INCH-POUND MIL-M-38510/238B 16 December 2003 SUPERSEDING MIL-M-38510/238A

9 March 1981

MILITARY SPECIFICATION

### MICROCIRCUITS, DIGITAL, MOS, 4096 BIT STATIC RANDOM ACCESS MEMORY (RAM), MONOLITHIC SILICON

Inactive for new design after 24 July 1995.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, N-channel static MOS, 4096 bit random access memories. Two product assurance classes and a choice of case outlines/lead finish are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 <u>Part or Identifying Number (PIN)</u>. The PIN should be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types should be as follows:

| Device type                          | <u>Circuit</u>   | Address access time      |
|--------------------------------------|------------------|--------------------------|
| 01 (T <sub>C</sub> = -55°C "instant- | 4096 words/1-bit | t <sub>AA</sub> = 85 ns  |
| on" to +125°) <u>1</u> /             |                  |                          |
| 02 ( $T_C = -55^{\circ}C$ "instant-  | 1024 words/4-bit | t <sub>AA</sub> = 450 ns |
| on" to +125°) <u>1</u> /             |                  |                          |
| 03 (T <sub>C</sub> = -55°C "instant- | 4096 words/1-bit | t <sub>AA</sub> = 70 ns  |
| on" to +125°) <u>1</u> /             |                  |                          |
| 04 (T <sub>C</sub> = -55°C "instant- | 1024 words/4-bit | t <sub>AA</sub> = 250 ns |
| on" to +125°) <u>1</u> /             |                  |                          |
| 05 (T <sub>C</sub> = -55°C "instant- | 4096 words/1-bit | t <sub>AA</sub> = 55 ns  |
| on" to +125°) <u>1</u> /             |                  |                          |
| 06 (T <sub>C</sub> = -55°C "instant- | 1024 words/4-bit | t <sub>AA</sub> = 70 ns  |
| on" to +125°) <u>1</u> /             |                  |                          |
| 07 ( $T_C = -55^{\circ}C$ "instant-  | 4096 words/1-bit | t <sub>AA</sub> = 45 ns  |
| on" to +125°) <u>1</u> /             |                  |                          |

1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.

 $1/T_c = T_A$  at test time equals zero. "Instant-on" is defined as all functional characteristics guaranteed at all temperatures 50 ms after power is applied.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A

FSC 5962

| 1.2.3 | Case outlines. | The case outlines should be as designated in MIL-STD-1835 and as follows: |
|-------|----------------|---------------------------------------------------------------------------|
|       |                |                                                                           |

| Outline letter                  | Descriptive designator                                    | Terminals  | Package sty      | le           |
|---------------------------------|-----------------------------------------------------------|------------|------------------|--------------|
| V                               | GDIP1-T18 or CDIP2-T18                                    | 18         | Dual-in-line     |              |
| 1.3 Absolute maximum            | n ratings.                                                |            |                  |              |
|                                 | with respect to ground (01, 02)<br>with respect to ground | 1.5        | 5 V to +7.0 V do | ; <u>2</u> / |
|                                 |                                                           | -3 !       | 5 to +7 0 V dc   |              |
|                                 | e range                                                   |            |                  |              |
| Power dissipation:              |                                                           | -00        | 10 100 0         |              |
|                                 | 03, 05, 06, 07                                            | 12         | W/               |              |
|                                 | 04                                                        |            |                  |              |
|                                 | soldering, 5 seconds)                                     |            |                  |              |
|                                 | emperature                                                |            |                  |              |
|                                 | , junction to case $(\theta_{JC})$ :                      |            |                  |              |
| Maximum DC outp                 |                                                           |            | 5, • • •         |              |
|                                 | 1, 03, 05, 06, 07                                         | 2          | 20 mA            |              |
|                                 | 2, 04                                                     |            | 5 mA             |              |
| 1.4 <u>Recommended op</u>       |                                                           |            |                  |              |
| Device types 01, 02             | 2, 03, 04, 05, 06, and 07                                 | <u>Min</u> | Max              | <u>Units</u> |
| Supply voltages:                |                                                           |            |                  |              |
|                                 |                                                           |            | 5.5              | Vdc<br>Vdc   |
|                                 | voltage                                                   |            | Vcc              | Vdc          |
| 0 1                             | voltage                                                   |            |                  | Vdc          |
|                                 | Ire                                                       |            |                  | С            |
| Device type 01                  |                                                           |            |                  |              |
| Read cycle time (t <sub>R</sub> | c)                                                        |            |                  | ns           |
|                                 | e (t <sub>AA</sub> )                                      |            | 85               | ns           |
|                                 | cs1) <u>4</u> /                                           |            | 85               | ns           |
|                                 | time (t <sub>ACS2</sub> ) <u>5</u> /                      |            | 100              | ns           |
| Output hold time fro            | om address change (t <sub>OH</sub> )                      | 5          |                  | ns           |

 $\underline{2}$ / Under absolute maximum ratings, the voltage values are with respect to the most negative supply voltage, V<sub>SS</sub>. Throughout the remainder of this specification, the voltage values are with respect to V<sub>SS</sub>.

3/ Maximum junction temperature (T<sub>J</sub>) may be increased to 175°C during the burn-in and steady state life test. 4/ Chip deselected for greater than 55 ns prior to selection. 5/ Chip deselected for a finite time that is less than 55 ns prior to selection.

