched off when $V_I > V_{CC}$ allowing 5.5 V on the input terminal.

[3] For I/O ports the parameter I_{OZ} includes the input leakage current.

[4] Valid for data inputs of bus hold parts only (74LVCH245A). Note that control inputs do not have a bus hold circuit.

[5] The specified sustaining current at the data input holds the input below the specified V_1 level.

[6] The specified overdrive current at the data input forces the data input to the opposite input state.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 7.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
		-		Min	Typ ^[2]	Max	Min	Max	
t _{pd}	propagation	nAn to nBn; nBn to nAn; see Figure 5	[1]				1		
	delay	V _{CC} = 1.2 V		-	17.0	-	-	-	ns
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V		1.5	6.5	14.6	1.5	16.9	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	3.4	7.6	1.0	8.7	ns
		$V_{CC} = 2.7 V$		1.5	3.4	7.3	1.5	9.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.5	2.9	6.3	1.5	8.0	ns
t _{en}	enable time	n <mark>OE</mark> to nAn, nBn; see <u>Figure 6</u>	[1]						
		V _{CC} = 1.2 V		-	22.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		1.9	8.3	19.5	1.9	22.5	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	4.6	10.7	1.5	12.4	ns
		$V_{CC} = 2.7 V$		1.5	4.8	9.5	1.5	12.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.5	3.7	8.5	1.5	11.0	ns
t _{dis}	disable time	n <mark>OE</mark> to nAn, nBn; see <u>Figure 6</u>	<u>[1]</u>						
		$V_{CC} = 1.2 V$		-	12.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		2.9	5.5	12.3	2.9	14.2	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	3.1	7.1	1.0	8.2	ns
		$V_{CC} = 2.7 V$		1.5	3.9	8.0	1.5	10.0	ns
		V_{CC} = 3.0 V to 3.6 V		1.7	3.6	7.0	1.7	9.0	ns
t _{sk(o)}	output skew time		<u>[3]</u>	-	-	1.0	-	1.5	ns
C _{PD}	power	per input; $V_I = GND$ to V_{CC}	<u>[4]</u>						
	dissipation capacitance	$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		-	7.7	-	-	-	pF
	capacitance	V_{CC} = 2.3 V to 2.7 V		-	11.3	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V		-	14.4	-	-	-	pF

 t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

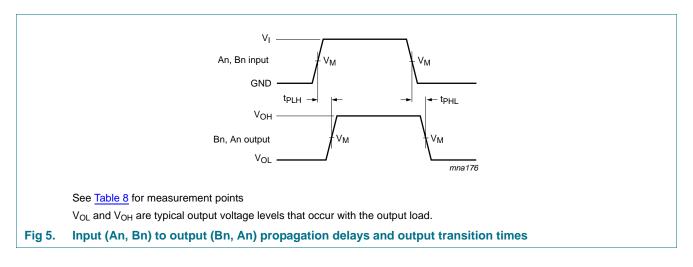
[2] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.

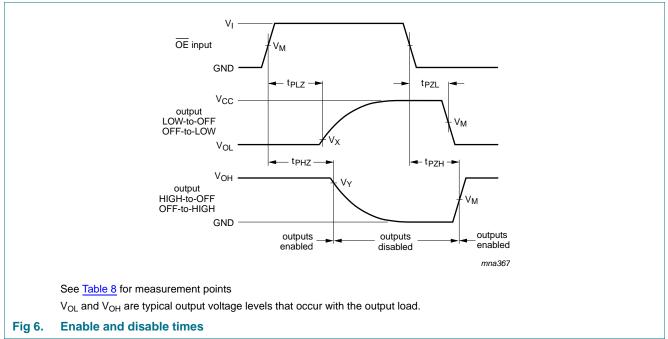
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_o = output frequency in MHz

