INCH-POUND

MIL-M-38510/10D <u>16 February 2005</u> SUPERSEDING MIL-M-38510/10C 3 March 1986

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON

Inactive for new design after 7 September 1995.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, TTL, microcircuit decoders. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).

1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535.

1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	BCD-to-decimal decoder
02	Excess-3-to-decimal decoder
03	Excess-3-gray-to-decimal decoder
04	BCD-to-decimal decoder/driver (30 volt, open collector output)
05	BCD-to-decimal decoder/driver (15 volt, open collector output)
06	BCD-to-seven segment decoder/driver (30 volt, open collector output)
07	BCD-to-seven segment decoder/driver (15 volt, open collector output)
08	BCD-to-seven segment decoder/driver
09	BCD-to-seven segment decoder/driver (5.5 volt, open collector output)

1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.

1.2.3 <u>Case outlines.</u> The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
А	GDFP5-F14 or CDFP6-F14	14	Flat pack
В	GDFP4-F14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to <u>bipolar@dscc.dla.mil</u>. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

1.3 Absolute maximum ratings.

Supply voltage range Input voltage range	
Storage temperature range	-65° to +150°C
Maximum power dissipation (P _D): <u>1</u> /	
Device types 01, 02 and 03	226 mW
Device types 04 and 05	341 mW
Device types 06, 07, 08 and 09	467 mW
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases A, B, C, D, E and F	(See MIL-STD-1835)
Junction temperature (T _J) 2/	175°C
Maximum current into any output (output off):	
Device types 04, 05, 06, 07 and 09	1 mA

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	
Minimum high level input voltage (V_{IH}) Maximum low level input voltage (V_{IL}) Sink current capability by device type:	
Device types 01, 02, 03 Device types 04, 05 Device types 06, 07	
Outputs A - G BI/RBO node	
Device type 08 Outputs A - G Bl/RBO node	
Device type 09 Case operating temperature range (T_C)	

2. APPLICABLE DOCUMENTS

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

 $[\]underline{1}$ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature should not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

2.2 Government documents.

2.2.1 <u>Specifications and standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. This slash sheet has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 Case outlines. The case outlines shall be as specified in 1.2.3.

3.3.2 Logic diagrams and terminal connections. The logic diagrams and terminal connections shall be as specified on figures 1 and 2.

3.3.3 <u>Truth tables.</u> The truth tables shall be as specified on figure 3.

3.3.4 <u>Schematic circuits.</u> The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

Test	Symbol	Symbol Conditions		Limits	
		$-55^{\circ}C \leq T_{C} \leq +125^{\circ}C$ unless otherwise specified	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, I_{OH} = -0.8 \text{ mA}$	2.4		V
Low level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA},$ $V_{IN} = 0.8 \text{ V} \text{ and } 2.0 \text{ V}$		0.4	V
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} = -12 \text{ mA}$		-1.5	V
Low level input current	IIL	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V} \ \underline{1}/$	-0.7	-1.6	mA
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.4 \text{ V} \ \underline{2}/$		40	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V} \ \underline{2}/$		100	μA
Short circuit output current	I _{OS}	V _{CC} = 5.5 V <u>3</u> /	-20	-55	mA
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0 \text{ V}$		41	mA
Propagation delay time through two logic levels	t _{PHL}	$C_L = 50 \text{ pF minimum},$ $R_L = 390 \Omega \pm 5\%$	5	39	ns
Propagation delay time through two logic levels	t _{PLH}	(Figure 4)	5	39	ns
Propagation delay time through three logic levels	t _{PHL}		5	46	ns
Propagation delay time through three logic levels	t _{PLH}		5	46	ns

TABLE I. Electrical performance characteristics, device types 01, 02 and 03.

<u>1</u>/ All unspecified inputs at 5.5 volts.
<u>2</u>/ All unspecified inputs grounded.
<u>3</u>/ Not more than one output should be shorted at one time.

Test	Symbol	Conditions	Lin	nits	Unit
		-55°C \leq T_C \leq +125°C unless otherwise specified	Min	Мах	
Low level output voltage	V _{OL1}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 80 \text{ mA}$		0.9	V
Low level output voltage	V _{OL2}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 20 \text{ mA}$		0.4	V
Input clamp voltage	Vic	V_{CC} = 4.5 V, I _{IN} = -12 mA		-1.5	V
Maximum collector cut-off current	I _{CEX}	$V_{CC} = 4.5 \text{ V}, V_{OH} = \text{max} \ \underline{1}/$		250	μΑ
Low level input current	IIL	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V} \ \underline{2}/$	-0.7	-1.6	mA
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.4 \text{ V} \ \underline{3}/$		40	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V} \ \underline{3}/$		100	μA
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}, V_{\text{IN}} = 0 \text{ V}$		62	mA
Propagation delay time to a high logic level	t _{PLH}	$C_L = 50 \text{ pF minimum},$ $R_L = 390 \Omega \pm 5\%$	5	73	ns
Propagation delay time to a low logic level	t _{PHL}	(Figure 5)	5	73	ns

TABLE I. Electrical performance characteristics, device types 04 and 05.

Test	Symbol	Conditions	Lin	nits	Unit
		$\label{eq:constraint} \begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ \\ \mbox{unless otherwise specified} \end{array}$	Min	Max	
Low level output voltage 1/	V _{OL1}	$V_{CC}=4.5~V,~I_{OL}=40~mA$		0.4	V
Low level output voltage 2/	V _{OL2}	V_{CC} = 4.5 V, I_{OL} = 8 mA		0.4	V
Input clamp voltage	Vic	V_{CC} = 4.5 V, I_{IN} = -12 mA		-1.5	V
High level output voltage 2/	V _{OH}	$V_{CC} = 4.5 \text{ V}, I_{OH} = -0.2 \text{ mA}$	2.4		V
Maximum collector cut-off current <u>3</u> /	I _{CEX}	$V_{CC} = 4.5 \text{ V}, V_{OH} = \text{max} \ \underline{3}/$		250	μA
Low level input current <u>4</u> /	I _{IL1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V} 5/$	-0.4	-1.6	mA
Low level input current 2/	I _{IL2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V} \ \underline{5}/$	-1.7	-4.2	mA
High level input current <u>4</u> /	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.4 \text{ V} \underline{6}/$		40	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V} \underline{6}/$		100	μΑ
Short circuit output current <u>1</u> /	l _{os}	V _{CC} = 5.5 V <u>6</u> /		-4	mA
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V}$		85	mA
Propagation delay time from any input except RBI to any output	t _{PLH}	$C_L = 50 \text{ pF minimum},$ R _L = 120 Ω ±5% <u>1</u> /	8	144	ns
Propagation delay time from RBI to any output	t _{PLH}	R _L = 560 Ω ±5% <u>2</u> / (Figure 6)	8	144	ns
Propagation delay time from any input except RBI to any output	t _{PHL}		8	144	ns
Propagation delay time from RBI to any output	t _{PHL}		8	144	ns

TABLE I. Electrical performance characteristics, device types 06 and 07.

Outputs A through G only.
 BI/RBO node only.
 Device type 06 maximum V_{OH} = 30 V. Device type 07 maximum V_{OH} = 15 V.
 Any input except BI/RBO node.
 All unspecified inputs at 5.5 volts.
 All unspecified inputs grounded.

Test	Symbol	Conditions	Lin	nits	Unit
		$\label{eq:transform} \begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ \\ \mbox{unless otherwise specified} \end{array}$	Min	Max	
High level output voltage <u>1</u> /	V _{OH1}	V_{CC} = 4.5 V, I_{OH} = -0.4 mA	2.4		V
High level output voltage 2/	V _{OH2}	V_{CC} = 4.5 V, I_{OH} = -0.2 mA	2.4		V
Low level output voltage 1/	V _{OL1}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 6.4 \text{ mA}$		0.4	V
Low level output voltage 2/	V _{OL2}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 8 \text{ mA}$		0.4	V
Input clamp voltage	Vic	V_{CC} = 4.5 V, I_{IN} = -12 mA		-1.5	V
Low level input current 3/	I _{IL1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V} \ \underline{4}/$	-0.4	-1.6	mA
Low level input current 3/	I _{IL2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V} $ <u>4</u> /	-1.7	-4.2	mA
High level input current 3/	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.4 \text{ V} \ \underline{5}/$		40	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V} $ <u>5</u> /		100	μΑ
Short circuit output current	I _{OS}	V _{CC} = 5.5 V		-4	mA
Supply current	Icc	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0 \text{ V}$		76	mA
Propagation delay time from any input except RBI to any output	t _{PLH}	$C_{L} = 50 \text{ pF minimum},$ R _L = 750 Ω ±5% <u>1</u> /	8	144	ns
Propagation delay time from RBI to any output	t _{PLH}	R _L = 560 Ω ±5% <u>2</u> / (Figure 7)	8	144	ns
Propagation delay time from any input except RBI to any output	t _{PHL}		8	144	ns
Propagation delay time from RBI to any output	t _{PHL}		8	144	ns

TABLE I. Electrical performance characteristics, device types 08.

Outputs A through G only.
 BI/RBO node only.
 Any input except BI/RBO node.
 All unspecified inputs at 5.5 volts.
 All unspecified inputs grounded.

Test	Symbol	Conditions	Lin	nits	Unit
		$-55^{\circ}C \leq T_C \leq +125^{\circ}C$	Min	Max	
		unless otherwise specified			
Low level output voltage	V _{OL}	V_{CC} = 4.5 V, I_{OL} = 10 mA		0.4	V
Input clamp voltage	Vic	$V_{CC}=4.5 \ V, \ I_{IN}=-12 \ mA$		-1.5	V
Maximum collector cut-off current	I _{CEX}	$V_{CC} = 4.5 \text{ V}, V_{OH} = 5.5 \text{ V}$		250	μΑ
Low level input current	IIL	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V} 1/$	-0.4	-1.6	mA
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.4 \text{ V} \ \underline{2}/$		40	μΑ
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V} \ \underline{2}/$		100	μΑ
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}, V_{\text{IN}} = 0 \text{ V}$		47	mA
Propagation delay time from any input to any output	t _{PLH}	$C_L = 50 \text{ pF}$ minimum, $R_L = 470 \Omega \pm 5\%$	8	144	ns
Propagation delay time from any input to any output	t _{PHL}	(Figure 8)	8	144	ns

TABLE I. Electrical performance characteristics, device types 09.

 $\underline{1}$ All unspecified inputs at 5.5 volts. $\underline{2}$ All unspecified inputs grounded.

	Subgroups (see table III)		
MIL-PRF-38535	Class S	Class B	
test requirements	devices	devices	
Interim electrical parameters	1	1	
Final electrical test parameters	1*, 2, 3, 7 9, 10, 11	1*, 2, 3, 7, 9	
Group A test requirements	1, 2, 3, 7, 8 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11	
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 9, 10, 11	N/A	
Group C end-point electrical parameters	1, 2, 3, 9, 10, 11	1, 2, 3	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3	

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.7.1 <u>Certification/compliance mark.</u> The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. For class Q product built in accordance with A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity, the "QD" certification mark shall be used in place of the "QML" or "Q" certification mark.

3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 4 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 Methods of inspection. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Device type 01, 02, 03, 04, and 05	Device type 06 and 07	Device type 08	Device type 09
Terminal	Cases	Cases	Cases	Cases
number	E and F	E and F	E and F	A, B, C, and D
1	OUT 0	IN B	IN B	IN B
2	OUT 1	IN C	IN C	IN C
3	OUT 2	LT	LT	BI
4	OUT 3	RBO	RBO/B1	IN D
5	OUT 4	RBI	RBI	IN A
6	OUT 5	IN D	IN D	OUT E
7	OUT 6	IN A	IN A	GND
8	GND	GND	GND	OUT D
9	OUT 7	OUT E	OUT E	OUT C
10	OUT 8	OUT D	OUT D	OUT B
11	OUT 9	OUT C	OUT C	OUT A
12	IN D	OUT B	OUT B	OUT G
13	IN C	OUT A	OUT A	OUT F
14	IN B	OUT G	OUT G	V _{cc}
15	IN A	OUT F	OUT F	
16	Vcc	Vcc	Vcc	

LT = Lamp Test BI = Blanking Input RBO = Ripple-blanking Output RBI = Ripple-blanking Input

FIGURE 1. Terminal connections.

DEVICE TYPE 01,04 AND 05

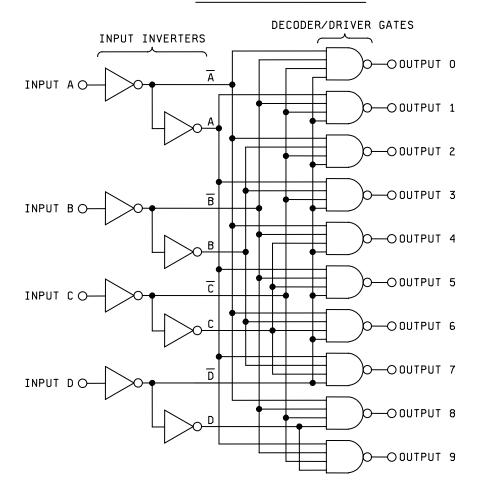
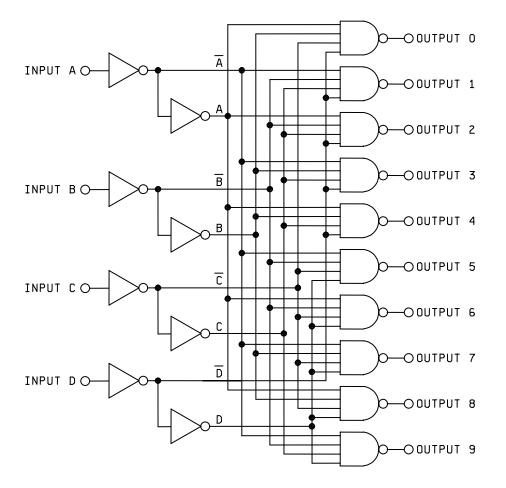



FIGURE 2. Logic diagrams.

DEVICE TYPE 02

FIGURE 2. Logic diagrams - Continued.

DEVICE TYPE 03

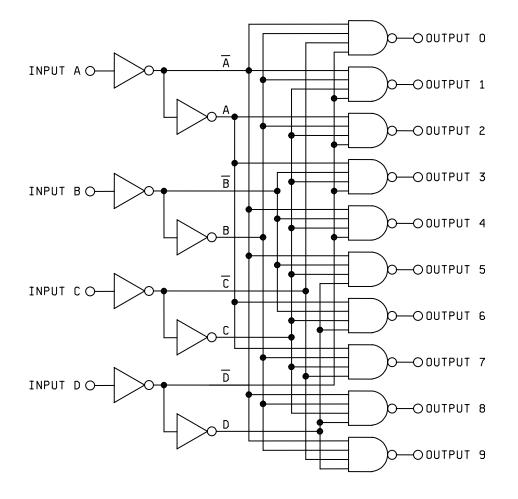


FIGURE 2. Logic diagrams - Continued.

DEVICE TYPES 06 AND 07

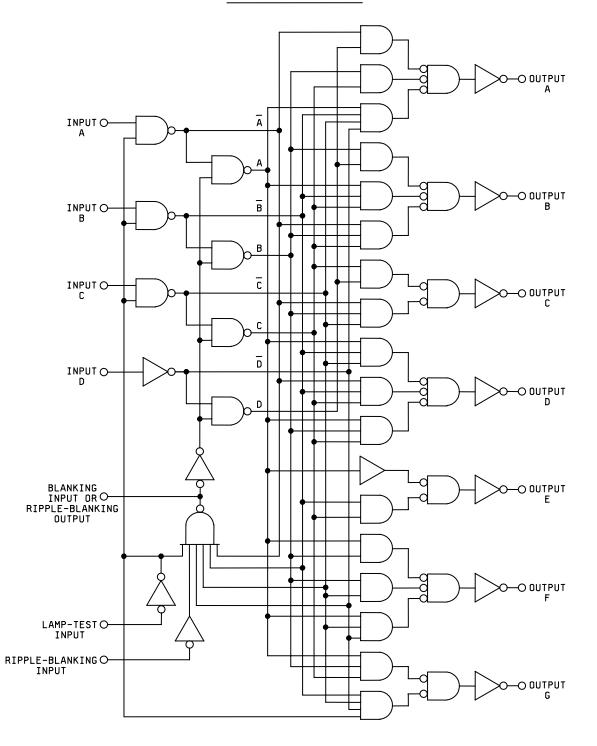


FIGURE 2. Logic diagrams - Continued.