### 1.4 <u>Recommended operating conditions</u> – Continued.

| Device types 01 - Continued                                                              | <u>Min</u> | <u>Max</u> | <u>Units</u> |
|------------------------------------------------------------------------------------------|------------|------------|--------------|
| Chip select to output in low-Z (t <sub>LZ</sub> ) <u>6</u> / <u>7</u> /                  | 10         |            | ns           |
| Chip deselect to output in high-Z (t <sub>HZ</sub> ) 6/ 7/                               | 0          | 40         | ns           |
| Chip select to power-up time $(t_{PU})$                                                  |            |            | ns           |
| Chip select to power-down time (t <sub>PD</sub> )                                        |            | 30         | ns           |
| Write cycle time (t <sub>WC</sub> )                                                      |            |            | ns           |
| Pulse width, chip select to end of write $(t_{CW})$                                      |            |            | ns           |
| Address valid to end of write ( <sub>AW</sub> )<br>Pulse width, write (t <sub>WP</sub> ) |            |            | ns           |
| Data valid to end of write (t <sub>DW</sub> )                                            |            |            | ns<br>ns     |
| Address set-up time (t <sub>AS</sub> )                                                   |            |            | ns           |
| Write recovery time (t <sub>WR</sub> )                                                   |            |            | ns           |
| Data on hold (t <sub>DH</sub> )                                                          |            |            | ns           |
| Write enabled to output in high-Z (t <sub>wz</sub> ) 7/                                  |            | 65         | ns           |
| Output active from end of write (tow) 7/                                                 |            |            | ns           |
| Device type 02                                                                           |            |            |              |
| Deed such time (t )                                                                      | 450        |            |              |
| Read cycle time (t <sub>RC</sub> )                                                       |            | 450        | ns           |
| Address access time (t <sub>AA</sub> )<br>Chip select access time (t <sub>ACS</sub> )    |            | 430<br>120 | ns<br>ns     |
| Output hold time from address change (t <sub>OH</sub> )                                  |            | 120        | ns           |
| Chip select to output in low-Z ( $t_{LZ}$ ) <u>6</u> / <u>7</u> /                        |            |            | ns           |
| Chip deselect to output in high-Z ( $t_{HZ}$ ) $\underline{6}/\underline{7}/$            |            | 100        | ns           |
| Write cycle time $(t_{WC})$                                                              |            |            | ns           |
| Pulse width, write (t <sub>WP</sub> )                                                    |            |            | ns           |
| Data valid to end of write (t <sub>DW</sub> )                                            |            |            | ns           |
| Write recovery time (t <sub>WR</sub> )                                                   |            |            | ns           |
| Data on hold time (t <sub>DH</sub> )                                                     | 0          |            | ns           |
| Write enabled to output in high-Z (t <sub>wz</sub> ) <u>7</u> /                          | 0          | 100        | ns           |
| Device type 03                                                                           |            |            |              |
| Read cycle time (t <sub>RC</sub> )                                                       |            |            | ns           |
| Address access time (t <sub>AA</sub> )                                                   |            | 70         | ns           |
| Chip select access time (t <sub>ACS1</sub> ) <u>8</u> /                                  |            | 70         | ns           |
| Chip select access time $(t_{ACS2})$ $5/$                                                |            | 80         | ns           |
| Output hold time form address change (t <sub>OH</sub> )                                  |            |            | ns           |
| Chip select to output in low-Z ( $t_{LZ}$ ) $\underline{6}/\underline{7}/$               |            |            | ns           |
| Chip deselect to output in high-Z ( $t_{HZ}$ ) $\vec{B}$ / $\vec{T}$ /                   |            | 40         | ns           |
| Chip select to power-up time (t <sub>PU</sub> )                                          |            |            | ns           |
| Chip select to power-down time (t <sub>PD</sub> )                                        |            | 30         | ns           |
| Write cycle time (t <sub>WC</sub> )                                                      |            |            | ns           |
| Pulse width, chip select to end of write $(t_{CW})$                                      |            |            | ns           |
| Address valid to end of write $(t_{AW})$                                                 | 55         |            | ns           |
| Pulse width, write $(t_{WP})$                                                            |            |            | ns           |
|                                                                                          | 40         |            | 113          |

6/ At any given temperature and voltage condition, t<sub>HZ</sub> maximum is less than t<sub>LZ</sub> mimimum both for a given device and from device to device.

 $<sup>\</sup>underline{7}$ / Transition is measured ±500 mV from steady state voltage with specified loading.  $\underline{8}$ / Chip selected for greater than 55 ns prior to selection.

### 1.4 <u>Recommended operating conditions</u> – Continued.

| Device types 03 - Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Min</u>                                                       | Max                        | <u>Units</u>                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------|
| Data valid to end of write $(t_{DW})$<br>Address set-up time $(t_{AS})$<br>Write recovery time $(t_{WR})$<br>Data on hold time $(t_{DH})$<br>Write enabled to output in high-Z $(t_{WZ})$ <u>Z</u> /<br>Output active from end of write $(t_{OW})$ <u>Z</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>15<br>10<br>0                                               | 35                         | ns<br>ns<br>ns<br>ns<br>ns<br>ns                                                |
| Device type 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                            |                                                                                 |
| Read cycle time $(t_{RC})$<br>Address access time $(t_{AA})$<br>Chip select access time $(t_{ACS})$<br>Output hold time from address change $(t_{OH})$<br>Chip select to output in low-Z $(t_{LZ})$ <u>6</u> / <u>7</u> /<br>Chip deselect to output in high-Z $(t_{HZ})$ <u>6</u> / <u>7</u> /<br>Write cycle time $(t_{WC})$<br>Pulse width, write $(t_{WP})$<br>Data valid to end of write $(t_{DW})$                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | 250<br>85<br>60            | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns                              |
| Data on hold time $(t_{DH})$<br>Write enabled to output in high-Z $(t_{WZ})$ 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                | 60                         | ns<br>ns                                                                        |
| Device type 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                            |                                                                                 |
| Read cycle time $(t_{RC})$ Address access time $(t_{ACS1})$ $\underline{8}/$ Chip select access time $(t_{ACS2})$ $\underline{5}/$ Output hold time from address change $(t_{OH})$ Output hold time from address change $(t_{OH})$ Chip select to output in low-Z $(t_{LZ})$ $\underline{6}/$ Z/Chip select to output in high-Z $(t_{HZ})$ G/ p select to power-up time $(t_{PU})$ Ship select to power-down time $(t_{PD})$ Write cycle time $(t_{WC})$ Pulse width, chip select to end of write $(t_{CW})$ Address valid to end of write $(t_{AW})$ Pulse width, write $(t_{WP})$ Data valid to end of write $(t_{DN})$ Address set-up time $(t_{AS})$ Write recovery time $(t_{MR})$ Data on hold time $(t_{DH})$ Write enabled to output in high-Z $(t_{WZ})$ Z/Output active from end of write $(t_{OW})$ Z/ | 5<br>10<br>0<br>55<br>45<br>45<br>25<br>25<br>0<br>10<br>10<br>0 | 55<br>65<br>30<br>20<br>25 | ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>ns<br>n |
| $\label{eq:constraint} \begin{array}{l} \hline \underline{\text{Device type 06}} \\ \hline \\ \text{Read cycle time } (t_{\text{RC}}) \\ \hline \\ \text{Address access time } (t_{\text{AA}}) \\ \hline \\ \text{Chip select access time } (t_{\text{ACS1}}) \\ \hline \\ \text{Chip select access time } (t_{\text{ACS2}}) \\ \hline \\ \hline \\ \text{Output hold time form address change } (t_{\text{OH}}) \\ \hline \\ \hline \\ \text{Chip select to output in low-Z } (t_{\text{LZ}}) \\ \hline \\ $                                                                                                                                                                                                                     |                                                                  | 70<br>70<br>80<br>20       | ns<br>ns<br>ns<br>ns<br>ns<br>ns                                                |