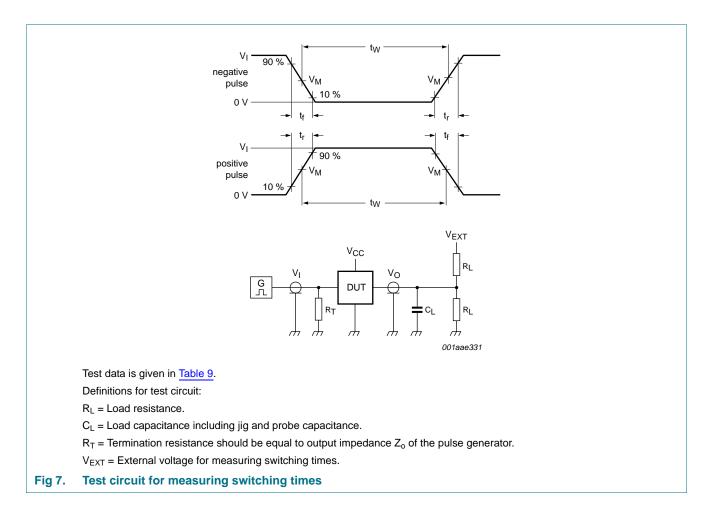

 C_L = output load capacitance in pF


V_{CC} = supply voltage in Volts

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

11. AC waveforms

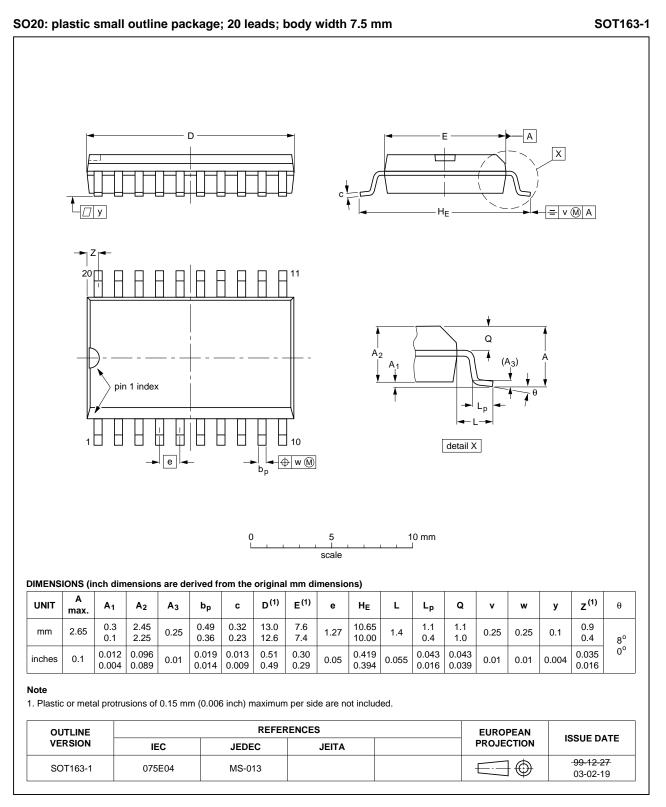

Table 8. Measurement points

Supply voltage	V _M	Input						
V _{cc}		VI	$t_r = t_f$	V _X	V _Y			
1.2 V	$0.5 imes V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
1.65 V to 1.95 V	$0.5\times V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.3 V to 2.7 V	$0.5\times V_{CC}$	V _{CC}	\leq 2.5 ns	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.7 V	1.5 V	2.7 V	\leq 2.5 ns	V _{OL} + 0.3 V	$V_{OH} - 0.3 \ V$			
3.0 V to 3.6 V	1.5 V	2.7 V	\leq 2.5 ns	V _{OL} + 0.3 V	$V_{OH} - 0.3 \ V$			