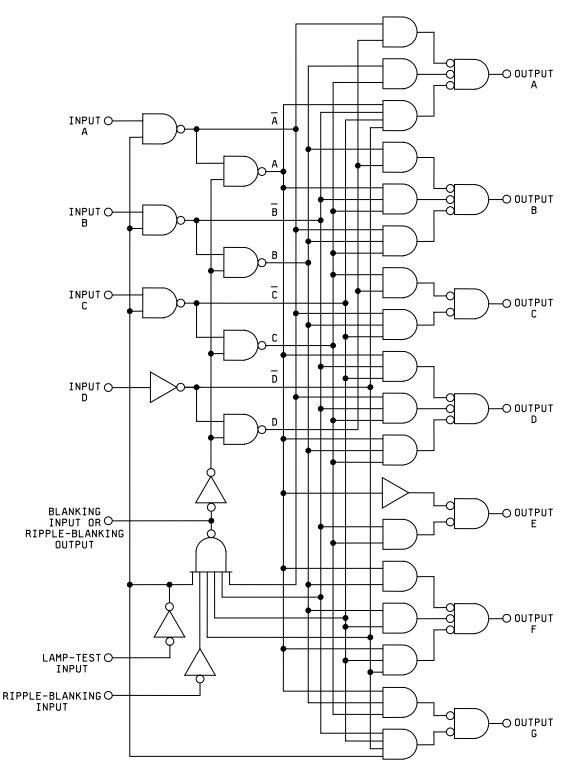


FIGURE 2. Logic diagrams - Continued.

```
DEVICE TYPE 09
```

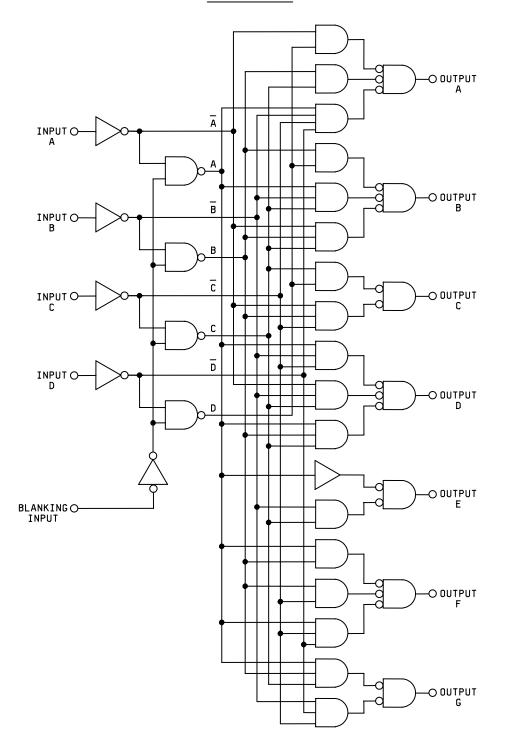


FIGURE 2. Logic diagrams - Continued.

Device types 01, 04, and 05

	INPL	JTS		OUTPUTS 0 1 2 3 4 5 6 7 8 9 L H H H H H H H H H H L H H H H H H H H L H H H H H H H H H L H H H H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H													
D	С	В	А	0	1	2	3			6	7	8	9				
	L		L	-													
L	L	L	Н	H	L	Н	H	Н	Н	H	Н	H	н				
L	L	Н	L	Н	Н	L	Н	Н	н	Н	Н	Н	Н				
L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н				
L	н	L	L	Н	н	н	Н	L	н	Н	Н	Н	Н				
L	Н	L	н	н	н	Н	н	н	L	н	н	н	Н				
L	н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н				
L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н				
н	L	L	L	Н	н	Н	Н	Н	Н	Н	Н	L	Н				
н	L	L	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	L				
н	L	Н	L	Н	н	Н	Н	Н	Н	Н	Н	Н	Н				
н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н				
н	Н	L	L	Н	Н	н	Н	Н	н	Н	Н	Н	Н				
н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н				
н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н				
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н				

FIGURE 3. Truth tables.

	INPL	JTS		OUTPUTS 0 1 2 3 4 5 6 7 8 9 L H H H H H H H H H H L H H H H H H H H L H H H H H H H H L H H H H H H H H H L H H H H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H												
D	С	В	А	0	1	2	3	4	5	6	7	8	9			
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н			
L	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н			
L	н	L	н	Н	н	L	Н	н	Н	н	н	н	Н			
L	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н			
L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н			
н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н			
н	L	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н			
н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н			
н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н			
н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L			
н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
L	L	L	н	Н	н	н	Н	н	Н	н	н	н	Н			
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			

Device type 03

	INPL	JTS		OUTPUTS 0 1 2 3 4 5 6 7 8 9 L H H H H H H H H H H L H H H H H H H H H L H H H H H H H H H L H H H H H H H H L H H H H H H H H H L H H H H H H H H L H H H H H H H H H L H H H H H H H H L H H H H H H H H H H H H H H H												
D	С	В	А	0	1	2	3	4	5	6	7	8	9			
L	L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н			
L	Н	Н	L	Н	L	Н	Н	Н	н	Н	Н	Н	Н			
L	Н	Н	н	Н	Н	L	Н	Н	н	Н	Н	Н	Н			
L	Н	L	н	Н	Н	Н	L	Н	н	Н	Н	Н	Н			
L	Н	L	L	Н	Н	Н	Н	L	н	Н	Н	Н	Н			
н	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н			
н	Н	L	Н	Н	Н	Н	Н	Н	н	L	Н	Н	Н			
н	Н	Н	н	Н	Н	Н	Н	Н	н	Н	L	Н	Н			
Н	Н	Н	L	Н	Н	Н	Н	Н	н	Н	Н	L	Н			
н	L	Н	L	Н	Н	Н	Н	Н	н	Н	Н	Н	L			
н	L	Н	н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н			
н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
Н	L	L	L	Н	Н	Н	Н	Н	н	Н	Н	Н	Н			
L	L	L	L	Н	н	н	Н	Н	н	н	н	н	Н			
L	L	L	н	н	н	н	н	н	н	н	Н	н	Н			
L	L	Н	н	Н	Н	н	Н	Н	н	Н	н	н	Н			

FIGURE 3. Truth tables - Continued.

DECIMAL				INPU	TS					0	UTPUT	rs			
OR FUNCTION	LT	RBI	D	С	В	А	BI/RBO	А	В	С	D	Е	F	G	NOTE
0	Н	н	L	L	L	L	Н	L	L	L	L	L	L	Н	1
1	Н	Х	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н	1
2	Н	Х	L	L	н	L	н	L	L	н	L	L	Н	L	
3	Н	х	L	L	Н	Н	Н	L	L	L	L	Н	Н	L	
4	н	х	L	н	L	L	н	Н	L	L	Н	н	L	L	
5	н	х	L	н	L	Н	н	L	н	L	L	н	L	L	
6	Н	х	L	н	Н	L	н	Н	н	L	L	L	L	L	
7	н	х	L	н	н	Н	Н	L	L	L	н	н	Н	н	
8	н	х	н	L	L	L	Н	L	L	L	L	L	L	L	
9	н	х	н	L	L	Н	Н	L	L	L	Н	н	L	L	
10	н	х	н	L	н	L	Н	Н	н	н	L	L	Н	L	
11	н	х	н	L	н	Н	Н	Н	н	L	L	н	Н	L	
12	н	х	н	н	L	L	Н	Н	L	н	н	н	L	L	
13	н	х	н	н	L	Н	Н	L	н	н	L	н	L	L	
14	н	х	н	н	н	L	н	Н	н	н	L	L	L	L	
15	Н	х	Н	н	Н	Н	н	Н	н	н	Н	Н	Н	Н	
BI	Х	х	Х	Х	Х	Х	L	Н	Н	Н	Н	Н	Н	Н	2
RBI	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	3
LT	L	х	Х	Х	Х	Х	Н	L	L	L	L	L	L	L	4

Device types 06 and 07

NOTES:

1. BI/RBO is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a high logic level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a high logic level during the decimal 0 output. X = input may be high or low.

2. When a low logic level is applied to the blanking input (forced condition) all segment outputs go to a low logic level regardless of the state of any other input condition.

3. When ripple-blanking input (RBI) is at a low logic level, lamp test input is at high logic level and A = B = C = D = low logic level, all segment outputs go to a low logic level and the ripple-blanking output goes to a low logic level (response condition).

4. When blanking input/ripple-blanking output is open or held at a high logic level, and a low logic level is applied to lamp test input, all segment outputs go to a high logic level.

FIGURE 3. Truth tables - Continued.

Device	type	08

DECIMAL				INPU ⁻	TS					0	UTPU	ſS			
OR FUNCTION	LT	RBI	D	С	В	А	BI/RBO	А	В	С	D	Е	F	G	NOTE
0	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L	1
1	Н	Х	L	L	L	Н	Н	L	Н	Н	L	L	L	L	1
2	Н	х	L	L	Н	L	Н	Н	Н	L	Н	Н	L	Н	
3	Н	х	L	L	Н	Н	Н	Н	Н	н	Н	L	L	Н	
4	Н	х	L	н	L	L	Н	L	н	н	L	L	Н	н	
5	Н	х	L	н	L	Н	Н	Н	L	н	Н	L	Н	н	
6	Н	х	L	н	Н	L	Н	L	L	н	Н	Н	Н	н	
7	н	х	L	Н	н	Н	Н	Н	н	н	L	L	L	L	
8	н	х	н	L	L	L	Н	Н	н	н	н	н	Н	н	
9	Н	х	Н	L	L	Н	Н	Н	Н	н	L	L	Н	Н	
10	Н	х	Н	L	Н	L	Н	L	L	L	Н	Н	L	Н	
11	н	х	н	L	н	Н	Н	L	L	н	н	L	L	н	
12	н	х	н	Н	L	L	Н	L	н	L	L	L	Н	н	
13	н	х	н	Н	L	Н	Н	Н	L	L	н	L	Н	н	
14	н	х	н	Н	н	L	Н	L	L	L	н	н	Н	н	
15	Н	х	Н	Н	Н	Н	н	L	L	L	L	L	L	L	
BI	Х	х	Х	Х	Х	Х	L	L	L	L	L	L	L	L	2
RBI	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	3
LT	L	х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	4

NOTES:

 BI/RBO is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a high logic level when output functions 0 through 15 are desired, and rippleblanking input (RBI) must be open or at a high logic level during the decimal 0 output. X = input may be high or low.

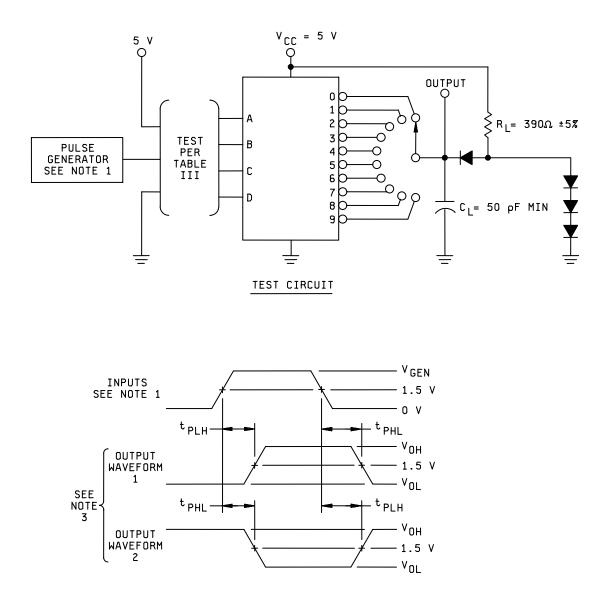
2. When a low logic level is applied to the blanking input (forced condition) all segment outputs go to a low logic level regardless of the state of any other input condition.

3. When ripple-blanking input (RBI) is at a low logic level, lamp test input is at high logic level and A = B = C = D = low logic level, all segment outputs go to a low logic level and the ripple-blanking output goes to a low logic level (response condition).

4. When blanking input/ripple-blanking output is open or held at a high logic level, and a low logic level is applied to lamp test input, all segment outputs go to a high logic level.

FIGURE 3. Truth tables - Continued.

DECIMAL			INPUT	S				Ol	JTPUT	S			
OR FUNCTION	D	С	В	А	BI	А	В	С	D	Е	F	G	NOTE
0	L	L	L	L	Н	Н	Н	н	Н	н	н	L	1
1	L	L	L	Н	Н	L	Н	н	L	L	L	L	
2	L	L	H	L	Н	н	Н	L	H	н	L	Н	
3	L	L	Н	Н	Н	Н	Н	н	Н	L	L	Н	
4	L	н	L	L	Н	L	н	н	L	L	н	Н	
5	L	н	L	Н	Н	н	L	н	Н	L	н	Н	
6	L	Н	Н	L	Н	L	L	н	Н	Н	н	Н	
7	L	Н	Н	Н	Н	н	Н	н	L	L	L	L	
8	н	L	L	L	Н	н	Н	н	Н	Н	н	Н	
9	н	L	L	Н	Н	н	Н	н	L	L	н	Н	
10	н	L	Н	L	Н	L	L	L	Н	Н	L	Н	
11	н	L	Н	Н	Н	L	L	н	Н	L	L	Н	
12	н	Н	L	L	Н	L	Н	L	L	L	н	Н	
13	н	Н	L	Н	Н	н	L	L	Н	L	н	Н	
14	н	Н	Н	L	Н	L	L	L	Н	Н	н	Н	
15	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	
BI	Х	Х	Х	Х	L	L	L	L	L	L	L	L	2


Device type 09

NOTES:

1. The blanking input must be open or held at a high logic level when output functions 0 through 15 are desired.

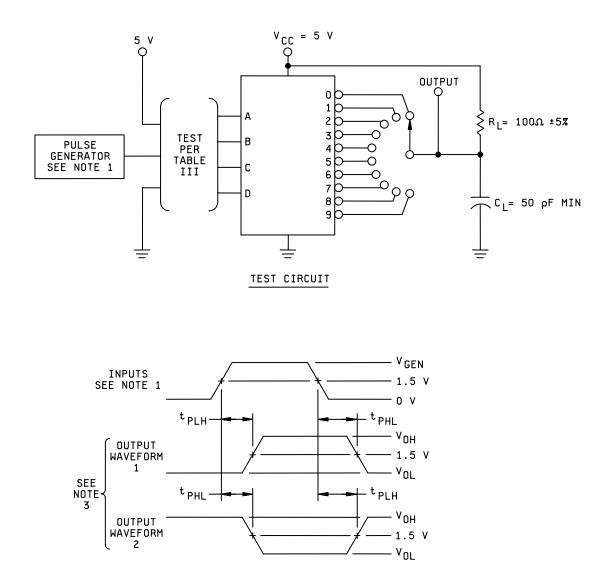

2. When a low logic level is applied to the blanking input all segment outputs go to a low logic level regardless of the state of any other input condition. X = input may be high or low.

FIGURE 3. <u>Truth tables</u> - Continued.

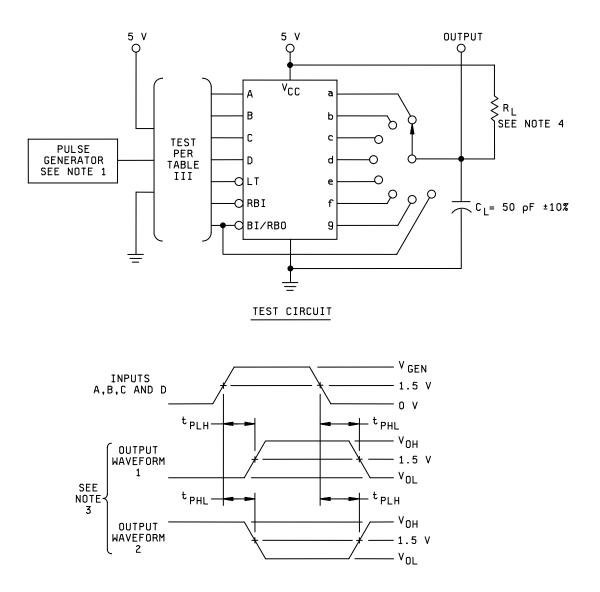

- 1. The pulse generator has the following characteristics: $V_{GEN} = 3.0$ V minimum,
- t_{TLH} (0.7 V to 2.7 V) and t_{THL} (2.7 V to 0.7 V) \leq 10 ns, PRR = 1 MHz, and minimum duty cycle = 50%.
- 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 3).
- 4. All diodes are 1N3064 or equivalent.