#### 1.4 Recommended operating conditions - Continued.

| Device types 06 - Continued                                   | <u>Min</u> | <u>Max</u> | <u>Units</u> |
|---------------------------------------------------------------|------------|------------|--------------|
| Chip select to power-up time (t <sub>PU</sub> )               |            |            | ns           |
| Chip select to power-down time (t <sub>PD</sub> )             |            | 30         | ns           |
| Write cycle time (t <sub>WC</sub> )                           | 70         |            | ns           |
| Pulse width, chip select to end of write (t <sub>CW</sub> )   | 65         |            | ns           |
| Address valid to end of write (t <sub>AW</sub> )              |            |            | ns           |
| Address set-up time (t <sub>AS</sub> )                        |            |            | ns           |
| Pulse width, write (twp)                                      | 50         |            | ns           |
| Write recovery time (t <sub>WR</sub> )                        |            |            | ns           |
| Data valid to end of write (t <sub>DW</sub> )                 |            |            | ns           |
| Data on hold time (t <sub>DH</sub> )                          |            |            | ns           |
| Write enabled to output in high-Z (t <sub>WZ</sub> ) 7/       | 0          | 25         | ns           |
| Output active from end of write (t <sub>OW</sub> ) <u>7</u> / | 0          |            | ns           |
| Device type 07                                                |            |            |              |
| Read cycle time (t <sub>RC</sub> )                            | 45         |            | ns           |
| Address access time (t <sub>AA</sub> )                        |            | 45         | ns           |
| Chip select access time (t <sub>ACS1</sub> ) <u>8</u> /       |            | 45         | ns           |
| Chip select access time (t <sub>ACS2</sub> ) <u>5</u> /       |            | 55         | ns           |
| Output hold time from address change (t <sub>OH</sub> )       | 5          |            | ns           |
| Chip select to output in low-Z (t <sub>LZ</sub> ) 6/ 7/       | 10         |            | ns           |
| Chip deselect to output in high-Z (t <sub>HZ</sub> ) 6/ 7/    |            | 30         | ns           |
| Chip select to power-up time (t <sub>PU)</sub>                |            |            | ns           |
| Chip select to power-down time (t <sub>PD</sub> )             |            | 20         | ns           |
| Write cycle time (t <sub>WC</sub> )                           |            |            | ns           |
| Pulse width, chip select to end of write (t <sub>CW</sub> )   |            |            | ns           |
| Address valid to end of write (t <sub>AW</sub> )              |            |            | ns           |
| Pulse width, write (twP)                                      |            |            | ns           |
| Data valid to end of write (t <sub>DW</sub> )                 |            |            | ns           |
| Address set-up time (t <sub>AS</sub> )                        |            |            | ns           |
| Write recovery time (t <sub>WR</sub> )                        |            |            | ns           |
| Data on hold time (t <sub>DH</sub> )                          |            |            | ns           |
| Write enabled to output in high-Z ( $t_{WZ}$ ) 7              |            | 25         | ns           |
| Output active from end of write (t <sub>OW</sub> ) <u>7</u> / | 0          |            | ns           |

#### 2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

#### 2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

#### DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

#### DEPARTMENT OF DEFENSE STANDARDS

| MIL-STD-883  | - | Test Method Standard for Microelectronics.            |
|--------------|---|-------------------------------------------------------|
| MIL-STD-1835 | - | Interface Standard Electronic Component Case Outlines |

(Copies of these documents are available online at http://assist.daps.dla.mil;quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

#### 3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figure 1 and 2.

3.3.2 Truth tables. The truth tables and logic equations shall be as specified on figure 3.

3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.

3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.7.1 <u>Certification/compliance mark</u>. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 46 (see MIL-PRF-38535, appendix A).

#### 4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with. MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

### TABLE I. Electrical performance characteristics.

| Test                                                  | Symbol            | Conditions                                                                          | Device                | Lin       | nits     |          |
|-------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------|-----------------------|-----------|----------|----------|
|                                                       |                   | $-55^{\circ}C \le T_C \le +125^{\circ}C$<br>unless otherwise specified              | types                 | Min       | Max      | Unit     |
| Low-level input leakage current (all input pins)      | I <sub>IL</sub>   | $V_{CC} = 5.5 V$<br>$V_{IN} = Gnd$                                                  | All                   |           | 10       | μA       |
| High-level input leakage current (all input pins)     | I <sub>IH</sub>   | $\begin{array}{l} V_{CC} = 5.5 \ V \\ V_{IN} = 5.5 \ V \end{array}$                 | All                   |           | 10       | μA       |
| Output leakage current                                | I <sub>LO</sub>   | $\overline{\text{CS}} = \text{V}_{\text{IH}}, \text{V}_{\text{CC}} = 5.5 \text{ V}$ | All                   |           | 50       | μA       |
| Power supply current                                  | 1.                | $V_{OUT}$ = Gnd to 4.5 V                                                            | 01                    |           | 160      | mA       |
| r ower supply current                                 | Icc               | $V_{CC} = 5.5 V$                                                                    | 02                    |           | 100      | mA       |
|                                                       |                   | $\overline{CS} = V_{IL}$ , outputs open                                             | 03                    |           | 180      | mA       |
|                                                       |                   |                                                                                     | 04                    |           | 70       | mA       |
|                                                       |                   |                                                                                     | 05, 06, 07            |           | 180      | mA       |
| Standby current                                       | I <sub>SB</sub>   | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ $\overline{CS} = V_{IH}$                 | 01, 03,<br>05, 07, 06 |           | 30       | mA       |
| Output low voltage                                    | V <sub>OL</sub>   | $I_{OL} = 2.1 \text{ mA}$                                                           | 02, 04                |           | 0.4      | V        |
|                                                       |                   | $I_{OL} = 8.0 \text{ mA}$                                                           | 01, 03,<br>05, 06, 07 |           | 0.4      | V        |
| Output high voltage                                   | V <sub>OH</sub>   | I <sub>OH</sub> = -1.0 mA                                                           | 02, 04                | 2.4       |          | V        |
|                                                       |                   | I <sub>OH</sub> = -4.0 mA                                                           | 01, 03,<br>05, 06, 07 | 2.4       |          | V        |
| Output Short circuit<br>Current <u>3</u> / <u>4</u> / | I <sub>OS</sub>   | $V_{CC} = 5.5 \text{ V}  V_{OUT} = Gnd$                                             | All                   |           | 300      | mA       |
| Input capacitance <u>4</u> /                          | CIN               | $V_{IN} = 0 V$ , f = 1 MHz<br>T <sub>C</sub> = 25°C                                 | All                   |           | 5        | pF       |
| Peak power on <u>4</u> /                              | I <sub>PO</sub>   | $V_{CC} = 4.5 \text{ V}, \ \overline{CS} = 2.4 \text{ V}$                           | 01, 03,<br>05, 07     |           | 70       | mA       |
|                                                       |                   |                                                                                     | 06                    |           | 50       | mA       |
| Read cycle time <u>2</u> /                            | t <sub>RC</sub>   | See table III                                                                       | 01                    | 85        |          | ns       |
|                                                       |                   |                                                                                     | 02                    | 450       |          | ns       |
|                                                       |                   |                                                                                     | 03                    | 70        |          | ns       |
|                                                       |                   |                                                                                     | 04<br>05              | 250<br>55 |          | ns       |
|                                                       |                   |                                                                                     | 05                    | 70        |          | ns<br>ns |
|                                                       |                   |                                                                                     | 07                    | 45        |          | ns       |
| Address access time                                   | t <sub>AA</sub>   | 1                                                                                   | 01                    | .0        | 85       | ns       |
|                                                       | 19.61             |                                                                                     | 02                    | 1         | 450      | ns       |
|                                                       |                   |                                                                                     | 03                    |           | 70       | ns       |
|                                                       |                   |                                                                                     | 04                    |           | 250      | ns       |
|                                                       |                   |                                                                                     | 05                    |           | 55       | ns       |
|                                                       |                   |                                                                                     | 06                    |           | 70       | ns       |
|                                                       |                   | 4                                                                                   | 07                    |           | 45       | ns       |
| Chip select access time <u>5</u> /                    | t <sub>ACS1</sub> |                                                                                     | 01                    |           | 85       | ns       |
|                                                       |                   |                                                                                     | 02                    |           | 120      | ns       |
|                                                       |                   |                                                                                     | 03<br>04              |           | 70<br>85 | ns       |
|                                                       |                   |                                                                                     | 04                    |           | 85<br>55 | ns<br>ns |
|                                                       |                   |                                                                                     | 05                    |           | 70       | ns       |
|                                                       | 1                 |                                                                                     | 07                    |           | 45       | ns       |