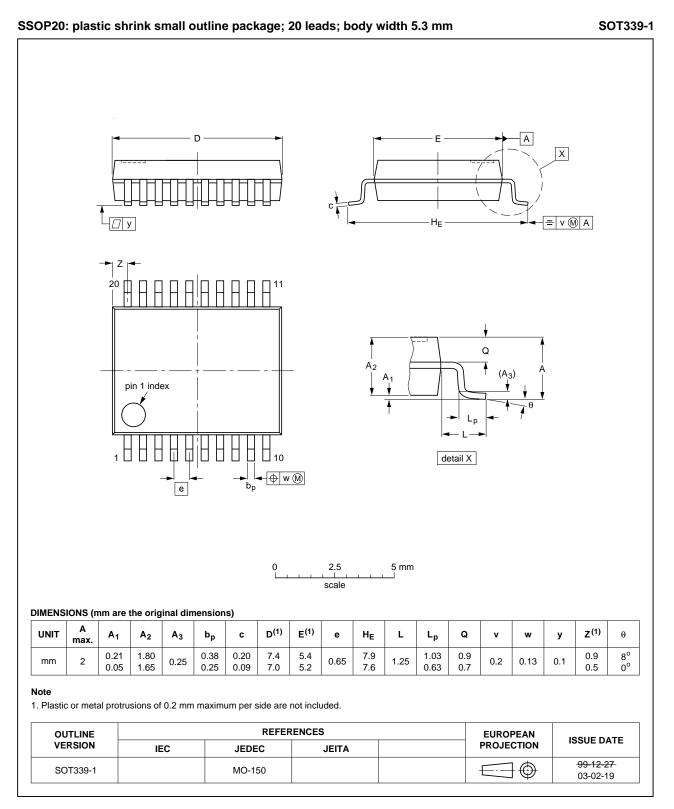
NXP Semiconductors

74LVC245A; 74LVCH245A

Octal bus transceiver; 3-state



Tabl	e 9.	Test data


Supply voltage	Input	Input		Load		V _{EXT}		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
1.2 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND	
1.65 V to 1.95 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND	
2.3 V to 2.7 V	V _{CC}	\leq 2 ns	30 pF	500 Ω	open	$2\times V_{CC}$	GND	
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	

Octal bus transceiver; 3-state

12. Package outline

Fig 8. Package outline SOT163-1 (SO20)

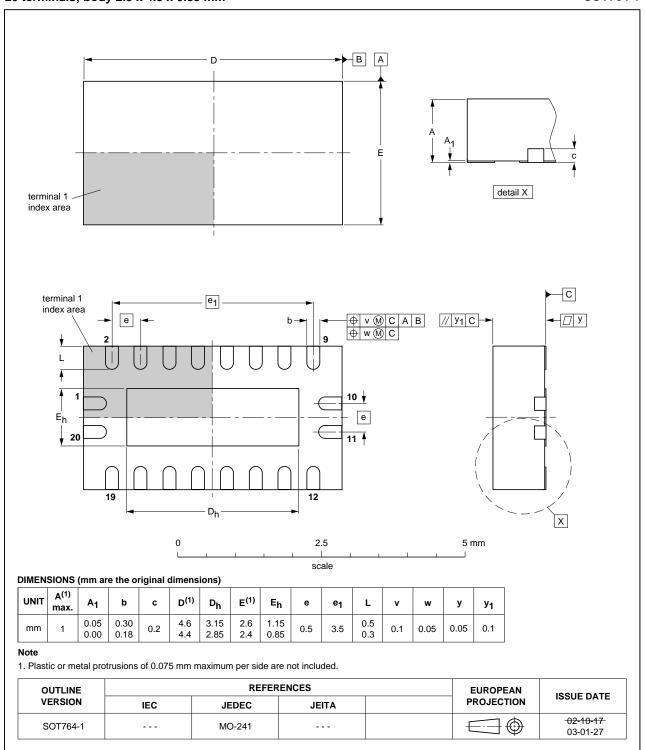


Fig 9. Package outline SOT339-1 (SSOP20)