FIGURE 4. Switching times for device types 01, 02, and 03.

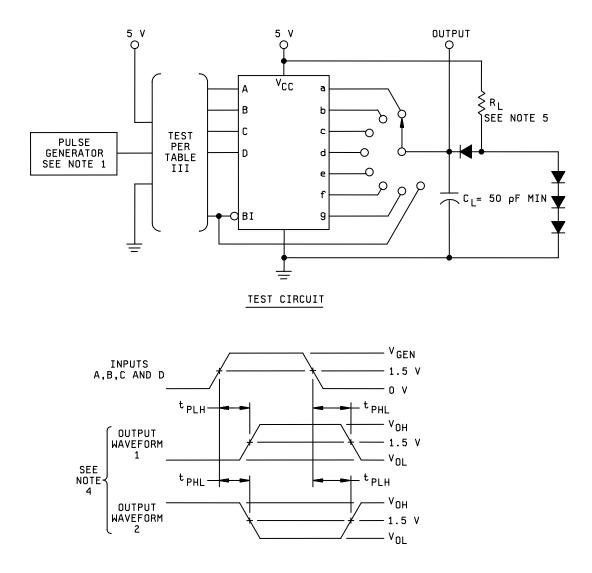

- 1. The pulse generator has the following characteristics: $V_{GEN} = 3.0 \text{ V}$ minimum,
- t_{TLH} (0.7 V to 2.7 V) and t_{THL} (2.7 V to 0.7 V) \leq 10 ns, PRR = 1 MHz, and minimum duty cycle = 50%.
- 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 3).

FIGURE 5. Switching times for device types 04 and 05.

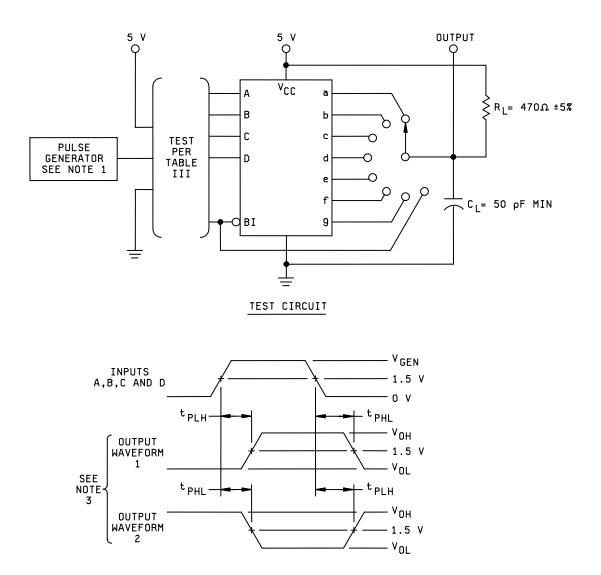

- 1. The pulse generator has the following characteristics: V_{GEN} = 3.0 V minimum,
- t_{TLH} (0.7 V to 2.7 V) and t_{THL} (2.7 V to 0.7 V) \leq 10 ns, PRR = 1 MHz, and minimum duty cycle = 50%. 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 3).
- 4. $R_L = 120 \Omega \pm 5\%$ for outputs A thru G; $R_L = 560 \Omega \pm 5\%$ for output BI/RBO.

FIGURE 6. Switching times for device types 06 and 07.

- 1. The pulse generator has the following characteristics: V_{GEN} = 3.0 V minimum,
- t_{TLH} (0.7 V to 2.7 V) and t_{THL} (2.7 V to 0.7 V) \leq 10 ns, PRR = 1 MHz, and minimum duty cycle = 50%. 2. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 or equivalent.
- 4. Input output waveform combination in accordance with the truth tables (see figure 3).
- 5. $R_L = 750 \Omega \pm 5\%$ for outputs A thru G; $R_L = 560 \Omega \pm 5\%$ for output BI/RBO.

FIGURE 7. Switching times for device type 08.

- 1. The pulse generator has the following characteristics: $V_{GEN} = 3.0 \text{ V}$ minimum,
- t_{TLH} (0.7 V to 2.7 V) and t_{THL} (2.7 V to 0.7 V) \leq 10 ns, PRR = 1 MHz, and minimum duty cycle = 50%.
- 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 3).

FIGURE 8. Switching times for device type 09.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
ubgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
1	V _{OH}	3006	1	-0.8 mA							GND				2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	0	2.4 V		V
; = 25°C			2		-0.8 mA															1			
			3			-0.8 mA	0.0													2			
			4 5				-0.8 mA	0.0												3			
			5 6					-0.8 mA	-0.8 mA											4 5			
			7						-0.0 IIIA	-0.8 mA										6			
			8							-0.0 1174		-0.8 mA								7			
			9									0.0 11/1	-0.8 mA							8			
			10											-0.8 mA						9			
F	VoL	3007	11	16 mA											0.8 V	0.8 V	0.8 V	0.8 V		0		0.4 V	V
	- 02		12		16 mA												0.8 V	2.0 V		1			
			13			16 mA											2.0 V	0.8 V		2			
			14				16 mA										2.0 V	2.0 V		3			
			15					16 mA								2.0 V	0.8 V	0.8 V		4		"	
			16						16 mA								0.8 V	2.0 V		5			"
			17							16 mA							2.0 V	0.8 V		6			
			18									16 mA					2.0 V	2.0 V		7			
			19										16 mA	10	2.0 V	0.8 V	0.8 V	0.8 V		8			
-	M	-	20											16 mA	2.0 V	0.8 V	0.8 V	2.0 V		9		4.5	
	VIC		21 22														-12 mA	-12 mA		A B		-1.5	V "
			22													-12 mA	-12 MA			C			
			23												-12 mA	-12 11/4				D			
F	I _{IH1}	3010	25												GND	GND	GND	2.4 V	5.5 V	A		40	μA
	IHI	"	26												"	GND	2.4 V	GND	"	В		-10	μΛ
			27													2.4 V	GND	"		C			
			28												2.4 V	GND	"			D			
F	I _{IH2}	3010	29												GND	"		5.5 V		Ā		100	μA
	11.12		30														5.5 V	GND		В			· · ·
			31													5.5 V	GND			c			
			32												5.5 V	GND	GND			D			
F	Ι _{ΙL}	3009	33													5.5 V	5.5 V	0.4 V		A	-0.7	-1.6	mA
			34													5.5 V	0.4 V	5.5 V		В			
			35													0.4 V	5.5 V			С			
L			36												0.4 V	5.5 V	5.5 V	"		D			"
	Ios	3011	37	GND											5.5 V	5.5 V	5.5 V	5.5 V		0	-20	-55	mA
			38		GND	0.10														1			
			39			GND	GND													2			
			40 41				GND	GND												3			
			41 42					GND	GND											4			
			42						GND	GND										6			
			43									GND								7			
			44									UND	GND							8			
			46										0.12	GND						9			
F	I _{CC}	3005	47		1										GND	GND	GND	GND		V _{cc}		41	mA
						oup 1, exc																	

$\label{eq:table_transform} \begin{array}{l} \mbox{TABLE III.} & \mbox{Group A inspection for device type 01}. \\ \mbox{Terminal conditions (pins not designated may be high} \geq 2.4 \mbox{ V or low} \leq 0.8 \mbox{ V; or open)}. \end{array}$

See footnotes at end of device type 01.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Measured terminal	Limits Uni
O Method	N	
7 Truth 48 L H H H H H H GND H H H GND GND GND GND GND 5.0 V		/lin Max
Tc - 25°C table 49 H I H " " " " " " " " " " " " " " GND 50V "		
test 50 " H L " " " " " " " " " " " " 5.0 V GND "		
1 51 F L 5.0 V 5.0 V		
52 " " H L " " " " 5.0 V GND GND " 53 " " " H L " " " " " 5.0 V GND 5.0 V		ee
54 " " H L " " " SND 50V "		ote
55 " " " " H " L " " " 5.0V 5.0V "		
56 " " " " " " " " " H L " 5.0V GND GND GND "		
57 " " " " " " H L " GND 5.0 V "		
59 "		
00 01 01 01 01 01 01 01 01 01 01 01 01 0		
62 " " " " " " " " " " " " " " " " " " "		
63 " " " " " " " " " " " " <u>5.0V</u> 5.0V		
8 Truth table 64 thru 79 Same tests as subgroup 7, except $T_c = +125^{\circ}C$.		
test 80 thru 95 Same tests as subgroup 7, except $T_c = -55^{\circ}C$.		- 1 oc 1
9 t _{PHL} 3003 96 & 97 OUT GND GND GND GND IN 5.0 V Tc = 25°C t _{PHL} (Fig. 4) 98 & 99 OUT " " " GND GND " " "		5 32 ns
Tc = 25°C tPLH (Fig. 4) 98 & 99 OUT " " GND GND " " " 100 & 101 " 0UT " OUT " 0UT " "	A to 1 A to 7	" 37 " " 37 "
" 100 & 103 OUT " OUT " GND IN 5.0 V "	B to 1	" 32 "
104 & 105 OUT ' 5.0 V ' GND '' GND ''	B to 4	" 32 "
" 106 & 107 OUT " GND " GND " GND "	B to 2	" 37 "
" 108 & 109 OUT " IN 5.0 V GND "	C to 2	" 32 "
110&111 OUT 5.0V 5.0V	C to 3	
" 112 & 113 " OUT 5.0 V " GND GND " " 114 & 115 " OUT 5.0 V " " 5.0 V <t< td=""><td>C to 8 C to 9</td><td></td></t<>	C to 8 C to 9	
" 116 & 117 OUT " GND " GND " GND "	C to 9	" 37 "
U U U U U U U U U U U U U U U U U U U	C to 5	" " "
" 120 & 121 OUT " " 5.0 V GND "	C to 6	
" 122 & 123 " OUT " " " 5.0 V "	C to 7	
" 124 & 125 OUT " IN GND " 5.0 V "	D to 3	" 32 "
" 126 & 127 OUT " 5.0 ∨ GND GND "	D to 4	
U 128 & 129	D to 5	
U 130 & 131 132 & 133 U 132 & 133 U 133 & U 133	D to 6 D to 7	
" 134 & 135 " " OUT " GND GND "	D to 8	" 37 "
" 136 & 137 " " 5.0 V "	D to 9	" 37 "
10 t _{PHL} 3003 138 & 139 OUT " " IN "	A to 0	" 39 "
I C = 125°C T _{PLH} (rig. 4) 140 & 141 OUT	A to 1	46
" 142 & 143 " OUT " 5.0 V " " " 144 & 145 OUT " GND IN 5.0 V " "	A to 7 B to 1	" 46 " " 39 "
144 & 145 001 001 001 001 001 000 000 000 000 00	B to 4	" <u>39</u> "
" 148 & 149 OUT " GND " GND " GND "	B to 2	" 46 "
" 150 & 151 OUT " IN 5.0 V GND "	C to 2	" 39 "
" 152 & 153 OUT " 5.0 V 5.0 V	C to 3	
" 154 & 155 " OUT 5.0 V " GND GND "	C to 8	
" 156 & 157 " OUT 5.0 V " " 5.0 V " " 5.0 V " " GND " " " " " " " " " " " " " " <th"< th=""> " "</th"<>	C to 9 C to 4	46
136 & 159 OUT " GND GND " 160 & 161 OUT " " " 5.0 V "	C to 5	40 " " "
" 162 & 163 OUT " " 5.0 V GND "	C to 6	
164 & 165 U OUT U U S.0 V U	C to 7	
" 166 & 167 OUT " IN GND " 5.0 V "	D to 3	" 39 "
" 168 & 169 OUT " 5.0 ∨ GND GND "	D to 4	
UT 0UT 0UT 0UT 0UT 0UT 0UT 0UT 0UT 0UT 0	D to 5	
	D to 6	
" 174 & 175 " 176 & 177 " OUT " OUT " OUT " GND GND GND	D to 7 D to 8	" 46 "
" 178 & 179 " " OUT " GND GND 5.0 V "	D to 9	" 46 "
11 Same tests, terminal conditions, and limits as subgroup 10, except $T_{c} = -55^{\circ}C$.		

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

29

NOTE: Output voltages shall be either: (a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
ubgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
1	V _{OH}	3006	1	-0.8 mA							GND				2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	0	2.4 V		V
; = 25°C			2		-0.8 mA															1			
			3 4			-0.8 mA	-0.8 mA													2			
			4 5				-0.8 mA	-0.8 mA												3			
			6					-0.0 IIIA	-0.8 mA											5			
			7						0.0	-0.8 mA										6			
			8									-0.8 mA								7			
			9										-0.8 mA							8			
			10											-0.8 mA						9			
	V _{OL}	3007	11	16 mA											0.8 V	0.8 V	2.0 V	2.0 V		0		0.4 V	V
			12		16 mA												0.8 V	0.8 V		1			
			13			16 mA											0.8 V	2.0 V		2			
			14				16 mA	16 m								2.0 V	2.0 V	0.8 V		3			
			15 16					16 mA	16 mA							2.0 V	2.0 V 0.8 V	2.0 V 0.8 V		4 5			
			17						10 IIIA	16 mA							0.8 V 0.8 V	2.0 V		6			
			18							TOTIC		16 mA					2.0 V	0.8 V		7			
			19										16 mA		2.0 V	0.8 V	2.0 V	2.0 V		8			
			20										-	16 mA	2.0 V	0.8 V	0.8 V	0.8 V		9			
Ī	VIC		21															-12 mA		A		-1.5	V
	-		22														-12 mA			В			
			23													-12 mA				С			
-			24												-12 mA					D			
	I _{IH1}	3010	25												GND	GND	GND	2.4 V	5.5 V	A		40	μA
			26													GND	2.4 V	GND		В			
			27 28												2.4 V	2.4 V GND	GND			C D			
-	-	3010	28												GND	GND "		5.5 V		A		100	μA
	I _{IH2}	3010	30												GND "		5.5 V	GND		В		100	μΑ
			31													5.5 V	GND	"		Č			
			32												5.5 V	GND	GND			D			
Ē	I _{IL}	3009	33								"				"	5.5 V	5.5 V	0.4 V		A	-0.7	-1.6	mA
			34													5.5 V	0.4 V	5.5 V		В			
			35													0.4 V	5.5 V			С			
			36												0.4 V	5.5 V	5.5 V			D	"		
	Ios	3011	37	GND	0.10										5.5 V	5.5 V	5.5 V	5.5 V		0	-20	-55	mA
			38		GND															1			
			39 40			GND	GND													2			
			40 41				GND	GND												3			
			41					GND	GND											5			
			43						CITE	GND										6			
			44									GND								7			
			45										GND							8	"		
			46											GND				-		9			
	I _{cc}	3005	47												GND	GND	GND	GND		V _{cc}		41	mA
2			al conditions	1.12	a		+ T	10500	11/ 1														

See footnotes at end of device type 01.

\leq	
Ē	
≤	
ώ	
ĝ	
10	
1	
2	
U	

TABLE III.	Group A inspection for device type 02.	