| Test                                            | Symbol            | Conditions                                                             | Device                | Lin     | nits |          |
|-------------------------------------------------|-------------------|------------------------------------------------------------------------|-----------------------|---------|------|----------|
|                                                 |                   | $-55^{\circ}C \le T_C \le +125^{\circ}C$<br>unless otherwise specified | types                 | Min     | Max  | Unit     |
| Chip select access time <u>6</u> /              | t <sub>ACS2</sub> | See table III                                                          | 01                    |         | 100  | ns       |
|                                                 |                   |                                                                        | 03                    |         | 80   | ns       |
|                                                 |                   |                                                                        | 05                    |         | 65   | ns       |
|                                                 |                   |                                                                        | 06                    |         | 80   | ns       |
|                                                 |                   |                                                                        | 07                    |         | 55   | ns       |
| Chip select to output in Low-Z $4/7/$           | t <sub>LZ</sub>   |                                                                        | 01, 03,<br>04, 05, 07 | 10      |      | ns       |
|                                                 |                   |                                                                        | 02, 06                | 20      |      | ns       |
| Chip deselect to output in High-Z $\frac{4}{7}$ | t <sub>HZ</sub>   | -                                                                      | 01, 03                | 0       | 40   | ns       |
|                                                 | чнz               |                                                                        | 02                    |         |      | ns       |
|                                                 |                   |                                                                        | 04                    | 0       | 100  | ns       |
|                                                 |                   |                                                                        | 05, 07                | 0       | 60   |          |
|                                                 |                   |                                                                        |                       | 0       | 30   | ns       |
|                                                 |                   |                                                                        | 06                    | 0       | 20   | ns       |
| Output hold from address change <u>4</u> /      | t <sub>OH</sub>   |                                                                        | 01, 03,<br>05, 06, 07 | 5       |      | ns       |
|                                                 |                   |                                                                        | 02                    | 50      |      | ns       |
|                                                 |                   | -                                                                      | 04                    | 15      |      | ns       |
| Chip select to power up time $\underline{4}$    | t <sub>PU</sub>   |                                                                        | 01, 03,<br>05, 06, 07 | 0       |      | ns       |
| Chip deselect to power down time <u>4</u> /     | t <sub>PD</sub>   |                                                                        | 01,06                 |         | 30   | ns       |
| Write evels time                                | 4                 | -                                                                      | 03, 05, 07            | 85      | 20   | ns       |
| Write cycle time                                | t <sub>wc</sub>   |                                                                        | 01<br>02              | 450     |      | ns<br>ns |
|                                                 |                   |                                                                        | 02                    | 70      |      | ns       |
|                                                 |                   |                                                                        | 04                    | 250     |      | ns       |
|                                                 |                   |                                                                        | 05                    | 55      |      | ns       |
|                                                 |                   |                                                                        | 06                    | 70      |      | ns       |
|                                                 |                   |                                                                        | 07                    | 45      |      | ns       |
| Chip select to end of write                     | t <sub>CW</sub>   |                                                                        | 01                    | 70      |      | ns       |
|                                                 |                   |                                                                        | 03                    | 55      |      | ns       |
|                                                 |                   |                                                                        | 05, 07                | 45      |      | ns       |
|                                                 |                   |                                                                        | 06                    | 65      |      | ns       |
| Address valid to end of write                   | t <sub>AW</sub>   |                                                                        | 01                    | 70      |      | ns       |
|                                                 |                   |                                                                        | 03                    | 55      |      | ns       |
|                                                 |                   |                                                                        | 05, 07                | 45      |      | ns       |
|                                                 | 4                 | -                                                                      | 06                    | 65<br>0 |      | ns       |
| Address setup time                              | t <sub>AS</sub>   |                                                                        | 01, 03,<br>05, 06, 07 | 0       |      | ns       |
| Write pulse width                               | t <sub>WP</sub>   |                                                                        | 01                    | 55      |      | ns       |
|                                                 |                   |                                                                        | 02                    | 200     |      | ns       |
|                                                 |                   |                                                                        | 03                    | 40      |      | ns       |
|                                                 |                   |                                                                        | 04                    | 135     |      | ns       |
|                                                 |                   |                                                                        | 05                    | 25      |      | ns       |
|                                                 |                   |                                                                        | 06                    | 50      |      | ns       |
|                                                 |                   |                                                                        | 07                    | 25      |      | ns       |

## TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                                   | Symbol          | Conditions                                                             | Device                | Lin | nits |      |
|----------------------------------------|-----------------|------------------------------------------------------------------------|-----------------------|-----|------|------|
|                                        | -               | $-55^{\circ}C \le T_C \le +125^{\circ}C$<br>unless otherwise specified | types                 | Min | Max  | Unit |
| Write recovery time                    | t <sub>WR</sub> | See table III                                                          | 01, 03                | 15  |      | ns   |
|                                        |                 |                                                                        | 02, 04                | 0   |      | ns   |
|                                        |                 |                                                                        | 05, 07                | 10  |      | ns   |
|                                        |                 |                                                                        | 06                    | 5   |      | ns   |
| Data valid to end of write             | t <sub>DW</sub> |                                                                        | 01                    | 35  |      | ns   |
|                                        |                 |                                                                        | 02                    | 200 |      | ns   |
|                                        |                 |                                                                        | 03                    | 30  |      | ns   |
|                                        |                 |                                                                        | 04                    | 135 |      | ns   |
|                                        |                 |                                                                        | 05, 06                | 25  |      | ns   |
|                                        |                 |                                                                        | 07                    | 25  |      | ns   |
| Data hold time                         | t <sub>DH</sub> |                                                                        | 01, 03<br>05, 07      | 10  |      | ns   |
|                                        |                 |                                                                        | 02, 04, 06            | 0   |      | ns   |
| Write enabled to output in             | t <sub>WZ</sub> |                                                                        | 01                    | 0   | 65   | ns   |
| High-Z <u>4/ 7</u> /                   |                 |                                                                        | 02                    | 0   | 100  | ns   |
|                                        |                 |                                                                        | 03                    | 0   | 35   | ns   |
|                                        |                 |                                                                        | 04                    | 0   | 60   | ns   |
| Output active from and of write $1/7/$ | 4               | 4                                                                      | 05, 06, 07            | 0   | 25   | ns   |
| Output active from end of write $4/7/$ | t <sub>ow</sub> |                                                                        | 01, 03,<br>05, 06, 07 | 0   |      | ns   |

#### TABLE I. Electrical performance characteristics - Continued.

 $\underline{1}$  Output levels are tested in static state and are specified over voltage range of V<sub>CC</sub>.