Octal bus transceiver; 3-state

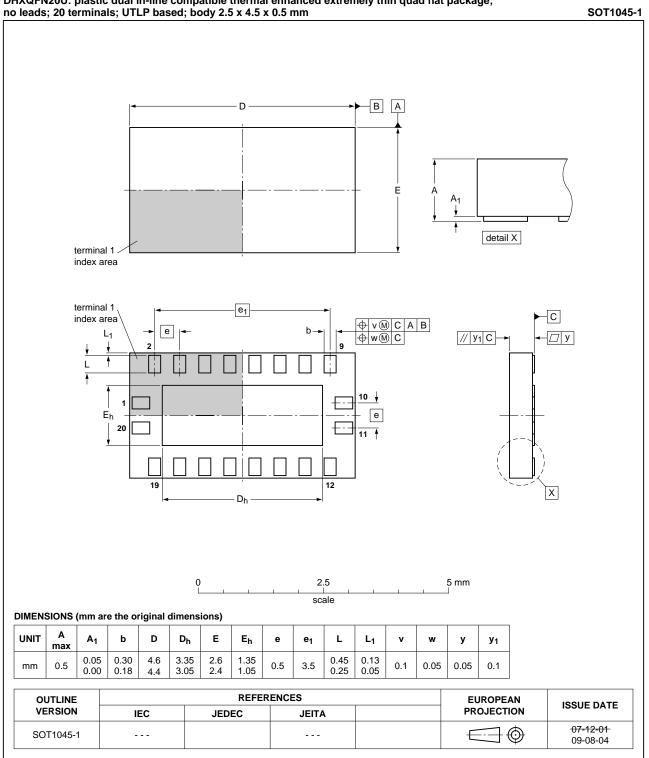


Fig 10. Package outline SOT360-1 (TSSOP20)

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 11. Package outline SOT764-1 (DHVQFN20)

DHXQFN20U: plastic dual in-line compatible thermal enhanced extremely thin quad flat package; no leads; 20 terminals; UTLP based; body $2.5 \times 4.5 \times 0.5 \text{ mm}$

Fig 12. Package outline SOT1045-1 (DHXQFN20U)

13. Abbreviations

AcronymDescriptionCDMCharged Device ModelCMOSComplementary Metal Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMMMachine Model	Table 10.	Abbreviations
CMOSComplementary Metal Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body Model	Acronym	Description
DUTDevice Under TestESDElectroStatic DischargeHBMHuman Body Model	CDM	Charged Device Model
ESD ElectroStatic Discharge HBM Human Body Model	CMOS	Complementary Metal Oxide Semiconductor
HBM Human Body Model	DUT	Device Under Test
	ESD	ElectroStatic Discharge
MM Machine Model	HBM	Human Body Model
	MM	Machine Model
TTL Transistor-Transistor Logic	TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH245A v.7	20120405	Product data sheet	-	74LVC_LVCH245A v.6
Modifications:	Table note	e 4 of Table 6: corrected	(errata)	
74LVC_LVCH245A v.6	20111125	Product data sheet	-	74LVC_LVCH245A v.5
Modifications:	• <u>Table 4, Table 4</u>	able 5, <u>Table 6</u> , <u>Table 7</u> ,	and <u>Table 9</u> : values	added for lower voltage ranges.
74LVC_LVCH245A v.5	20090825	Product data sheet	-	74LVC_LVCH245A v.4
74LVC_LVCH245A v.4	20090703	Product data sheet	-	74LVC_LVCH245A v.3
74LVC_LVCH245A v.3	20030507	Product specification	-	74LVC245A_74LVCH245A v.2
74LVC245A_74LVCH245A v.2	20020620	Product specification	-	74LVC245A_74LVCH245A v.1
74LVC245A_74LVCH245A v.1	19971219	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC_LVCH245A

Octal bus transceiver; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

16. Contact information

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 7
11	AC waveforms 8
12	Package outline 10
13	Abbreviations 15
14	Revision history 15
15	Legal information 16
15.1	Data sheet status 16
15.2	Definitions 16
15.3	Disclaimers
15.4	Trademarks 17
16	Contact information 17
17	Contents 18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 5 April 2012 Document identifier: 74LVC_LVCH245A

All rights reserved.