Terminal conditions (pins not designated may be high \ge 2.4 V or low \le 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	its	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{CC}		Min	Max	
7 Tc = 25°C	Truth table test		48 49 50 51 52 53 54 55 56 57 58 59 60 61	μπ	H L H	ΗΗ ∟Η	H · · L H · · · · · · · · ·	Η Ι Ι	Η	Η	GND 	H • • • • L H • • • •	Π	Π · · · · · · · · Ι Π · · ·	GND " " 5.0 V " " " " " " " " " " "	GND 5.0 V " " GND " 5.0 V " " GND	5.0 V GND 5.0 V 5.0 V GND 5.0 V 5.0 V GND 5.0 V 5.0 V 5.0 V GND	5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND	5.0 V " " " " " "		See note		
8	Truth		62 63 64 thru 79	"				"									GND 5.0 V	5.0 V GND					
0	table test		80 thru 95		sts as sub		-																
9 Tc = 25°C	tрнц tpцн	3003 (Fig. 4) " " " " "	$\begin{array}{r} 96 \& 97 \\ 98 \& 99 \\ 100 \& 101 \\ 102 \& 103 \\ 104 \& 105 \\ 106 \& 107 \\ 108 \& 109 \\ 110 \& 111 \\ 112 \& 113 \\ 114 \& 115 \\ 116 \& 117 \\ 118 \& 119 \\ 120 \& 121 \\ 122 \& 123 \\ 124 \& 125 \\ 126 \& 127 \\ 128 \& 129 \\ 130 \& 131 \\ 132 \& 133 \\ 134 \& 135 \\ 136 \& 137 \\ 138 \& 139 \\ 140 \& 141 \\ 142 \& 143 \\ \end{array}$	OUT	OUT	OUT	OUT	OUT	OUT	OUT OUT	GND	OUT	OUT OUT OUT	out out out	GND 5.0 V GND 5.0 V GND 5.0 V 5.0 V 5.0 V GND 5.0 V GND GND GND GND S.0 V T N " "	5.0 V GND 5.0 V GND GND 5.0 V 5.0 V 5.0 V GND GND IN " " " " " " " " " " " " " " " "	GND 5.0 V GND 5.0 V GND IN " " " " " " " " " " " " " " " " " "	IN " " 5.0 V GND GND GND 5.0 V GND 5.0 V GND GND 5.0 V GND GND 5.0 V GND GND 5.0 V GND GND 5.0 V GND GND 5.0 V GND 5.0 V 5.0 V GND 5.0 V 5.0 V 5.	5.0 V	$ \begin{array}{c} A \ to \ 1 \\ A \ to \ 9 \\ A \ to \ 9 \\ A \ to \ 9 \\ B \ to \ 6 \\ B \ to \ 2 \\ B \ to \ 6 \\ B \ to \ 2 \\ B \ to \ 6 \\ B \ to \ 2 \\ B \ to \ 7 \\ B \ to \ 8 \\ C \ to \ 8 \\ D \ to \ 4 \\ D \ to \ 5 \\ D \ to \ 5 \\ D \ to \ 7 \\ B \ to \ 8 \\ \end{array} $	5	32 " 37 37 32 32 32 37 37 37 32 32 32 37 " " " "	NS

See notes at end of device type 02.

TABLE III. <u>Group A inspection for device type 02</u>. Terminal conditions (pins not designated may be high \ge 2.4 V or low \le 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	its	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{CC}		Min	Max	
10	t _{PHL}	3003	144 & 145		OUT						GND				GND	5.0 V	GND	IN	5.0 V	A to 1	5	39	ns
Tc = 125°C		(Fig. 4)	146 & 147									OUT			5.0 V	GND	5.0 V			A to 7			
			148 & 149											OUT	5.0 V	5.0 V	GND			A to 9			
			150 & 151	OUT											GND	GND	5.0 V			A to 0		46	
			152 & 153							OUT					5.0 V	GND	GND			A to 6		46	
			154 & 155			OUT									GND	5.0 V	IN	5.0 V		B to 2		39	
			156 & 157							OUT					5.0 V	GND		5.0 V		B to 6		39	
			158 & 159											OUT	5.0 V	5.0 V		GND		B to 9		39	
			160 & 161				OUT								GND	5.0 V		GND	"	B to 3		46	
			162 & 163									OUT			5.0 V	GND		GND	"	B to 7		46	
			164 & 165										OUT		5.0 V	GND		5.0 V	"	B to 8		46	
			166 & 167	OUT											GND	IN	5.0 V	5.0 V	"	C to 0		39	
			168 & 169						OUT						5.0 V		GND	GND	"	C to 5		39	
			170 & 171										OUT		5.0 V		5.0 V	5.0 V		C to 8		39	
			172 & 173		OUT										GND		GND	GND	"	C to 1		46	
			174 & 175			OUT									GND		GND	5.0 V		C to 2			
			176 & 177					OUT							GND		5.0 V	5.0 V		C to 4			
			178 & 179											OUT	5.0 V		GND	GND		C to 9			
			180 & 181				OUT	OUT							IN	5.0 V	5.0 V	GND		D to 3		34	
			182 & 183					OUT	OUT							5.0 V	5.0 V	5.0 V		D to 4		34	
			184 & 185						OUT	OUT						GND	GND	GND		D to 5		46	
			186 & 187							OUT		OUT						5.0 V		D to 6			
			188 & 189 190 & 191									OUT	OUT				5.0 V 5.0 V	GND 5.0 V		D to 7 D to 8			
11			al conditions,		· .								001				5.0 V	5.0 V		D 10 8			

NOTE: Output voltages shall be either: (a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	iits	Uni
bgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
1	V _{OH}	3006	1	-0.8 mA							GND				0.8 V	0.8 V	0.8 V	0.8 V	4.5 V	0	2.4 V		V
= 25°C			2		-0.8 mA															1			
			3			-0.8 mA	0.0													2			
			4 5				-0.8 mA	-0.8 mA												3 4			
			6					-0.0 IIIA	-0.8 mA											5			
			7						-0.0 IIIA	-0.8 mA										6			
			8							0.0		-0.8 mA								7			
			9										-0.8 mA							8			
			10											-0.8 mA						9			
	V _{OL}	3007	11	16 mA											0.8 V	0.8 V	2.0 V	0.8 V	"	0		0.4 V	\
	-		12		16 mA											2.0 V		0.8 V		1			
		"	13			16 mA										"		2.0 V		2			
			14				16 mA										0.8 V	2.0 V		3			
			15					16 mA										0.8 V		4			
			16						16 mA	10					2.0 V			0.8 V		5			
			17							16 mA		10					201/	2.0 V 2.0 V		6 7			
			18 19									16 mA	16 mA				2.0 V	2.0 V 0.8 V		8			
			20										10 IIIA	16 mA		0.8 V		0.8 V 0.8 V		9			
-	VIC		20											TOTIA		0.0 V		-12 mA		A		-1.5	
	VIC		22														-12 mA	-12 11/4		В		-1.5	
			23													-12 mA				č			
			24												-12 mA					D			
	I _{IH1}	3010	25												GND	GND	GND	2.4 V	5.5 V	A		40	ŀ
			26													GND	2.4 V	GND		В			· ·
			27													2.4 V	GND	"		С			
			28												2.4 V	GND		"		D			
	I _{IH2}	3010	29												GND	"		5.5 V		A		100	
			30													"	5.5 V	GND		В			
			31													5.5 V	GND			С			
-			32												5.5 V	GND	GND			D	0.7		
	Ι _{IL}	3009	33													5.5 V	5.5 V	0.4 V		A	-0.7	-1.6	n
			34 35													5.5 V 0.4 V	0.4 V 5.5 V	5.5 V		B C			
			35 36												0.4 V	0.4 V 5.5 V	5.5 V 5.5 V			D			1
ŀ	Ios	3011	30	GND											GND	GND	GND	GND		0	-20	-55	r
	105		38		GND										"	"	"	"		1	"	"	'
			39		0.10	GND														2			1
			40				GND													3			1
			41					GND												4			1
		"	42						GND											5	"	"	1
			43							GND						"				6	"		1
			44									GND								7			1
			45										GND							8			
			46											GND	"					9			
	L cc	3005	47		1	1	1								GND	GND	GND	GND		Vcc	1	41	n

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

See footnotes at end of device type 03.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lin	iits	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
7 Tc = 25°C	Truth table test		48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	L T • • • • • • • • • • • • •	H L H · · · · · · · · · · · ·	ΗΗ LΗ	Η·· LΗ·······	Η Η	Η	Η	GND	Η····	H LH	H · · · · · · · L H · · · ·	GND " 5.0 V " " " " " " " " "	GND 5.0 V " " " " GND " " "	5.0 V 5.0 V GND " 5.0 V GND " " GND " " 5.0 V	GND GND 5.0 V 5.0 V GND 5.0 V 5.0 V GND 5.0 V GND GND 5.0 V GND 5.0 V 5.0 V 5.0 V	5.0 V "" " " " " "		See note		
8	Truth table		64 thru 79	Same te	sts as sub	group 7, e	xcept T _C =	+125°C.															
	test		80 thru 95	Same te	sts as sub	group 7, e	xcept T _C =	-55°C.															
9 Tc = 25°C	t _{PHL} t _{PLH}	3003 (Fig. 4)	96 & 97 98 & 99 100 & 101	OUT		OUT					GND "		OUT		GND 5.0 V GND	GND 5.0 V "	5.0 V 5.0 V 5.0 V		5.0 V "	A to 0 A to 8 A to 2	5 "	32 32 37	ns "
			$\begin{array}{c} 102 \ \& \ 103\\ 104 \ \& \ 105\\ 106 \ \& \ 107\\ 108 \ \& \ 109\\ 110 \ \& \ 109\\ 110 \ \& \ 109\\ 1112 \ \& \ 109\\ 1112 \ \& \ 113\\ 114 \ \& \ 115\\ 116 \ \& \ 117\\ 118 \ \& \ 115\\ 120 \ \& \ 121\\ 122 \ \& \ 123\\ 124 \ \& \ 123\\ 124 \ \& \ 123\\ 124 \ \& \ 123\\ 124 \ \& \ 123\\ 126 \ \& \ 127\\ 128 \ \& \ 129\\ 130 \ \& \ 131\\ 132 \ \& \ 133\\ 134 \ \& \ 135\\ 136 \ \& \ 137\\ 138 \ \& \ 139\\ 140 \ \& \ 141\\ 142 \ \& \ 143\\ 144 \ \& \ 145\\ \end{array}$	OUT	out out out	OUT	OUT	out out out	OUT OUT OUT	OUT OUT OUT		OUT	OUT	OUT	GND GND 5.0 V GND GND 5.0 V 5.0 V 5.0 V GND GND GND 5.0 V 5.0 V 5.0 V 1N " " "	" GND 5.0 V 5.0 V 5.0 V IN " " 5.0 V " " " " " " " " " " " " " " "	IN " 5.0 V 5.0 V GND " 5.0 V 5.0 V 5.0 V GND GND GND GND 5.0 V 5.0 V	5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V 5.0 V GND 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V GND 5.0 V GND GND 5.0 V GND GND 5.0 V GND GND GND GND 5.0 V GND GND GND GND GND GND GND GND GND GND		$ B to 3 \\ B to 4 \\ B to 5 \\ B to 6 \\ B to 0 \\ B to 1 \\ B to 2 \\ B to 8 \\ C to 3 \\ C to 3 \\ C to 3 \\ C to 5 \\ C to 5 \\ C to 6 \\ T \\ D to 2 \\ D to 5 \\ D to 7 \\ D to 7 \\ 9 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		32 " " 37 " " 32 37 " " " 32 32 32 37 " "	

 $\label{eq:table_transform} \begin{array}{l} \mbox{TABLE III.} & \mbox{Group A inspection for device type 03}. \\ \mbox{Terminal conditions (pins not designated may be high } \geq 2.4 \mbox{ V or low } \leq 0.8 \mbox{ V; or open)}. \end{array}$

See notes at end of device type 03.

MIL-M-38510/10D

_
\leq
=
- <u>1</u>
Ż
÷
പ
õõ
ΰĩ
<u> </u>
0
~
-
<u> </u>
G

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	iits	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
10	t _{PHI}	3003	146 & 147	OUT							GND				GND	GND	5.0 V	IN	5.0 V	A to 0	5	39	ns
Tc = 125°C	t _{PLH}	(Fig. 4)	148 & 149										OUT		5.0 V	5.0 V	5.0 V	IN		A to 8		39	
			150 & 151			OUT									GND		5.0 V	IN		A to 2		46	
			152 & 153				OUT								GND		IN	5.0 V		B to 3		39	
			154 & 155					OUT							GND			GND		B to 4			
			156 & 157						OUT						5.0 V			GND		B to 5			"
			158 & 159							OUT					5.0 V			5.0 V		B to 6			
			160 & 161	OUT											GND	GND		GND	"	B to 0		46	
			162 & 163		OUT										GND	5.0 V		GND	"	B to 1			
			164 & 165			OUT									GND	5.0 V		5.0 V	"	B to 2			"
			166 & 167										OUT		5.0 V	5.0 V		GND	"	B to 8			
			168 & 169											OUT	5.0 V	IN	5.0 V	GND		C to 9		39	
			170 & 171		OUT										GND		5.0 V	GND	"	C to 1		46	
			172 & 173				OUT								GND		GND	5.0 V		C to 3			
			174 & 175					OUT							GND			GND		C to 4			
			176 & 177						OUT	OUT					5.0 V			GND		C to 5			
			178 & 179							OUT		0.117			5.0 V		5 0.14	5.0 V		C to 6			
			180 & 181		OUT							OUT			5.0 V	5 0 1/	5.0 V	5.0 V		C to 7			
			182 & 183		OUT	OUT									IN "	5.0 V	5.0 V	GND		D to 1		39	
			184 & 185			001		OUT									5.0 V GND	5.0 V 5.0 V		D to 2 D to 4		39	
			186 &187 188 & 189					001	OUT								GND	5.0 V GND		D to 4 D to 5		39 46	
									001	OUT							GND					40	
			190 & 191 192 & 193			1			l	001		OUT					5.0 V	5.0 V 5.0 V		D to 6 D to 7			
			192 & 193									001		OUT		GND	5.0 V 5.0 V	GND		D to 9			
11	Somo tr	oto tormin	al conditions,	and limit				FEOC		1	l			001	I		5.0 v		1	0103			

TABLE III. <u>Group A inspection for device type 03</u>. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

35

NOTE: Output voltages shall be either: (a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lin	iits	Un
group	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
1	V _{OL}	3007	1	80 mA							GND				0.8 V	0.8 V	0.8 V	0.8 V	4.5 V	0		0.9	\
25°C			2		80 mA												0.8 V	2.0 V	"	1			
			3			80 mA											2.0 V	0.8 V		2			
			4				80 mA										2.0 V	2.0 V		3			
			5					80 mA	00							2.0 V	0.8 V	0.8 V		4			
			6 7						80 mA	80 mA							0.8 V 2.0 V	2.0 V 0.8 V		5 6			
			8							00 IIIA		80 mA					2.0 V 2.0 V	2.0 V		7			
			9									00 1114	80 mA		2.0 V	0.8 V	0.8 V	0.8 V		8			
			10										00	80 mA	2.0 V	0.8 V	0.8 V	2.0 V		9			
-	V _{OL2}	3007	11	20 mA											0.8 V	0.8 V	0.8 V	0.8 V	"	0		0.4 V	1
	- 012		12		20 mA												0.8 V	2.0 V		1			
			13			20 mA											2.0 V	0.8 V		2			
			14				20 mA										2.0 V	2.0 V	"	3			
			15					20 mA								2.0 V	0.8 V	0.8 V	"	4			
			16						20 mA								0.8 V	2.0 V		5			
			17							20 mA		20 4					2.0 V	0.8 V 2.0 V		6			
			18 19									20 mA	20 mA		2.0 V	0.8 V	2.0 V 0.8 V	2.0 V 0.8 V		8			
			20										20 MA	20 mA	2.0 V 2.0 V	0.8 V 0.8 V	0.8 V 0.8 V	2.0 V		9			
Γ	I _{CEX}		21	Y	Y										2.0 V	2.0 V	2.0 V	2.0 V		0		250	
	<u>1</u> /		22 23		Ŷ	Y														1 2			
			23			, r	Y													3			
			25					Y												4			
			26					-	Y											5			
			27							Y										6			
			28									Y								7			
			29										Y						"	8			
-	Vic		30 31											Y				" -12 mA		9 A		-1.5	
	VIC		32														-12 mA	-12 11/3		В		-1.5	
			33													-12 mA	12 110 (č			
			34												-12 mA					D			
Γ	II.	3009	35								"				5.5 V	5.5 V	5.5 V	0.4 V	5.5 V	A	-0.7	-1.6	
			36													5.5 V	0.4 V	5.5 V		В			1
			37		1											0.4 V	5.5 V	"		С			1
L			38												0.4 V	5.5 V	5.5 V	"		D			
	I _{IH1}	3010	39		1										GND	GND	GND	2.4 V		A		40	
			40 41		1											GND 2.4 V	2.4 V	GND		B C			1
			41		1										2.4 V	Z.4 V GND	GND "			D	" " 40 " "		1
I,	I _{IH2}	3010	42		1										GND	"	"	5.5 V	"	A		100	
	1112	"	44		1												5.5 V	GND		В			1
			45		1											5.5 V	GND	"		č			1
			46												5.5 V	GND	GND	"		D			
Ē	I _{CC}	3005	47												GND	GND	GND	GND	"	V _{CC}		62	1
			al conditions	1.12				10500	1.1.1.1.1.1														

TABLE III. Group A inspection for device type 04 and 05. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

See footnotes at end of device types 04 and 05.