2/ Unless otherwise specified, the dynamic load shall be in accordance with figure 4 (load A).

 $\underline{3}$ / Duration not exceed 1 second.

4/ Not tested.

5/ Complete terminal conditions are as specified in table III.

 $\underline{6}$ / Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is 0 ns, the chip is by definition selected and access occurs according to read cycle no 1.)

7/ Transition is measured ±500 mV from steady state voltage using figure 4 (load B).

|                                                       | Subgroups                   | (see table III)      |
|-------------------------------------------------------|-----------------------------|----------------------|
| MIL-PRF-38535                                         | Class S                     | Class B              |
| test requirements                                     | devices                     | devices              |
| Interim electrical parameters                         | 2, 8*                       | NA                   |
| Final electrical test parameters                      | 1**, 2, 3,<br>7**, 8        | 1**, 2, 3,<br>7**, 8 |
| Group A test requirements                             | 1, 2, 3, 7, 8,<br>9, 10, 11 | 1, 2, 3, 7, 8,       |
| Group B test when using the method 5005<br>QCI option | 1, 2, 3, 7, 8<br>9, 10, 11  | N/A                  |
| Group C end-point electrical<br>parameters            | 1, 2, 3,7, 8<br>9, 10, 11   | 1, 7                 |
| Group D end-point electrical parameters               | 1, 2, 3, 7, 8               | 1, 7                 |

#### TABLE II. Electrical test requirements.

\*Maximum Temperature only

\*\*PDA applies to subgroups 1 and 7.

4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

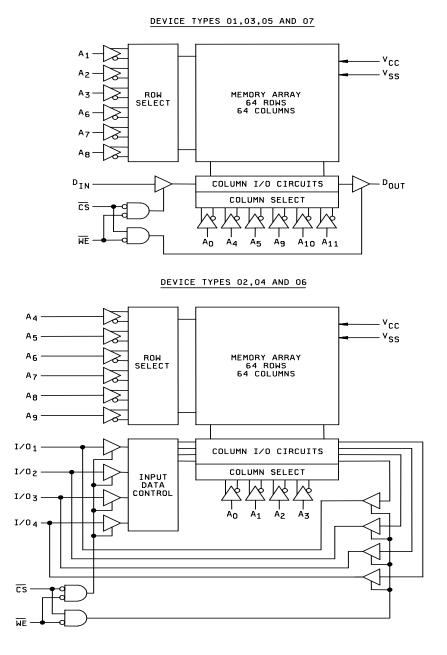
4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.

4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.


4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

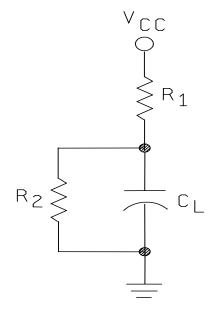
|        | Device types 01, 03, 05 and 07 | Device types 02, 04 and 06 |
|--------|--------------------------------|----------------------------|
| Pin    | Case V                         | Case V                     |
| number |                                |                            |
| 1      | A <sub>0</sub>                 | A <sub>6</sub>             |
| 2      | A <sub>1</sub>                 | A <sub>5</sub>             |
| 3      | A2                             | A <sub>4</sub>             |
| 4      | A <sub>3</sub>                 | A <sub>3</sub>             |
| 5      | A <sub>4</sub>                 | A <sub>0</sub>             |
| 6      | A <sub>5</sub>                 | A <sub>1</sub>             |
| 7      | D <sub>OUT</sub>               | A <sub>2</sub>             |
| 8      | WE                             | CS                         |
| 9      | V <sub>SS</sub>                | V <sub>SS</sub>            |
| 10     | CS                             | WE                         |
| 11     | D <sub>IN</sub>                | 1/04                       |
| 12     | A <sub>11</sub>                | 1/03                       |
| 13     | A <sub>10</sub>                | 1/02                       |
| 14     | A <sub>9</sub>                 | 1/01                       |
| 15     | A <sub>8</sub>                 | A <sub>9</sub>             |
| 16     | A <sub>7</sub>                 | A <sub>8</sub>             |
| 17     | A <sub>6</sub>                 | A <sub>7</sub>             |
| 18     | V <sub>CC</sub>                | V <sub>CC</sub>            |

FIGURE 1. Terminal connections.



NOTE: Address numbering may vary between vendors.



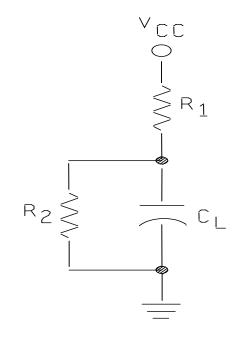

Device types 01, 02, 03, 04, 05, 06, and 07

| CS | WE  | Mode         | 01, 03, 05, 07   | 01, 03, 05, 06, 07 | 02, 04, 06       |
|----|-----|--------------|------------------|--------------------|------------------|
| CS | VVE | mode         | Output           | Power              | I/O              |
| Н  | Х   | Not selected | High Z           | Stand by           | High Z           |
| L  | L   | Write        | High Z           | Active             | D <sub>IN</sub>  |
| L  | Н   | Read         | D <sub>OUT</sub> | Active             | D <sub>OUT</sub> |

H = High voltage level. L = Low voltage level. X = Don't care (high or low).

FIGURE 3. Truth table.

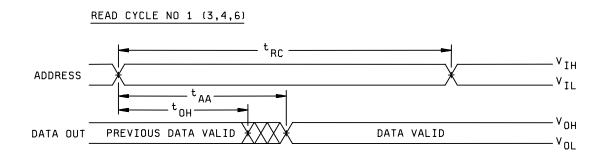
# DEVICE TYPES 01,03,05,06 AND 07

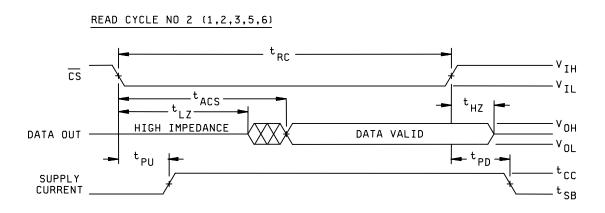



NOTES:

- 1.  $V_{CC}$  is defined in table III. 2. Load A: R1 = 480 $\Omega$  ±5%; R2 = 255 $\Omega$  ±5%; and C<sub>L</sub> = 30 pF (including probe and jig capacitance).
- 3. Load B; R1 = 480 $\Omega$  ±5%; R2 = 255 $\Omega$  ±5%; and C<sub>L</sub> = 5 pF (including probe and jig capacitance).

FIGURE 4. Dynamic load for switching tests.