36

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lin	nits	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{CC}		Min	Max	
7 Tc = 25°C	Truth table test		48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	⊥⊥	Τ L Τ	I I U I	Ι·· JΙ········	Η····	Η ΙΠ	Η	GND " " " " " " "	Ι	Η	Ι	GND " " " 5.0 V " "	GND " 5.0 V " GND " 5.0 V "	GND GND 5.0 V 5.0 V GND GND GND GND GND GND GND GND GND 5.0 V 5.0 V 5.0 V 5.0 V	GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V	5.0 V "" " " " " "		2/		
8	Truth table		64 thru 79	Same te	ests as sub	group 7, e	xcept T _C =	+125°C.	L	1	1		1	1	1	1	0.0 V	0.0 V					1
	test		80 thru 95	Same te	ests as sub	group 7, e	xcept T _C =	-55°C.															
9 Tc = 25°C	tphL tpLH	3003 (Fig. 5) " " " " " " " " " "	$\begin{array}{c} 96 \& 97 \\ 98 \& 99 \\ 100 \& 101 \\ 102 \& 103 \\ 104 \& 105 \\ 106 \& 107 \\ 108 \& 109 \\ 110 \& 111 \\ 112 \& 113 \\ 114 \& 115 \\ 116 \& 117 \\ 118 \& 119 \\ 120 \& 121 \\ 122 \& 123 \\ 124 \& 125 \\ 126 \& 127 \\ 128 \& 129 \\ 130 \& 131 \\ 132 \& 133 \\ 134 \& 135 \\ 136 \& 137 \\ 138 \& 139 \\ \end{array}$	OUT	OUT	OUT	OUT	OUT	OUT OUT OUT	out out out	GND " " " " " " " " " " " " "	OUT	OUT OUT OUT	OUT	GND GND 5.0 V GND " " " " 5.0 V 5.0 V IN " " " " " " "	GND GND 5.0 V GND GND 5.0 V IN " " " " " " " " " " " " " " " " " "	GND " IN IN 5.0 V GND GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V 5.0 V 5	IN " 5.0 V GND GND 5.0 V GND 5.0 V 5.0 V 5.0V	5.0 V	$\begin{array}{c} A \ to \ 0 \\ A \ to \ 1 \\ A \ to \ 5 \\ A \ to \ 5 \\ B \ to \ 1 \\ B \ to \ 2 \\ B \ to \ 2 \\ C \ to \ 2 \\ C \ to \ 2 \\ C \ to \ 6 \\ D \ to \ 5 \\ D \ to \ 9 \\ D \ to \ 9 \\ \end{array}$	5	56 " " " " " " " "	ns

10

15

14

16

Maggurod

Limita

Linit

TABLE III. Group A inspection for device type 04 and 05. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

0

See notes at end of device types 04 and 05.

Casaa

2

MIL-M-38510/10D

TABLE III. Group A inspection for device type 04 and 05.

Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	iits	Unit
Subgroup	Symbol	883 method	Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	A	V _{cc}		Min	Max	
10	t _{PHI}	3003	140 & 141	OUT							GND				GND	GND	GND	IN	5.0 V	A to 0	5	73	ns
Tc = 125°C	t _{PLH}	(Fig. 5)	142 & 143		OUT						"				GND	GND				A to 1			"
			144 & 145						OUT		"				GND	5.0 V				A to 5			
		"	146 & 147								"		OUT		5.0 V	GND				A to 8			"
		"	148 & 149		OUT						"				GND	GND	IN	5.0 V		B to 1			"
		"	150 & 151			OUT					"				"	GND	IN	GND		B to 2			"
		"	152 & 153							OUT	"				"	5.0 V	IN	GND		B to 6			"
		"	154 & 155			OUT					"				"	IN	5.0 V	GND		C to 2			"
		"	156 & 157				OUT				"				"		5.0 V	5.0 V		C to 3			"
		"	158 & 159					OUT			"				"		GND	GND		C to 4			"
		"	160 & 161						OUT		"				"		GND	5.0 V		C to 5			"
		"	162 & 163							OUT	"				"		5.0 V	GND		C to 6			"
		"	164 & 165								"	OUT			"		5.0 V	5.0 V		C to 7			"
		"	166 & 167								"		OUT		5.0 V		GND	GND		C to 8			"
		"	168 & 169								"			OUT	5.0 V		GND	5.0 V		C to 9			"
		"	170 & 171				OUT				"				IN	GND	5.0 V	5.0 V		D to 3			"
		"	172 & 173					OUT			"				"	5.0 V	GND	GND		D to 4			"
		"	174 & 175						OUT						"		GND	5.0 V		D to 5			
			176 & 177							OUT							5.0 V	GND		D to 6			
			178 & 179									OUT					5.0 V	5.0 V		D to 7			
			180 & 181										OUT	0.UT		GND	GND	GND		D to 8			
			182 & 183 al conditions,											OUT		GND	GND	5.0 V		D to 9			<u> </u>

 $\underline{1}$ Y = 30 volts for device type 04 and 15 volts for device type 05. $\underline{2}$ Output voltages shall be either:

(a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or

(b) $H \ge 1.5$ V and $L \le 1.5$ V when using a high speed checker single comparator.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lirr	nits	Unit
Subgroup	Symbol	883 method	Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}		Min	Max	
1	V _{OL1}	3007	1	Х	Х	0.8 V		Х	Х	Х	GND	40 mA							4.5 V	OUT E		0.4	V
c = 25°C	<u>1</u> /		2										40 mA							OUT D			
			3											40 mA						OUT C			
			4												40 mA					OUT B			
			5													40 mA	10 1			OUT A OUT G			
			6														40 mA	40 mA		OUT G			
ŀ	V _{OL2}		8	0.8 V	0.8 V	2.0 V	8 mA	0.8 V	0.8 V	0.8 V								40 111/4		RBO		0.4	
F	ICEX		9	"	"	"	01101	"	"	"		Y								OUTE		250	μA
	2/		10										Y							OUT D			"
	-		11											Y						OUT C			
			12												Y					OUT B			
			13													Y				OUT A			
			14														Y			OUT G			
H	V _{OH}	3006	15 16	0.8 V	0.8 V	2.0 V	2 mA	2.0 V	0.8 V	0.8 V								Y		OUT F RBO	2.4		v
ŀ	V _{OH} V _{IC}	3000	17	-12 mA	0.6 V	2.0 V	2 IIIA	2.0 V	0.6 V	0.6 V										IN B	2.4	-1.5	V
	VIC ▼		18	-12 11/4	-12 mA															INC		-1.5	
			19				-12 mA													RBO			
			20					-12 mA												RBI			
			21						-12 mA											IN D			
L			22		14	14		17	17	-12 mA									"	IN A			"
	I _{IL1}	3009	23 <u>4/</u>	0.4 V	5.5 V	5.5 V		5.5 V	5.5 V	5.5 V									5.5 V	IN B	-0.7	-1.6	mA "
			23 CKT C 24 <u>4</u> /	0.4 V 5.5 V	5.5 V 0.4 V	5.5 V 5.5 V														IN B IN C	-0.4 -0.7	-1.3 -1.6	
			24 <u>4</u> / 24 CKT C	5.5 V	0.4 V 0.4 V	5.5 V														INC	-0.4	-1.3	
			25 4/		5.5 V	0.4 V														LT	-0.7	-1.6	
			25 CKT C		5.5 V	0.4 V														LT	-0.4	-1.3	
			26 <u>4</u> /			5.5 V		0.4 V												RBI	-0.7	-1.6	
			26 CKT C		"	5.5 V		0.4 V												RBI	-0.4	-1.3	
			27 <u>4/</u>					5.5 V	0.4 V											IN D	-0.7	-1.6	
			27 CKT C 28 <u>4</u> /						0.4 V 5.5 V	0.4 V										IN D IN A	-0.4 -0.7	-1.3 -1.6	
			28 CKT C						5.5 V 5.5 V	0.4 V 0.4 V										IN A	-0.7	-1.3	
F	I _{II 2}	3009	29	"			0.4 V	5.5 V	5.5 V	5.5 V									5.5 V	RBO	-1.7	-4.2	mA
F	I _{IH1}	3010	30	2.4 V	GND	GND		GND	GND	GND		1				1	1			IN B		40	μA
			31	GND	2.4 V	GND		GND												IN C			
			32		GND	2.4 V		GND												LT			
			33			GND		2.4 V												RBI			
			34			GND		GND	2.4 V											IN D			
		2010	35 36	 		GND GND		GND GND	GND GND	2.4 V										IN A IN B			
	I _{IH2}	3010	36 37	5.5 V GND	GND 5.5 V	GND		GND	GND	GND "										IN B		100	μA "
			37	"	5.5 V GND	5.5 V		GND												LT			
			39		"	GND		5.5 V												RBI			
			40					GND	5.5 V											IN D			
			41					GND	GND	5.5 V										IN A			
	los	3011	42			-	GND	GND	GND	GND	=									RBO		-4	mA
	I _{cc}	3005	43	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	-									V _{cc}		85	mA
2	Same te	ests, termina	al conditions	, and limit	s as subgr	oup 1, exc	ept T _c = +	125°C and	d VIC tests	are omitte	ed.												

TABLE III. <u>Group A inspection for device type 06 and 07</u>. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

See footnotes at end of device types 06 and 07.

TABLE III. Group A inspection for device type 06 and 07. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
Subgroup	Symbol	883 method	Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}		Min	Max	
7 Tc = 25°C	Truth table test		44 45 47 48 50 51 53 54 55 57 58 60 62	GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V S.0 V S.0 V S.0 V S.0 V X GND S.0 V X GND	GND " 5.0 V " GND " 5.0 V " S.0 V " K GND X S.0 V C S.0 V C S.0 V C S.0 V C S.0 V S.0	5.0 V " " " " " " " " " " " " " " " " " " "	GND L	5.0 V X " " " " " " " " " " " " " " " " " "	GND " " 5.0 V " " " " " " " " " " " " " " " "	GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V GND 5.0 V X GND 5.0 V X	GND			L L H L H L H L		L H L L H L H L L L H H H L H • • • L	ΗΗ L Η L Η Η Η L		5.0 V		<u>3/</u>		
8	Truth		63 - 81			group 7, e	xcept T _C =		X	X		L .	-		-		-	-					
	table test		82 -100	Same te	sts as sub	group 7, e	xcept T _C =	-55°C.															
Tc = 25°C	¢н∟ ¢р⊥н	(Fig. 6)	$\begin{array}{c} 103 \& 104 \\ 105 \& 106 \\ 107 \& 108 \\ 109 \& 110 \\ 111 \& 112 \\ 113 \& 114 \\ 115 \& 116 \\ 117 \& 118 \\ 119 \& 120 \\ 121 \& 122 \\ 123 \& 124 \\ 125 \& 126 \\ 127 \& 128 \\ 129 \& 130 \\ 131 \& 132 \\ 133 \& 134 \\ 135 \& 136 \\ 137 \& 138 \\ \end{array}$	GND 5.0 V GND 5.0 V GND GND 5.0 V GND 5.0 V GND 5.0 V GND IN " "	5.0 V " " GND 5.0 V GND GND GND 5.0 V GND GND GND GND GND GND GND GND	5.0 V	OUT	5.0 V " " " " " " " " " " " " " " " " " " "	5.0 V GND " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "		OUT OUT	OUT OUT OUT	OUT	OUT OUT OUT	OUT OUT	OUT	OUT OUT	5.0V """"""""""""""""""""""""""""""""""""	IN A to A IN A to A IN A to B IN A to B IN A to D IN A to E IN A to F IN A to F IN A to F IN A to RBO IN B to A IN B to B IN B to B		104	ns " " " "
			137 & 136 139 & 140 141 & 142 143 & 144 145 & 146 147 & 148 149 & 150 151 & 152 153 & 154 155 & 156 157 & 158 159 & 160 161 & 162 163 & 164 165 & 166 167 & 168	" " " " GND 5.0 V GND GND GND GND S.0 V	GND 5.0 V GND GND 5.0 V 5.0 V 5.0 V GND GND GND IN " "				5.0 V GND " " " 5.0 V GND 5.0 V GND 5.0 V GND GND GND GND GND	GND 5.0 V 5.0 V GND 5.0 V GND 5.0 V GND " " " " " " " " " " " 5.0 V GND GND GND		OUT	OUT OUT	OUT OUT OUT	OUT OUT	OUT	OUT	OUT OUT OUT		IN B to B B IN B to C D D E IN B to C D D E IN B to C D D E IN B to C D F IN B to C F IN B to C F IN B to C T C C C IN C C TO C C IN C C TO C TO F IN C C TO C TO F IN C C TO F			

See footnotes at end of device types 06 and 07.

40

TABLE III. Group A inspection for device type 06 and 07.

Terminal conditions (pins not designated may be high \ge 2.4 V or low \le 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	nits	Unit
Subgroup	Symbol	883 method	Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}		Min	Max	
9 Tc = 25°C	t _{PHL} t _{PLH}	3003 (Fig. 6)	171 & 172 173 & 174	GND 5.0 V	IN 5.0 V	5.0 V "		5.0 V "	GND IN	5.0 V 5.0 V	GND "					OUT		OUT	5.0 V "	IN C to F IN D to A	8	104 "	ns "
10 - 20 0	-FLN	(* .9)	175 & 176	GND	5.0 V				IN	GND				OUT						IN D to C			
			177 & 178	"	GND	"		"	IN	"	"						OUT			IN D to G			
			179 & 180 181 & 182			IN IN	OUT	GND GND	GND							OUT				LT to A LT to RBO			
			183 & 182			5.0 V	IN	5.0 V								OUT				RBO to A			
			185 & 186			"		IN	"		"					OUT				RBI to A			
			187 & 188	"	"	"	OUT	IN		"	"									RBI to RBO			
10	t _{PHL}	3003	189 & 190		5 0 1/			5.0 V	5 0 1/	IN						OUT OUT				IN A to A	8	144	
Tc = 125°C	t _{PLH}	(Fig. 6) "	191 & 192 193 & 194	5.0 V	5.0 V				5.0 V GND							OUT				IN A to A IN A to A			
			195 & 194	GND					GND						OUT	001				IN A to B			
			197 & 198	5.0 V					"		"				OUT					IN A to B			
			199 & 200	5.0 V	GND					"	"			OUT						IN A to C			
			201 & 202	GND GND	GND								OUT OUT							IN A to D IN A to D			
			203 & 204 205 & 206	5.0 V	5.0 V 5.0 V								OUT							IN A to D			
			207 & 208	GND	GND				"			OUT	001							IN A to E			
			209 & 210	5.0 V	GND					"	"	OUT								IN A to E	"		
			211 & 212	GND	GND													OUT		IN A to F			
			213 & 214 215 & 216	5.0 V 5.0 V	5.0 V 5.0 V				5.0 V 5.0 V								OUT	OUT		IN A to F IN A to G			
			217 & 218	GND	GND		OUT	GND	GND								001			IN A to BO			
			219 & 220	IN	GND	"	00.	5.0 V	5.0 V	GND	"					OUT				IN B to A			
			221 & 222	"	GND	"		"	GND	5.0 V	"					OUT				IN B to A			
			223 & 224		5.0 V				GND	GND					OUT					IN B to B			
			225 & 226 227 & 228		GND 5.0 V				5.0 V GND	GND 5.0 V					OUT OUT					IN B to B IN B to B			
			229 & 230	"	GND	"		"	5.0 V	5.0 V	"				OUT					IN B to B			
			231 & 232	"	GND	"		"	GND	GND	"			OUT						IN B to C			
			233 & 234	"	GND	"		"	"	5.0 V	"		OUT							IN B to D			
			235 & 236		5.0 V					GND GND		OUT	OUT							IN B to D			
			237 & 238 239 & 240		5.0 V 5.0 V					5.0 V		OUT						OUT		IN B to E IN B to F			
			241 & 242	"	GND	"			"	GND								OUT		IN B to F			
			243 & 244	"	GND	"		"	5.0 V		"							OUT		IN B to F			
			245 & 246		GND				GND							0.17	OUT			IN B to G			
			247 & 248 249 & 250	GND 5.0 V	IN "				5.0 V GND					OUT		OUT				IN C to A IN C to C			
			249 & 250 251 & 252	GND		"		"	5.0 V	5.0 V				OUT						IN C to C			
			253 & 254	GND		"		"	GND	GND			OUT							IN C to D			
			255 & 256	GND		"		"	GND	GND	"	OUT								IN C to E	"	"	
			257 & 258	5.0 V	5 0 1/				5.0 V	GND								OUT		IN C to F			
			259 & 260 261 & 262	GND 5.0 V	5.0 V 5.0 V				GND IN	5.0 V 5.0 V						OUT		OUT		IN C to F IN D to A			
			261 & 262	GND	5.0 V				IN	GND				OUT		001				IN D to A			
			265 & 266	"	GND	"		"	IN	"	"						OUT			IN D to G		"	
			267 & 268	"	"	IN		GND	GND	"	"					OUT			"	LT to A	"	"	
			269 & 270			IN	OUT	GND												LT to RBO			
			271 & 272 273 & 274			5.0 V "	IN	5.0 V IN								OUT OUT				RBO to A RBI to A			
			275 & 274	"		"	OUT	IN			"					001				RBI to RBO			
11	Same te	ests, termina	al conditions	and limit	s as subor	oup 10 exc																	

1/X = Input may be high level or low level.2/Y = 30 volts for device type 05 and 15 volts for device type 07.3/Output voltages shall be either:

(a) H = 2.4 volts minimum and L = 0.4 volts minimum when using high speed checker double comparator, or

(b) $H \ge 1.5$ volts and $L \le 1.5$ volts when using a high speed checker single comparator.

4/ CKT except C.

TABLE III. Group A inspection for device type 08. Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

Image: Constraint of the second sec	MIL-8	STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lirr	iits	Unit
25°C 1/ " 22 25°C 1/ " 3 4 3 4 5 6 7 V _{OH2} * 8 V _{OL1} * 6 7 V _{OH2} * 8 V _{OL1} * 10 11 * 12 * 13 * 14 * 12 * 13 * 14 * 15 V _{IC} 11 * 12 * 13 * 14 * 15 V _{IC} 23007 16 V _{IC} 21 * 23 * 23 * 24 * 26 * 25 * 25 * 25 * 25 * 26 * 26 * 26 * 26 * 26 * 27 * 27 * 27 * 28 * 33 * 34 * 34 * 35 · 38 * 34 * 35 · 39 * 300 * 400 * 40			Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}		Min	Max	1
" 3 " 4 " 5 " 6 " 7 V _{OL1} 3007 9 " 10 " " 10 " " 10 " " 10 " " 11 " " 13 " " 13 " " 13 " " 14 " " 13 " " 13 " " 14 " " 15 " V _{IC} " 18 " 19 20 21 " 22 I _{IL1} " 23 " 24 " " 25 " " 26 " " 27 " " 27		006		Х	Х	0.8 V		Х	Х	Х	GND	-0.4 mA							4.5 V	OUT E	2.4 V		V
" 4 " 5 " 6 " 7 Vol.1 " 8 Vol.1 " 10 " 10 " 10 " 11 " 12 " 13 " 14 " 15 13 " 14 " 15 Vol.2 3007 16 17 Vic 17 18 19 20 21 19 20 21	<u>1</u> / "				"	"			"		"		-0.4 mA							OUT D			
" 5 " 6 " 7 Vol.1 3007 9 " 10 11 " 12 13 " 14 12 " 13 14 " 13 14 " 13 14 " 13 14 " 13 14 " 13 14 " 14 " 15 Vol.2 3007 16 16 Vic 17 18 19 20 21 22 22 ILL1 3009 23.2 24.2 " 24.2 24.2 24.2 " 22.5 CK " 22.6 " 22.7 " 22.7 CK " 23.00 29 1 1.4 3.33 " 3010 30 30														-0.4 mA						OUT C			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															-0.4 mA					OUT B			
" " 7 V _{0H2} " 8 V _{0L1} 3007 9 " 10 " " 12 " " 12 " " 12 " " 12 " " 12 " " 13 " " 14 " " 15 " V _{IC} 3007 16 VIC 17 " 12 3007 16 VIC 17 " 12 23 20 " 23 " " 24 " " 24 " " 25 " 26 " 27 " 27 " 27 " 28 " 28 " 33 " 3010 30 "																-0.4 mA				OUT A			
V _{OL2} " 8 V _{OL1} 3007 9 " 10 " 11 " 12 " 13 " 14 " 13 " 14 " 13 " 14 " 13 " 14 " 13 " 14 " 13 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 23 CK " 24 CK " 24 CK " 24 CK " 25 CK " 27 CK " 27 CK " 28 CK " 27 CK " 3010 " 331																	-0.4 mA	0.1 m 1		OUT G			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.01/	0.01/	0.01/	0	0.0.1/	0.01/	0.01/								-0.4 mA		OUT F			
Image: Second		0.07		0.8 V	0.8 V	2.0 V	2 mA	0.8 V	0.8 V	0.8 V		0.4								RBO		0.4	
" 11 " 13 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 14 " 17 " 18 " 17 " 20 " 23 CK " 24 (K " 24 (K " 24 (K " 24 (K " 25 (K " 26 (K " 27 (K " 28 (K " 28 (K " 3010 " 31 " 344 " <t< td=""><td>OL1 300</td><td>007</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.4 mA</td><td>C 4 m 4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>OUT E OUT D</td><td></td><td>0.4</td><td></td></t<>	OL1 300	007										6.4 mA	C 4 m 4							OUT E OUT D		0.4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													6.4 mA	6.4 mA						OUT D			
" 13 V _{0L2} 3007 16 V _{1C} 17 18 V _{1C} 18 19 20 21 22 I _{IL1} 3009 23 (2) I _{IL1} 3009 23 (2) " 24 CK " 24 CK " 24 CK " 25 (2) " 25 (2) " 26 (2) " 26 (2) " 27 CK " 27 CK " 28 CK " 28 CK " 3009 29 I _{IH1} 3010 " 31 " 32 " 33 " 34 " 3010 " 38 " 39 " 40 " 43 " 44 " 44 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.4 MA</td><td>61 m</td><td></td><td></td><td></td><td></td><td>OUT C</td><td></td><td></td><td></td></td<>														6.4 MA	61 m					OUT C			
" 14 " 15 Vol.2 3007 16 Vi.c 17 18 19 20 20 21 22 IIL1 3009 23 2 " 23 CK " 23 CK " 23 CK " 23 CK " 24 CK " 24 CK " 24 CK " 26 CK " 26 CK " 27 CK " 28 CK " 28 CK " 28 CK " 3010 " 31 " 33 " 34 " 31 " 31 " 33 " 34 " 33 " 34 " 33 " 34 "															6.4 mA	6.4 mA				OUT A			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																0.4 MA	6.4 mA			OUT G			
V _{0L2} 3007 16 V _{1C} 17 18 19 20 21 12 23 23 I _{IL1} 3009 23 " 23 CK 23 CK " 24 CK 24 CK " 24 CK 24 CK " 25 CK " " 25 CK " " 25 CK " " 26 CK " " 27 CK " " 27 CK " " 28 CK " IIL2 3009 29 II _{H1} " 31 " 323 " " 3010 36 " 33 " I _{IH2} 3010 36 " 37 " " 38 " " 44 " I os " 44 " <td></td> <td>0.4 MA</td> <td>6.4 mA</td> <td></td> <td>OUT G</td> <td></td> <td></td> <td></td>																	0.4 MA	6.4 mA		OUT G			
V _{1C} 17 18 19 19 20 21 22 11L1 3009 23 2 " 23 2K " 23 2K " 24 4K " 24 CK " 24 CK " 24 CK " 24 CK " 25 CK " 26 CK " 27 CK " 28 CK " 27 CK " 28 CK " 28 CK " 3010 30 31 " 32 " 34 " 35 I _{IH1} 3010 36 " 34 " 33 " 34 " 301 " 38 " 301 " 43 " 44	30(007		0.8 V	0.8 V	2.0 V	8 mA	0.8 V	0.8 V	0.8 V								0.4 11/4		RBO		0.4	
Image: 10 minipage 18 19 20 21 22 11 3009 23 12 22 11 3009 23 12 22 22 12 23 24 12 24 24 12 24 24 12 25 CK 12 25 CK 12 26 CK 12 27 CK 12 28 CK 12 30009 29 1 10 3010 30 34 34 11 3010 36 11 303 44 10 3011 43 14 44 445 14 <td< td=""><td></td><td>1007</td><td></td><td>-12 mA</td><td>0.0 V</td><td>2.0 V</td><td>0 IIIA</td><td>0.0 V</td><td>0.0 V</td><td>0.0 V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>IN B</td><td></td><td>-1.5</td><td></td></td<>		1007		-12 mA	0.0 V	2.0 V	0 IIIA	0.0 V	0.0 V	0.0 V										IN B		-1.5	
IIL1 3009 23 IIL1 3009 23 IIL1 3009 23 IIL1 230 23 IIL1 "244 24 "24 "24 "24 "24 "25 K "25 "25 "26 "26 "27 27 "27 28 "28 K "28 "31 "31 "32 "33 "34 "34 "35 IIH2 3010 36 "34 "37 "38 "39 "44 "43 "40 "41 I os 3011 42 "40 "44 "44 "45 "46 "46	IC			-12 1114	-12 mA															INC		-1.5	
IIL1 3009 23 IIL1 3009 23 " 23 CK " " 24 CK " " 25 CK " " 26 CK " " 27 CK " " 27 CK " " 28 CK " " 3010 30 " 31 " " 31 " " 311 " " 311 " " 311 " " 312 " " 313 " " 314 " " 317 " " 317 " " 317 " " 314					-12 11/4		-12 mA													RBO			
IIL1 3009 23 IIL1 3009 23 " 23 CK " 23 CK " 24 CK " 25 CK " 25 CK " 25 CK " 26 CK " 26 CK " 27 CK " 28 CK " 28 CK ILL2 3009 29 II _{H11} 3010 30 " 31 " " 3010 30 II _{H11} 3010 36 " 33 " " 33 " " 33 " II _{H2} 3010 36 " 33 " " 38 " " 38 " " 3010 44 I _{IH2} " 46 " 46 "							-12 11/4	-12 mA												RBI			
IIL1 3009 23 2 IIL1 " 23 4 " 23 4 " 24 4 " 24 4 " 24 4 " 24 4 " 24 6 " 25 5 " 25 6 " 26 7 " 27 6 " 27 7 6 " 27 7 6 " 27 7 6 " 28 6 " 28 6 IL2 3009 29 IIH1 " 31 " 32 " " 31 " " 31 " " 31 " " 31 " " 31 " " 32 " " 33 " " 33 " " 33 " " 44								12 110 (-12 mA											IN D			
I _{IL1} 3009 23 2 " 23 CK " 23 CK " 24 CK " 24 CK " 24 CK " 25 CK " 26 CK " 27 CK " 27 CK " 27 CK " 27 CK " 28 CK I _{IL2} 3009 I _{IH1} 3010 30 " " 31 " 32 " 31 " 32 " 34 " 35 I _{IH2} 3010 36 " " 38 " 301 " 38 " 301 " 44 " 46 " 46 " 47										-12 mA										IN A			
" 23 СК " 24 СК " 24 СК " 25 СК " 26 СК " 27 СК " 27 СК " 28 СК " 3010 " 31 " 32 " 333 " 34 " 3010 " 333 " 34 " 333 " 34 " 3010 " 33 " 34 " 3011 " 33 " 34 " 43 " 44 " <td>30</td> <td>009</td> <td>23 <u>2</u>/</td> <td>0.4 V</td> <td>5.5 V</td> <td>5.5 V</td> <td></td> <td>5.5 V</td> <td>5.5 V</td> <td>5.5 V</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.5 V</td> <td>IN B</td> <td>-0.7</td> <td>-1.6</td> <td>n</td>	30	009	23 <u>2</u> /	0.4 V	5.5 V	5.5 V		5.5 V	5.5 V	5.5 V									5.5 V	IN B	-0.7	-1.6	n
" 24 " 24 CK " 25 CK " 26 CK " 27 CK " 27 CK " 28 CK " 28 CK IIL2 3009 29 II _{H1} 3010 30 " 31 " " 31 " " 31 " II _{H2} 3010 36 " 34 " " 31 " II _{H2} 3010 36 " 38 " " 38 " " 38 " " 44 " I os " 44 " 46 " " 46 "	.L1 000		23 CKT B	0.4 V	5.5 V	5.5 V		"	"	"									"	IN B	-0.4	-1.3	
" 24 СК " 25 СК " 25 СК " 26 СК " 27 СК " 28 СК ILL2 3009 29 II,H1 " 31 " 32 " 34 " 31 " 32 II,H2 3010 36 " 37 " 38 " 39 " 40 " 41 1 108 3011 42 " 43 " 43 " 44 " 44 " 445 " 46 " 44 " 46 " 46			24 2/	5.5 V	0.4 V	5.5 V														INC	-0.7	-1.6	
" 25 " 25 " 25 " 25 " 25 " 26 " 26 " 26 " 27 " 28 " 28 " 28 " 28 " 28 " 28 " 28 " 28 " 28 " 28 " 28 " 3010 " 33 " 34 " 35 I _{IH1} 3010 " 301 " 38 " 38 " 38 " 301 " 40 " 41 1 1 0 44 46 "			24 CKT B		0.4 V	5.5 V														IN C	-0.4	-1.3	
" 25 CK " 26 CK " 26 CK " 27 CK " 27 CK " 28 CK " 3009 " 31 " 31 " 33 " 33 " 34 " 35 I _{IH2} 3010 " 38 " 38 " 38 " 38 " 44 " 46 " 46 " 47			25 <u>2</u> /		5.5 V	0.4 V														LT	-0.7	-1.6	
" 26 " 26 СК " 27 СК " 27 СК " 27 СК " 27 СК " 28 СК " 3009 1 _{H1} 3010 " 31 " 32 " 34 " 355 I _{H2} 3010 " 37 " 38 " 39 " 40 " 41 I OS 3011 " 43 " 44 " 46 " 46 " 47			25 CKT B			0.4 V														LT	-0.4	-1.3	
" 26 CK " 27 CK " 27 CK " 28 CK " 3009 I _{IH1} 3010 " 33 " 34 " 33 " 34 " 35 I _{IH2} 3010 " 36 " 38 " 39 " 40 " 41 I OS 3011 " 43 " 44 " 45 " 46 " 47			26 <u>2</u> /			5.5 V		0.4 V												RBI	-0.7	-1.6	
" 27 CK " 28 GK " 28 CK IL2 3009 29 I _{H1} 3010 30 " 31 " 32 " 33 " 34 " 35 1 " 35 I _{H2} 3010 36 " 34 " 32 " 34 " 32 " 34 " 3010 36 " " 33010 36 " 39 " 38 " 39 " 40 " 40 " 43 " 44 " 45 " 46 " 46 " 47 " 47 " 47			26 CKT B					0.4 V												RBI	-0.4	-1.3	
$\begin{tabular}{ c c c c c } & " & 28 & 28 & CK \\ \hline & " & 28 & CK \\ & 28 & CK \\ & 28 & CK \\ \hline & 1_{IL2} & 3009 & 29 \\ \hline & 1_{IH1} & 3010 & 300 \\ & " & 311 \\ & " & 32 \\ & " & 333 \\ & " & 344 \\ & " & 355 \\ \hline & 1_{IH2} & 3010 & 366 \\ & " & 377 \\ & " & 333 \\ & " & 344 \\ & " & 355 \\ \hline & 1_{IH2} & 3010 & 366 \\ & " & 377 \\ & " & 388 \\ & " & 398 $			27 <u>2</u> /					5.5 V	0.4 V		"									IN D	-0.7	-1.6	,
$\begin{tabular}{ c c c c c } & & & & & & & & & & & & & & & & & & &$			27 CKT B						0.4 V		"									IN D	-0.4	-1.3	
I _{IL2} 3009 29 I _{IH1} 3010 30 " 31 " 32 " 33 " 34 " 32 " 34 " 34 " 35 I _{IH2} 3010 36 " 37 " 38 " 39 " 40 " 41 1 0s " 41 I os 3011 42 " 43 " 44 " 44 " 445 " 46 " 46 " 46			28 <u>2</u> /						5.5 V	0.4 V	"									IN A	-0.7	-1.6	
I _{IH1} 3010 30 " 31 " 32 " 33 " 33 " 34 " 35 I _{IH2} 3010 36 " 37 " 38 " 39 " 40 " 41 I _{OS} 3011 42 " 43 " 44 " 45 " 46 " 47			28 CKT B					"	5.5 V	0.4 V										IN A	-0.4	-1.3	
" 31 " 32 " 33 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 34 " 3010 " 38 " 39 " 40 " 41 1 os 3011 " 43 " 44 " 46 " 46 " 47	IL2 300	009	29	-	"	-	0.4 V	5.5 V	5.5 V	5.5 V									-	RBO	-1.7	-4.2	n
" 32 " 33 " 34 " 35 1 _{IH2} 3010 36 " 37 " 38 " 39 " 400 " 41 1 _{OS} 3011 42 " 43 " 44 " 45 " 46 " 46 " 47	H1 30'	010	30	2.4 V	GND	GND		GND	GND	GND										IN B		40	μ
" 33 " 34 " 35 " 35 " 35 " 37 " 37 " 37 " 38 " 39 " 40 " 40 " 41 I os " 43 " 43 " 44 " 45 " 46 " 47			31	GND	2.4 V	GND		GND			"									IN C			
" 34 " 35 I _{IH2} 3010 36 " 37 " 38 " 39 " 40 " 41 I OS 3011 42 " 43 44 " 45 46 " 46 "			32		GND	2.4 V		GND			"									LT			
" 35 I _{IH2} 3010 36 " 37 " 38 " 39 " 40 " 41 I os 3011 42 " 43 " 44 " 45 " 46 " 46 " 47	"		33			GND		2.4 V			"		1							RBI			
I _{IH2} 3010 36 " 37 " 38 " 39 " 40 " 41 I _{OS} 3011 42 " 43 " 44 " 45 " 46 " 46 " 47	"	"	34		"	GND		GND	2.4 V		"									IN D			
"37 "38 "39 "40 "41 "41 "43 "43 "44 "45 "46 "46 "46 "47					"	GND		GND	GND	2.4 V										IN A			
" 38 " 39 " 400 " 41 " 43 " 43 " 44 " 45 " 46 " 46 " 47	H2 301	010	36	5.5 V	GND	GND		GND	GND	GND			1							IN B		100	ŀ
" 39 " 40 " 41 I _{0S} 3011 42 " 43 " 44 " 45 " 46 " 46 " 46 " 47				GND	5.5 V	GND		GND												IN C			
"40 "41 I _{OS} 3011 42 "43 "44 "44 "45 "46 "46			38		GND	5.5 V		GND	:											LT			
"41 I _{OS} 3011 42 "43 "44 "45 "46 "46 "47						GND "		5.5 V												RBI			
I _{OS} 3011 42 " 43 " 44 " 45 " 46 " 46 " 47								GND	5.5 V				1							IN D			
43 44 44 45 * 46 * 46 * 46		011						GND	GND	5.5 V						ONID				IN A			
" 44 " 45 " 46 " 47	os 30'	110		×	X	GND		X	×	X			1		CND	GND				OUT A		-4	r
" 45 " 46 " 47													1	GND	GND					OUT B OUT C			
" 46 " 47													GND	GND						OUT C OUT D			
" 47												CNID	GND							OUT D OUT E			
												GND						GND		OUT E OUT F			
Ω / Ω			47														GND	GND		OUT G			
			48 49				GND										GND			RBO			
	200	005	49 50				GIND													V _{CC}		76	n
I _{CC} 3005 50 2 Same tests, terminal condi	00			and Roy 2			1 T	40500 -	11/ 1-11		l	I	I	1		1			I	V CC		10	