# DEVICE TYPE 02 AND 04

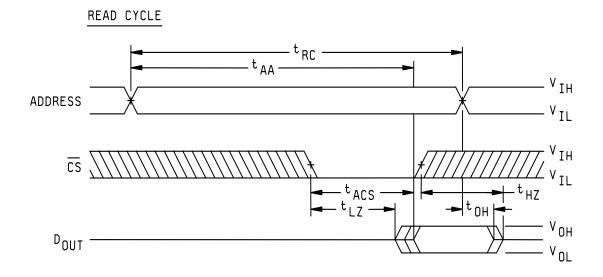



### NOTES:

- 1.  $V_{CC}$  is defined in table III. 2.  $C_L = 100 \text{ pF}$  total, including probe and jig capacitance. 3.  $R1 = 1.8 \text{ k}\Omega \pm 5\%$ ,  $R2 = 1 \text{ k}\Omega \pm 5\%$ .

FIGURE 4. Dynamic load for switching tests - Continued.



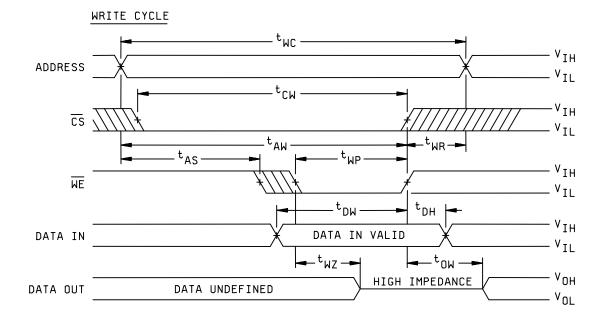



#### **Wavefroms**

#### NOTES:

- 1. Chip deselected for greater than 55 ns prior to selection.
- 2. Chip deselected for a finite time that is less than 55 ns prior to selection. (If the deselect time is 0 ns the chip is by definition selected and access occurs according to read cycle no. 1.)
- 3. WE is high for read cycles.
- 4. Device is continuously selected,  $\overline{CS} = V_{IL}$ .
- 5. Addresses valid prior to or coincident with  $\overline{CS}$  transition low.
- 6. See table I for limits and complete terminal conditions.
- 7. Input and output timing reference levels are 1.5 volts with input pulse levels of ground to 3.0 volts.
- 8.  $t_{LZ}$  and  $t_{HZ}$  are measured at  $\pm 500$  mV from steady state with 5 pF load.

FIGURE 5. Read cycle waveforms and test conditions for device types 01, 03, 05, 06, and 07.




#### <u>Waveforms</u>

### NOTES:

- 1.  $\overline{\text{WE}}$  is high for a read cycle.
- 2. If the  $\overline{\text{CS}}$  low transition occurs simultaneously with the  $\overline{\text{WE}}$  low transitions, the output buffers remain in a high impedance state.
- 3.  $\overline{\text{WE}}$  must be high during all address transitions.
- 4. Rise and fall times of input pulses  $\leq 10$  ns.
- 5. Input and output timing reference levels are 1.5 volts with input pulse levels of ground to 3.0 volts.
- 6.  $t_{hz}$  and  $t_{LZ}$  are measured at ±500 mV from steady state with 5 pF load.

FIGURE 5. <u>Read cycle waveforms and test conditions for device types 02 and 04</u> – Continued.



### <u>Waveforms</u>

#### NOTES:

- 1. See table 1 for limits and complete terminal conditions.
- Input and output timing reference levels are 1.5 volts with input pulse levels of ground to 3.0 volts.
- 3.  $t_{OW}$  and  $t_{WZ}$  are measured at  $\pm 500$  mV from steady state with 6 pF load.

FIGURE 6. Write cycle waveforms and test conditions for device types 01, 02, 03, 04, 05, 06, and 07.