See footnotes at end of device types 08.

42

Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lim	iits	Unit
Subgroup	Symbol	883 method	Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{CC}		Min	Max	
7	Truth	method	51	GND	GND	5.0 V		5.0 V	GND	GND	GND	Н	Н	Н	Н	Н	L	Н	5.0 V				
c = 25°С	table		52	GND	"	"		X	"	5.0 V	"	L	i i	н		i i	Ĺ	L	"				
0 - 20 0	test		53	5.0 V						GND		Ĥ	Ĥ	L		Ĥ	Ĥ						
	1001		54	5.0 V						5.0 V		Ľ	н	Ĥ		Ĥ							
			55	GND	5.0 V					GND			Ľ			Ľ		н			<u>3</u> /		
			56	GND						5.0 V			H		L	н							
			57	5.0 V						GND		н	н		L	L							
			58	5.0 V						5.0 V		L	L		н	н	L	L					
			59	GND	GND				5.0 V	GND	"	н	Н				н	н					
			60	GND						5.0 V		L	L			"		н					
			61	5.0 V						GND		н	н	L	L	L		L					
			62	5.0 V						5.0 V		L	н	н	L	"		L					
			63	GND	5.0 V					GND			L	L	н	"	"	н					
			64	GND						5.0 V			Н		L	н	"		"				
			65	5.0 V						GND		н	Н			L	"		"				
			66	5.0 V						5.0 V		L	L			"	L	L	"				
			67	Х	Х	Х	GND	Х	Х	Х			"			"							
			68	GND	GND	5.0 V	L	GND	GND	GND		"	"			"							
			69					Х	Х	Х		н	н	н	н	н	н	н					
				Х	Х	GND			Λ	~													
8	Truth		70 - 89	Same te	sts as sub	group 7, e		125°C.	Λ	Х													
8	table			Same te	sts as sub			125°C.	X	X									L	1			
9		3003	70 - 89 90 -109 110 & 111	Same te	sts as sub	group 7, e		125°C.	GND	IN	GND					OUT			5.0 V	IN A to A	8	104	ns
9	table test	3003 (Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113	Same te Same te	sts as sub sts as sub GND "	group 7, e group 7, e 5.0 V "		125°C. -55°C.		IN "			OUT						5.0 V "	IN A to D	8	104	ns "
9	table test t _{PHL}	(Fig. 7) "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115	Same te Same te	sts as sub sts as sub GND "	group 7, e group 7, e 5.0 V "		125°C. -55°C.		IN "	GND "	OUT							5.0 V	IN A to D IN A to E	8 "		ns "
9	table test t _{PHL}	(Fig. 7) "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117	Same te Same te GND "	sts as sub sts as sub GND "	group 7, e group 7, e 5.0 V "		125°C. -55°C.		IN "						OUT		OUT	5.0 V "	IN A to D IN A to E IN A to F	8"		ns "
9	table test t _{PHL}	(Fig. 7) "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119	Same te Same te GND " " 5.0 V	sts as sub sts as sub GND " " 5.0 V	group 7, e group 7, e 5.0 V "		125°C. -55°C.		IN " "									5.0 V "	IN A to D IN A to E IN A to F IN A to A	8 " "		ns " "
9	table test t _{PHL}	(Fig. 7) "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121	Same te Same te GND " " 5.0 V GND	sts as sub sts as sub GND " " 5.0 V 5.0 V	group 7, e group 7, e 5.0 V "		125°C. -55°C.		IN " "			OUT		OUT	OUT			5.0 V	IN A to D IN A to E IN A to F IN A to A IN A to B	8		ns " "
9	table test t _{PHL}	(Fig. 7) " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123	Same te Same te GND " " 5.0 V GND 5.0 V	sts as sub sts as sub GND " " 5.0 V 5.0 V 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V "	GND " "	IN " " "					OUT	OUT			5.0 V	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to D	8		ns " " "
9	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125	Same te Same te GND " " 5.0 V GND 5.0 V GND	sts as sub sts as sub GND " " 5.0 V 5.0 V	group 7, e group 7, e 5.0 V "		: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " "	IN " " "			OUT		OUT	OUT			5.0 V " " " "	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to D IN A to RBO	8		ns " " "
9	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127	Same te Same te GND " " 5.0 V GND 5.0 V GND IN	sts as sub sts as sub GND " " 5.0 V 5.0 V 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V "	GND " " "	IN " " " " GND			OUT	OUT	OUT	OUT		OUT	5.0 V " " " "	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to D IN A to RBO IN B to C	8		ns " " "
9	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 128 & 129	Same te Same te GND " " 5.0 V GND 5.0 V GND	sts as sub sts as sub GND " " 5.0 V 5.0 V 5.0 V GND " "	group 7, e group 7, e 5.0 V " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " "	IN " " " GND			OUT		OUT	OUT			5.0 V " " " "	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to B IN A to RBO IN B to C IN B to F	8 " " " " "		ns " " "
9	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 128 & 129 130 & 131	Same te Same te GND " " 5.0 V GND 5.0 V GND IN	sts as sub sts as sub GND " " 5.0 V 5.0 V 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " "	IN " " GND "			OUT		OUT	OUT	OUT	OUT	5.0 V	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to B IN A to RBO IN B to C IN B to G	8 " " " " " " " " " " " " " " " " " " "		ns " " "
9	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 128 & 129 130 & 133	Same te Same te GND " " 5.0 V GND 5.0 V GND IN	sts as sub sts as sub GND " 5.0 V 5.0 V 5.0 V GND " " "	group 7, e group 7, e 5.0 V " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " " 5.0 V	IN " " GND "			OUT		OUT	OUT		OUT	5.0 V	IN A to D IN A to E IN A to F IN A to A IN A to B IN A to B IN A to RBO IN A to RBO IN B to C IN B to G IN B to A	8 " " " " " " " " " " " " " " " " " " "		ns " " "
9	table test t _{PHL}	(Fig. 7) " " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 128 & 129 130 & 131 132 & 133 134 & 135	Same te Same te GND " " 5.0 V GND 5.0 V GND IN	sts as sub sts as sub GND " 5.0 V 5.0 V 5.0 V GND " " 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " "	IN " " GND " " 5.0 V			OUT		OUT	OUT	OUT	OUT	5.0 V	IN A to D IN A to E IN A to F IN A to F IN A to A IN A to B IN A to B IN A to B IN A to B IN B to C IN B to F IN B to F	8		ns " " " "
9	table test t _{PHL}	(Fig. 7) " " " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 124 & 125 126 & 127 128 & 129 130 & 131 132 & 133 134 & 135	Same te Same te GND " " 5.0 V GND 5.0 V GND IN	sts as sub sts as sub GND 5.0 V 5.0 V 5.0 V GND " " 5.0 V 5.0 V 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " " 5.0 V	IN " GND 5.0 V 5.0 V		OUT	OUT		OUT	OUT		OUT	5.0 V	$\begin{array}{c} \text{IN A to D} \\ \text{IN A to F} \\ \text{IN A to F} \\ \text{IN A to A} \\ \text{IN A to B} \\ \text{IN B to C} \\ \text{IN B to C} \\ \text{IN B to F} \\ \text{IN B to G} \\ \text{IN B to G} \end{array}$	8 " " " " " " " " " " " " " " " " " " "		ns " " " "
9	table test t _{PHL}	(Fig. 7) " " " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 128 & 129 130 & 131 132 & 133 134 & 135 136 & 137 138 & 139	Same te Same te GND " 5.0 V GND 5.0 V GND IN " " "	sts as sub sts as sub GND 5.0 V 5.0 V 5.0 V GND " 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V	group 7, e group 7, e 5.0 V " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " " 5.0 V GND	IN " " GND " " 5.0 V			OUT		OUT	OUT	OUT	OUT	5.0 V "" " " " " " " "	$\label{eq:constraint} \begin{array}{l} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{G} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ $	8		ns " " "
9	table test t _{PHL}	(Fig. 7) " " " "	70 - 89 90 - 109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 124 & 125 126 & 127 130 & 131 132 & 133 134 & 135 136 & 137 138 & 139 140 & 141	Same te Same te GND * 5.0 V GND 5.0 V GND IN * * *	tsts as sub sts as sub GND * 5.0 V 5.0 V GND * * 5.0 V 5.0 V 5.0 V 5.0 V 5.0 V 1N	group 7, e group 7, e 5.0 V " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " " 5.0 V GND	IN " GND 5.0 V 5.0 V		OUT	OUT			OUT	OUT	OUT	5.0 V 	$\begin{array}{c} \text{IN A to D} \\ \text{IN A to F} \\ \text{IN A to F} \\ \text{IN A to A} \\ \text{IN A to A} \\ \text{IN A to B} \\ \text{IN A to B} \\ \text{IN A to B} \\ \text{IN B to C} \\ \text{IN B to F} \\ \text{IN B to F} \\ \text{IN B to A} \\ \text{IN B to F} \\ \text{IN B to E} \\ \text{IN C to D} \\ \end{array}$	8		ns " " " "
9	table test t _{PHL}	(Fig. 7) " " " " " " " " " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 130 & 131 132 & 133 134 & 135 136 & 137 138 & 139 140 & 141	Same te Same te GND " 5.0 V GND 5.0 V GND IN " " "	tst as sub sts as sub GND " 5.0 V 5.0 V 5.0 V GND " " 5.0 V 5.0 V 5.0 V 5.0 V 1N	group 7, e group 7, e 5.0 V " " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " 5.0 V GND " "	IN " " GND " 5.0 V 5.0 V GND		OUT	OUT		OUT	OUT OUT OUT	OUT	OUT	5.0 V	$\label{eq:constraint} \begin{array}{l} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{G} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{to} \ \mathrm{G} \\ \mathrm{IN} \ \mathrm{C} \ \mathrm{to} \ \mathrm{D} \end{array} \end{array}$	8		ns
9	table test t _{PHL}	(Fig. 7) " " " " " " " " "	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 122 & 123 124 & 125 126 & 127 128 & 129 130 & 131 132 & 133 134 & 135 136 & 137 138 & 139 140 & 141 142 & 143	Same te Same te GND * 5.0 V GND 5.0 V GND IN * * *	tst as sub sts as sub GND " 5.0 V 5.0 V GND " " 5.0 V 5.0 V 5.0 V 5.0 V 1N IN GND	group 7, e group 7, e 5.0 V " " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " " " 5.0 V GND " " " " "	IN " " GND " 5.0 V 5.0 V GND "		OUT	OUT		OUT	OUT	OUT	OUT	5.0 V	$\begin{array}{c} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{C} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{D} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{D} \ \mathrm{to} \ \mathrm{A} \end{array} \end{array}$	8		ns
9	table test t _{PHL}	(Fig. 7)	$\begin{array}{r} 70-89\\ 90-109\\ 110\&111\\ 112\&113\\ 114\&115\\ 116\&117\\ 118\&119\\ 120\&121\\ 22\&123\\ 124\&125\\ 126\&127\\ 128\&129\\ 130\&131\\ 132\&133\\ 134\&135\\ 136\&137\\ 138\&139\\ 140\&141\\ 142\&143\\ 144\&145\\ 146\&147\\ \end{array}$	Same te Same te GND " " 5.0 V GND IN " " " " " " " " " " " " " "	tsts as sub sts as sub GND " 5.0 V 5.0 V 5.0 V GND " 5.0 V 5.0 V 5.0 V 1N GND GND	group 7, e group 7, e 5.0 V " " " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " 5.0 V GND " " " " " " " " " " " "	IN " " GND " 5.0 V 5.0 V GND " "		OUT	OUT	OUT		OUT OUT OUT	OUT	OUT	5.0 V " " " " " " "	$\begin{array}{c} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{D} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \$	8		ns "" " " " " "
-	table test t _{PHL}	(Fig. 7)	70 - 89 90 -109 110 & 111 112 & 113 114 & 115 116 & 117 118 & 119 120 & 121 124 & 125 126 & 127 130 & 131 132 & 133 134 & 135 136 & 137 138 & 139 140 & 141 142 & 143 144 & 145 146 & 147 148 & 149	Same te Same te GND * 5.0 V GND 5.0 V GND IN * * * * * * * * * * * * * * * * * *	ts as sub sts as sub GND " " 5.0 V 5.0 V 5.0 V GND " " 5.0 V 5.0 V 5.0 V 1N GND GND GND GND 5.0 V	group 7, e group 7, e 5.0 V " " " " " " " " " " "	xcept T _c =	125°C. -55°C. 5.0 V " " GND 5.0 V " "	GND " " " " 5.0 V GND " " " " " " " " " " " " "	IN " " GND " 5.0 V 5.0 V GND " "		OUT	OUT		OUT	OUT OUT OUT OUT	OUT	OUT	5.0 V	$\begin{array}{c} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{G} \\ \mathrm{IN} \ \mathrm{D} \ \mathrm{to} \ \mathrm{G} \end{array} \\ \mathrm{IN} \ \mathrm{O} \ \mathrm{to} \ \mathrm{G} \\ \mathrm{IN} \ \mathrm{O} \ \mathrm{to} \ \mathrm{G} \end{array} \\ \mathrm{IN} \ \mathrm{O} \ \mathrm{to} \ \mathrm{G} \end{array} \\ \mathrm{IN} \ \mathrm{O} \ \mathrm{to} \ \mathrm{C} \ \mathrm{C} \end{array} \\ \mathrm{IN} \ \mathrm{O} \ \mathrm{C} \ \mathrm{C} \ \mathrm{C} \ \mathrm{O} \ O$	8		ns
9	table test t _{PHL}	(Fig. 7) " " " " " " " " " " " "	$\begin{array}{r} 70-89\\ 90-109\\ 110\&111\\ 112\&113\\ 114\&115\\ 116\&117\\ 118\&119\\ 120\&121\\ 22\&123\\ 124\&125\\ 126\&127\\ 128\&129\\ 130\&131\\ 132\&133\\ 134\&135\\ 136\&137\\ 138\&139\\ 140\&141\\ 142\&143\\ 144\&145\\ 146\&147\\ \end{array}$	Same te Same te GND " " 5.0 V GND IN " " " " " " " " " " " " " "	tsts as sub sts as sub GND " 5.0 V 5.0 V 5.0 V GND " 5.0 V 5.0 V 5.0 V 1N GND GND	group 7, e group 7, e 5.0 V " " " " " " " " " " " " "	xcept T _c =	: 125°C. : -55°C. 5.0 V " " " " " GND	GND " " " 5.0 V GND " " " " " " " " " " " "	IN " " GND " 5.0 V 5.0 V GND " "		OUT	OUT	OUT	OUT	OUT OUT OUT	OUT	OUT	5.0 V	$\begin{array}{c} \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{D} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{A} \ \mathrm{to} \ \mathrm{B} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{F} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{A} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{C} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{B} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{D} \ \mathrm{to} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{IN} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \ \mathrm{E} \\ \mathrm{E} \ \mathrm{E} \$	8		ns "" "

See footnotes at end of device types 08.

43

TABLE III. Group A inspection for device type 08.

Terminal conditions (pins not designated may be high ≥ 2.4 V or low ≤ 0.8 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured terminal	Lin	lits	Unit
Subgroup	Symbol	883 method	Test no.	IN B	IN C	LT	RBO	RBI	IN D	IN A	GND	OUT E	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}		Min	Max	
10	t _{PHL}	3003	156 & 157	GND	GND	5.0 V		5.0 V	GND	IN	GND					OUT			5.0 V	IN A to A	8	144	ns
Tc = 125°C	t _{PLH}	(Fig. 7)	158 & 159										OUT						"	IN A to D	"	"	"
			160 & 161									OUT							"	IN A to E	"	"	"
			162 & 163															OUT	"	IN A to F	"	"	"
			164 & 165	5.0 V	5.0 V											OUT			"	IN A to A	"	"	"
			166 & 167	GND	5.0 V										OUT				"	IN A to B	"	"	"
			168 & 169	5.0 V	5.0 V								OUT						"	IN A to D	"	"	"
			170 & 171	GND	GND		OUT	GND											"	IN A to RBO	"	"	"
			172 & 173	IN		"		5.0 V		GND				OUT					"	IN B to C	"	"	"
			174 & 175			"												OUT	"	IN B to F	"	"	"
			176 & 177			"											OUT		"	IN B to G	"	"	"
			178 & 179						5.0 V							OUT			"	IN B to A	"	"	"
			180 & 181		5.0 V	"			GND	5.0 V								OUT	"	IN B to F	"	"	"
			182 & 183		5.0 V					5.0 V							OUT			IN B to G			
			184 & 185		5.0 V					GND		OUT								IN B to E			
			186 & 187		IN								OUT							IN C to D			
			188 & 189	5.0 V	IN										OUT	0.UT				IN C to B			
			190 & 191		GND				IN						OUT	OUT				IN D to A			
			192 & 193 194 & 195	GND	GND 5.0 V				IN IN					OUT	001					IN D to B IN D to C			
			194 & 195	GND	GND	IN		GND	GND					001		OUT				LT to A			
			198 & 197	X	X	GND	IN	X	X	v						OUT			"	RBO to A	"		
			200 & 201	GND	GND	5.0 V	IIN	IN N	GND	GND						OUT				RBI to A			
11	Same te		al conditions,	-			ont To -		CND	CND	1	1			1	001				REITOR		1	L

4

1/ X = Input may be high level or low level.
 2/ CKT except B.
 3/ Output voltages shall be either:

 (a) H = 2.4 volts minimum and L = 0.4 volts minimum when using high speed checker double comparator, or
 (b) H ≥ 1.5 volts and L ≤ 1.5 volts when using a high speed checker single comparator.

		MIL-STD-	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883	A,B,C,D			-		-	-		-	-	-					Measured	Lim	nits	Unit
	-	method	Test no.	IN B	IN C	BI	IN D	IN A	OUT E	GND	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{CC}	terminal	Min	Max	
1	Vol	3007	1	Х	Х	0.8 V	Х	Х	10 mA	GND							4.5 V	E		0.4	V
$Tc = 25^{\circ}C$	<u>1</u> /		2	"	"	"	"	"		"	10 mA						"	D		"	"
			3	"	"	"	"	"		"		10 mA					"	С			"
			4	"	"	"	"	"		"			10 mA					В			
			5	"	"	"	"	"		"				10 mA				A			
			6 7	"	"	"	"	"		"					10 mA	10 mA		G			
	1		8	0.8 V	0.8 V	2.0 V	2.0 V	0.8 V	5.5 V	"						TU MA	"	E F		250	μA
	ICEX		9	0.0 V "	0.0 V "	2.0 V "	2.0 V "	0.0 V "	5.5 V		5.5 V							D		250	μA "
			9 10	"	"	"	"	"		"	5.5 V	5.5 V						C			
			10	"	"	"	**	"		"		0.0 V	5.5 V				"	В			"
			12	"	"	"	"	"		"			0.0 1	5.5 V			"	Ă			"
			13	"	"	"	**	"		"					5.5 V		"	G			"
			14	"	"	"	"	"		"						5.5 V	"	F			"
	VIC		15					-12 mA		"							"	IN A		-1.5	"
			16	-12 mA						**							"	IN B		"	"
			17		-12 mA					**							"	IN C		"	"
			18				-12 mA			"							"	IN D			
			19	\	\	-12 mA	\ /	o () ("							"	BI		"	
	I _{IL}	3009	20 <u>2</u> /	5.5 V	5.5 V	5.5 V	5.5 V	0.4 V		"							5.5 V	IN A	-0.7	-1.6	mA
			20 CKT C	5.5 V				0.4 V										IN A	-0.4	-1.3	
			21 <u>2</u> / 21 CKT C	0.4 V 0.4 V				5.5 V		"								IN B IN B	-0.7 -0.4	-1.6 -1.3	
			21 CKT C 22 <u>2</u> /	0.4 V 5.5 V	0.4 V					"								IN D	-0.4	-1.3	
			22 CKT C	5.5 v "	0.4 V 0.4 V					"								INC	-0.4	-1.3	
			23 <u>2</u> /	"	5.5 V		0.4 V			"							"	IN D	-0.7	-1.6	"
			23 CKT C		"		0.4 V			"							"	IN D	-0.4	-1.3	
			24 <u>2</u> /	"	"	0.4 V	5.5 V	"		"							"	BI	-0.7	-1.6	"
			24 CKT C	"	"	0.4 V	5.5 V	"		"							"	BI	-0.4	-1.3	
	I _{IH1}	3010	25	GND	GND	GND	GND	2.4 V		"							"	IN A		40	μA
			26	2.4 V	GND	"	"	GND		**							"	IN B		"	
			27	GND	2.4 V	"	"	"		**							"	IN C		"	"
		"	28	"	GND	"	2.4 V	"		**							"	IN D		"	"
		"	29	"	"	2.4 V	GND	"		"							"	BI		"	"
	I _{IH2}	3010	30	"	"	GND	"	5.5 V		"							"	IN A		100	μA
			31	5.5 V	"		"	GND		"								IN B			
			32	GND	5.5 V					"								IN C			
			33		GND		5.5 V			"								IN D			
			34			5.5 V	GND			"								BI			
2	I _{CC}	3005 sts, terminal cor	35 nditional and li	GND	GND		GND	GND	o omittad		l				1			V _{cc}	I	47	mA
3		sts, terminal col sts, terminal col			• • •																
3	Same les	sis, terrinid Col	nuidons, and l	inints as SUD	gioup i, exi	сері і _С = -3		C resis die	unnilleu.												

TABLE III. Group A inspection for device type 09. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.8 V or open).

See footnotes at end of device type 09.

Subgroup	Symbol	MIL-STD- 883	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured	Lir	nits	Unit
0 1	,	method	Test no.	IN B	IN C	BI	IN D	IN A	OUT E	GND	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{CC}	terminal	Min	Max	1
7	Truth		36	GND	GND		GND	GND	н	GND	Н	Н	Н	Н	L	Н	5.5 V				
Tc = 25°C	table		37	"			"	5.0 V	L	"	L	н		L	L	L	"				
	test		38	5.0 V			"	GND	н		н	L	"	н	н	"					
			39	5.0 V			"	5.0 V	L		н	н	"	н							
			40	GND	5.0 V		"	GND	L		L	"	"	L	"	н	"				
			41	GND			"	5.0 V	L		н	"	L	н	"						
			42	5.0 V			"	GND	н		н	"	L	L	"	"			<u>3</u> /		
			43	5.0 V			"	5.0 V	L		L	"	н	н	L	L	"		_		
l			44	GND	GND		5.0 V	GND	н		н	"	"		н	н	"				
			45	GND	"		"	5.0 V	L	"	L	"	"	"	"	н	"				
			46	5.0 V			"	GND	н		н	L	L	L	"	L	"				
			47	5.0 V	"		"	5.0 V	L		н	н	L		"	L	"				
			48	GND	5.0 V		"	GND	L		L	L	н		"	н	"				
			49	GND	"		"	5.0 V	L		н	"	L	н	"	"					
			50	5.0 V	"		"	GND	Н		н	"	"	L	"	"					
			51	5.0 V	"		"	5.0 V	L		L	"	"	"	L	L	"				
			52	Х	Х	GND	Х	Х	L		L	"	"	"	L	L	"				
8	Truth		53 to 69	Same te	ests as sul	ogroup 7,	except T _C	= 125°C.													
	table		70 to 76	Same te	ests as sul	ogroup 7,	except T _c	= -55°C.													
	test																				
9	t _{PHL}	3003	77 & 78	GND	GND	5.0 V	GND	IN		GND				OUT			5.0 V	IN A to A	8	104	ns
$Tc = 25^{\circ}C$	t _{PLH}	(Fig 8)	79 & 80	"	"	"	"	"		"	OUT						"	IN A to D		"	"
			81 & 82	"	"	"	"	"	OUT								"	IN A to E		"	"
			83 & 84	"	"	"	"	"		"						OUT	"	IN A to F		"	"
			85 & 86	5.0 V	5.0 V	"	"							OUT				IN A to A		"	
			87 & 88	GND	5.0 V	"	"						OUT					IN A to B		"	
			89 & 90	5.0 V	5.0 V	"					OUT							IN A to D			
			91 & 92	IN "	GND	"		GND				OUT						IN B to C			
l			93 & 94			"										OUT		IN B to F			
			95 & 96			"								0.UT	OUT			IN B to G			
			97 & 98				5.0 V							OUT		OUT		IN B to A			
			99 & 100		5.0 V		GND	5.0 V								OUT		IN B to F			
			101 & 102		5.0 V			GND	OUT						OUT			IN B to E			
			103 & 104	CNID	5.0 V			5.0 V			OUT				OUT			IN B to G			
	1		105 & 106	GND	IN IN			GND GND			OUT		OUT					IN C to D			
i								GIND	1		1		OUT				1	IN C to B			1
			107 & 108	5.0 V			INI	CNID							OUT						
			109 & 110	GND	GND		IN	GND					OUT		OUT			IN D to G			
							IN IN IN	GND 5.0 V GND				OUT	OUT		OUT						

TABLE III. <u>Group A inspection for device type 09</u> – Continued. Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.8 V or open).

See notes at end of device type 09.

MIL-M-38510/10D

		MIL-STD-	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883	A,B,C,D															Measured	Lir	nits	Unit
		method	Test no.	IN B	IN C	BI	IN D	IN A	OUT E	GND	OUT D	OUT C	OUT B	OUT A	OUT G	OUT F	V _{cc}	terminal	Min	Max	
10	t _{PHL}	3003	117 & 118	GND	GND	5.0 V	GND	IN		GND				OUT			5.0 V	IN A to A	8	144	ns
Tc = 125°C	t _{PLH}	(Fig 8)	119 & 120	"	"	"	"				OUT						"	IN A to D	"	"	
			121 & 122	"		"	"		OUT								"	IN A to E	"		"
			123 & 124	"		"	"									OUT	"	IN A to F	"		"
			125 & 126	5.0 V	5.0 V	"	"							OUT			"	IN A to A	"	"	"
			127 & 128	GND	5.0 V	"	"						OUT				"	IN A to B	"		"
			129 & 130	5.0 V	5.0 V	"	"				OUT						"	IN A to D	"	"	"
			131 & 132	IN	GND	"	"	GND				OUT					"	IN B to C	"	"	"
			133 & 134	"	"	"	"									OUT	"	IN B to F	"	"	"
			135 & 136	"	"	"	"								OUT		"	IN B to G	"	"	"
			137 & 138	"	"	"	5.0 V							OUT			"	IN B to A	"	"	"
			139 & 140	"	5.0 V	"	GND	5.0 V								OUT	"	IN B to F	"	"	"
			141 & 142	"	5.0 V	"	"	GND	OUT								"	IN B to E	"	"	"
			143 & 144	"	5.0 V	"	"	5.0 V							OUT		"	IN B to G	"	"	"
			145 & 146	GND	IN	"	"	GND			OUT						"	IN C to D	"	"	"
			147 & 148	5.0 V	IN	"	"	GND					OUT				"	IN C to B	"	"	"
			149 & 150	GND	GND	"	IN	GND							OUT		"	IN D to G	"	"	"
			151 & 152	5.0 V	GND	"	IN	5.0 V					OUT				"	IN D to B	"	"	"
			153 & 154	GND	5.0 V	"	IN	GND		"		OUT					"	IN D to C	"	"	"
			155 & 156	GND	GND	IN	GND	GND						OUT			"	BI to A	"	"	"

TABLE III. Group A inspection for device type 09 – Continued.

Terminal conditions (pins not designated may be high \geq 2.0 V or low \leq 0.8 V or open).

1/X = Input may be high level or low level.2/CKT except B.3/Output voltages shall be either:

47

(a) H = 2.4 volts minimum and L = 0.4 volts minimum when using high speed checker double comparator, or (b) $H \ge 1.5$ volts and $L \le 1.5$ volts when using a high speed checker single comparator.

MIL-M-38510/10D

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it is not mandatory)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).

6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.4 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

MIL-M-38510/10D

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
V _{IN}	Voltage level at an input terminal
l _{in}	Current flowing into an input terminal

6.6 <u>Logistic support</u>. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type		
01	5442		
02	5443		
03	5444		
04	5445		
05	54145		
06	5446		
07	5447		
08	5448		
09	5449		

6.8 <u>Manufacturers' designation</u>. Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

Device	Circuit				
type	Texas Instruments	Signetics	National Semiconductor/ Fairchild Semiconductor	Motorola Inc.	Fairchild
01	D	С	E	В	А
04	С	А	E	В	D
05	С	А	E	В	D
06	С	В	D		
07	С	В	D		
08	В	С	E	A	

TABLE IV. Manufacturers' designations.

6.9 <u>Changes from previous issue.</u> Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

MIL-M-38510/10D

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-2093)

Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>http://assist.daps.dla.mil</u>.