|                |                 |                 |           |                |                |                |                |                | lermina        | al conditio      | ns (pins n | ot desigi       | nated ma | ay be hi        | gh ≥ 2.0 \      | /; or low :     | ≤0.8 V; o      | or open).      |                |                |                 |               |                  |      |        |      |
|----------------|-----------------|-----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|------------|-----------------|----------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|-----------------|---------------|------------------|------|--------|------|
|                |                 | MIL-<br>STD-883 | Case<br>V | 1              | 2              | 3              | 4              | 5              | 6              | 7                | 8          | 9               | 10       | 11              | 12              | 13              | 14             | 15             | 16             | 17             | 18              |               | Measured         | Test | Limits |      |
| Subgroup       | Symbol          | method          | Test no.  | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> | D <sub>OUT</sub> | WE         | $V_{\text{SS}}$ | cs       | D <sub>IN</sub> | A <sub>11</sub> | A <sub>10</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | A <sub>6</sub> | V <sub>CC</sub> | Algorithms 1/ | terminal         | Min  | Max    | Unit |
| 1<br>Tc = 25°C | V <sub>OH</sub> | 3006            | 1         | GND            | GND            | GND            | GND            | GND            | GND            | -4 mA            | 4.5 V      | GND             | GND      | GND             | GND             | GND             | GND            | GND            | GND            | GND            | 4.5 V           |               | D <sub>OUT</sub> | 2.4  |        | V    |
| "              | V <sub>OL</sub> | 3007            | 2         | GND            | GND            | **             | "              | "              | u              | + 8 mA           | 4.5 V      | u               | "        | "               | "               | "               | "              | "              | u              | u              | 4.5 V           |               | D <sub>OUT</sub> |      | 0.4 V  | V    |
| "              | I <sub>H</sub>  | 3010            | 3         | 5.5 V          | GND            | "              | "              | "              | "              |                  | GND        | "               | "        | "               | "               | "               | "              | "              | "              | u              | 5.5 V           |               | A <sub>0</sub>   |      | 10     | μΑ   |
| "              | **              | **              | 4         | GND            | 5.5 V          | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | и              | "              | u              | "               |               | A <sub>1</sub>   |      | u      | "    |
| "              | "               | **              | 5         | "              | GND            | 5.5 V          |                |                |                |                  | "          | "               | "        | u               | "               | u               | "              | "              | u              | u              | "               |               | A <sub>2</sub>   |      | u      | "    |
| "              | "               | **              | 6         | "              | "              |                | 5.5 V          |                |                |                  | "          | **              | 66       | "               | **              | "               | 66             | "              | "              | u              | **              |               | A <sub>3</sub>   |      | "      | "    |
| "              | **              | **              | 7         | "              | "              | "              | GND            | 5.5 V          |                |                  | "          | "               | "        | "               | "               | "               | "              | "              | u              | u              | "               |               | A <sub>4</sub>   |      | "      | "    |
| "              | "               | **              | 8         | "              | u              | "              | "              | GND            | 5.5 V          |                  | "          | "               | "        | u               | "               | u               | "              | "              | u              | u              | "               |               | A <sub>5</sub>   |      | u      | "    |
| "              | "               | "               | 9         | "              | u              | "              | "              | "              | GND            |                  | 5.5 V      | "               | "        | "               | **              | "               | "              | "              | u              | u              | "               |               | WE               |      | "      | "    |
| "              | "               | "               | 10        | u              | u              | "              | "              | u              | u              |                  | GND        | u               | 5.5 V    | "               | "               | "               | "              | "              | u              | u              | "               |               | CS               |      | u      | "    |
| "              | **              | "               | 11        | "              | "              | "              | "              | "              | "              |                  | "          | "               | GND      | 5.5 V           | "               | u               | "              | "              | "              | u              | "               | -             | D <sub>IN</sub>  |      | "      | "    |
| "              | "               | **              | 12        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | GND             | 5.5 V           | u               | "              | 66             | u              | u              | "               |               | A <sub>11</sub>  |      | u      | "    |
| "              | "               | **              | 13        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | GND             | 5.5 V           | "              | "              | "              | u              | "               |               | A <sub>10</sub>  |      | "      | "    |
| "              | "               | **              | 14        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | GND             | 5.5 V          | "              | "              | u              | "               |               | Ag               |      | "      | "    |
| "              | "               | **              | 15        | "              | "              | 66             | "              | "              | "              |                  | "          | "               | 66       | "               | "               | "               | GND            | 5.5 V          | "              | u              | 66              |               | A <sub>8</sub>   |      | "      | "    |
| "              | **              | "               | 16        | "              | "              | и              | "              | "              | "              |                  | "          | "               | "        | "               | "               | u               | "              | GND            | 5.5 V          | u              | "               |               | A <sub>7</sub>   |      | "      | "    |
| "              | **              | "               | 17        | "              | "              | и              | "              | "              | "              |                  | "          | "               | "        | "               | "               | u               | "              | "              | GND            | 5.5 V          | "               |               | As               |      | "      | "    |
| "              | I <sub>IL</sub> | 3009            | 18        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | "              | "              | GND            | "               |               | A <sub>0</sub>   |      | "      | "    |
| "              | "               | "               | 19        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | "              | "              | "              | "               |               | A <sub>1</sub>   |      | "      | "    |
| "              | "               | **              | 20        | "              | "              | 66             | "              | "              | "              |                  | "          | **              | 66       | "               | **              | "               | 66             | "              | "              | u              | **              |               | A <sub>2</sub>   |      | "      | "    |
| "              | **              | **              | 21        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | "              | u              | u              | "               |               | A <sub>3</sub>   |      | "      | "    |
| "              | **              | **              | 22        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | "              | u              | u              | "               |               | A <sub>4</sub>   |      | "      | "    |
| "              | **              | **              | 23        | "              | "              | "              | "              | "              | "              |                  | и          | "               | "        | "               | "               | "               | "              | "              | "              | u              | "               |               | A <sub>5</sub>   |      | "      | "    |
| "              | "               | "               | 24        | u              | "              | "              | "              | u              | u              |                  | "          | u               | u        | u               | "               | "               | "              | "              | u              | "              | "               |               | WE               |      | "      | "    |
| "              | "               | "               | 25        | u              | u              | "              | "              | u              | u              |                  | u          | u               | "        | u               | "               | "               | "              | "              | u              | u              | "               |               | CS               |      | u      | "    |
| "              | **              | "               | 26        | "              | u              | "              | "              | "              | ű              |                  | "          | ű               | "        | "               | "               | "               | "              | "              | "              | ű              | "               |               | D <sub>IN</sub>  |      | u      | "    |
| "              | "               | "               | 27        | ű              | u              | "              | "              | "              | "              |                  | u          | "               | "        | "               | "               | "               | "              | "              | u              | u              | "               |               | A <sub>11</sub>  |      | "      | "    |
| "              | "               | "               | 28        | "              | "              | "              | "              | "              | "              |                  | "          | "               | "        | "               | "               | "               | "              | "              | "              | u              | "               |               | A <sub>10</sub>  |      | "      | "    |
| "              | "               | "               | 29        | ű              | ű              | "              | "              | "              | u              |                  | "          | u               | "        | u               | "               | "               | "              | "              | u              | u              | u               |               | A <sub>9</sub>   |      | u      | "    |

#### TABLE III. Group A inspection for device type 01, 03, 05, and 07. Terminal conditions (pins not designated may be high $\geq 2.0$ V; or low $\leq 0.8$ V; or open).

20

See footnotes at end of device types 01, 03, 05 and 07.

|                                 |                   |                 |                     |                |                |                |                |                | Termin         | al conditio      | ons (pins i | not desig | gnated n    | nay be h        | igh ≥ 2.0       | V; or low       | ≤ 0.8 V;       | or open).      |                |                |                 |               |                  |                 |                 |      |
|---------------------------------|-------------------|-----------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|-------------|-----------|-------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|-----------------|---------------|------------------|-----------------|-----------------|------|
|                                 |                   | MIL-<br>STD-883 | Case<br>V           | 1              | 2              | 3              | 4              | 5              | 6              | 7                | 8           | 9         | 10          | 11              | 12              | 13              | 14             | 15             | 16             | 17             | 18              |               | Measured         | Test            | Limits          |      |
| Subgroup                        | Symbol            | method          | Test no.            | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> | A <sub>5</sub> | D <sub>OUT</sub> | WE          | $V_{SS}$  | CS          | D <sub>IN</sub> | A <sub>11</sub> | A <sub>10</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | A <sub>6</sub> | V <sub>CC</sub> | Algorithms 1/ | terminal         | Min             | Max             | Unit |
| 1<br>Tc = 25°C                  | IIL               | 3009            | 30                  | GND            | GND            | GND            | GND            | GND            | GND            |                  | GND         | GND       | GND         | GND             | GND             | GND             | GND            | GND            | GND            | GND            | 5.5 V           |               | A <sub>8</sub>   |                 | 10              | μΑ   |
| "                               | IIL               | 3009            | 31                  | GND            | GND            | GND            | GND            | -              | GND            |                  | GND         | "         | GND         | GND             | GND             | GND             | GND            | GND            | GND            | GND            | 5.5 V           |               | A <sub>7</sub>   |                 | 10              | "    |
| "                               | IIL               | 3009            | 32                  | GND            | GND            | GND            | GND            | GND            | GND            |                  | GND         | "         | GND         | GND             | GND             | GND             | GND            | GND            | GND            | GND            | 5.5 V           |               | A <sub>6</sub>   |                 | 10              | u    |
| "                               | IL01              |                 | 33                  |                |                |                |                |                |                | 4.5 V            | 2.0 V       | "         | 2.0 V       | 2.0 V           |                 |                 |                |                |                |                | 4.5 V           |               | Dout             |                 | 50              | u    |
| "                               | I <sub>1.01</sub> |                 | 34                  |                |                |                |                |                |                | 5.5 V            | "           | "         | "           | "               |                 |                 |                |                |                |                | 5.5 V           |               | Dout             |                 | "               | u    |
| "                               | I <sub>L02</sub>  |                 | 35                  |                |                |                |                |                |                | 0.4 V            | "           | "         | "           | "               |                 |                 |                |                |                |                | 4.5 V           |               | D <sub>OUT</sub> |                 | u               | "    |
| "                               | I <sub>L02</sub>  |                 | 36                  |                |                |                |                |                |                | 0.4 V            | "           | "         | **          | "               |                 |                 |                |                |                |                | 5.5 V           |               | Dout             |                 | "               | u    |
| "                               | I <sub>SB</sub>   |                 | 37                  | 4.5 V          | GND              | GND         | "         | 4.5         | GND             | 4.5 V           | 4.5 V           | 4.5 V          | 4.5 V          | 4.5 V          | 4.5 V          | 4.5 V           |               | V <sub>cc</sub>  |                 | 30              | mA   |
| "                               | I <sub>SB</sub>   |                 | 38                  | 5.5 V          | GND              | GND         | "         | 5.5 V       | GND             | 5.5 V           | 5.5 V           | 5.5 V          | 5.5 V          | 5.5 V          | 5.5 V          | 5.5 V           |               | V <sub>cc</sub>  |                 | 30              | u    |
| "                               | I <sub>CC</sub>   |                 | 39                  | 5.5 V          | GND              | GND         | "         | GND         | GND             | 5.5 V           | 5.5 V           | 5.5 V          | 5.5 V          | 5.5 V          | 5.5 V          | 5.5 V           |               | V <sub>CC</sub>  |                 | <u>2</u> /      | "    |
|                                 | STRESS T          | -               | l conditions,<br>40 | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | <u>3/</u>      | <u>3</u> /     | <u>3</u> /       | <u>3</u> /  | GND       | <u>3</u> /  | <u>3</u> /      | <u>3</u> /      | <u>3</u> /      | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | 3/              | CKBD and      | D <sub>OUT</sub> | V <sub>OL</sub> | V <sub>OH</sub> | V    |
|                                 |                   | -               | -                   |                |                |                |                |                |                |                  |             |           |             |                 |                 |                 |                |                |                |                | _               | CKBD          |                  | <1.5            | >1.5            |      |
| 7                               | t <sub>AA</sub>   | Fig. 5, 6       | 41                  | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/               | 4/          | "         | 4/          | <u>4</u> /      | 4/              | <u>4</u> /      | 4/             | 4/             | 4/             | 4/             | 4.5 V           | "             | "                | "               | u               | u    |
| $T_{\rm C} = 25^{\circ}{\rm C}$ | "                 | "               | 42                  | <u>4</u> /       | <u>4</u> /  | "         | <u>4</u> /  | <u>4</u> /      | <u>4</u> /      | <u>4</u> /      | 4/             | 4/             | <u>4</u> /     | <u>4</u> /     | 5.5 V           |               | -                | "               | u               | u    |
| "                               | "                 | "               | 43                  | <u>5</u> /       | <u>5</u> /  | "         | <u>5</u> /  | <u>5</u> /      | <u>5</u> /      | <u>5</u> /      | <u>5</u> /     | <u>5</u> /     | <u>5</u> /     | <u>5</u> /     | 4.5 V           | "             | "                | "               | "               | u    |
| "                               | "                 | "               | 44                  | <u>5</u> /       | <u>5</u> /  | "         | <u>5</u> /  | <u>5</u> /      | <u>5</u> /      | <u>5</u> /      | <u>5</u> /     | <u>5</u> /     | <u>5</u> /     | <u>5</u> /     | 5.5 V           | u             | u                | "               | u               | u    |
| "                               | "                 | "               | 45                  | <u>6</u> /     | <u>6</u> /     | 6/             | <u>6</u> /     | 6/             | <u>6</u> /     | <u>6</u> /       | <u>6</u> /  | "         | 6/          | <u>6</u> /      | <u>6</u> /      | <u>6</u> /      | 6/             | <u>6</u> /     | <u>6</u> /     | 6/             | 4.5 V           | "             | и                | "               | u               | u    |
| "                               | "                 | "               | 46                  | <u>6</u> /       | <u>6</u> /  | "         | <u>6</u> /  | <u>6</u> /      | <u>6</u> /      | <u>6</u> /      | <u>6</u> /     | <u>6</u> /     | <u>6</u> /     | <u>6</u> /     | 5.5 V           | "             | "                | "               | u               | u    |
| "                               | "                 | "               | 47                  | <u>7</u> /       | <u>7</u> /  | "         | <u>7</u> /  | <u>7</u> /      | <u>7</u> /      | <u>7/</u>       | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | 4.5 V           | "             | "                | "               | "               | u    |
| "                               | "                 | "               | 48                  | <u>7/</u>      | <u>7</u> /     | <u>7/</u>      | <u>7</u> /     | <u>7/</u>      | <u>7</u> /     | <u>7</u> /       | <u>7</u> /  | "         | <u>7</u> /  | <u>7/</u>       | <u>7/</u>       | <u>7/</u>       | <u>7/</u>      | <u>7/</u>      | <u>7/</u>      | <u>7/</u>      | 5.5 V           | u             | "                | "               | u               | u    |
| "                               | "                 | "               | 49                  | <u>8</u> /       | <u>8</u> /  | "         | <u>8</u> /  | <u>8</u> /      | <u>8</u> /      | <u>8</u> /      | <u>8</u> /     | <u>8/</u>      | 8/             | 8/             | 4.5 V           | "             | "                | "               | "               |      |
| "                               | "                 | "               | 50                  | <u>8</u> /       | <u>8</u> /  | "         | <u>8</u> /  | <u>8</u> /      | <u>8</u> /      | <u>8</u> /      | <u>8</u> /     | <u>8</u> /     | <u>8</u> /     | <u>8</u> /     | 5.5 V           | "             | "                | "               | "               | "    |
| "                               | "                 | "               | 51                  | <u>9</u> /       | <u>9</u> /  | "         | <u>9</u> /  | <u>9</u> /      | <u>9</u> /      | <u>9</u> /      | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | 4.5 V           | "             | "                | "               | "               | "    |
| "                               | ű                 | "               | 52                  | <u>9</u> /       | <u>9</u> /  | "         | <u>9</u> /  | <u>9</u> /      | <u>9</u> /      | <u>9</u> /      | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | 5.5 V           | "             | "                | "               | "               | ű    |
| "                               | t <sub>ACS1</sub> | "               | 53                  | <u>10</u> /      | <u>10</u> / | "         | <u>10</u> / | <u>10</u> /     | <u>10</u> /     | <u>10</u> /     | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 5.5 V           | "             | "                | "               | "               | "    |
| "                               | t <sub>ACS2</sub> | "               | 54                  | <u>10</u> /    | 10/            | 10/            | 10/            | 10/            | <u>10</u> /    | <u>10</u> /      | <u>10</u> / | "         | 10/         | 10/             | 10/             | 10/             | 10/            | 10/            | 10/            | 10/            | 5.5 V           | "             | "                | "               | "               | "    |

#### TABLE III. Group A inspection for device type 01, 03, 05, and 07 - Continued. Terminal conditions (pins not designated may be high > 2.0 V; or low < 0.8 V; or open).

See footnotes at end of device types 01, 03, 05 and 07.

|                |                   | MIL-<br>STD-883 | Case<br>V     | 1              | 2              | 3              | 4              | 5                    | 6              | 7                | 8           | 9               | 10          | 11              | 9 H ≥ 2.0<br>12 | 13              | 14             | 15             | 16             | 17             | 18              |                       | Measured         | Test                    | Limits                  | , , , , , , , , , , , , , , , , , , , |
|----------------|-------------------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------------|----------------|------------------|-------------|-----------------|-------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|-----------------|-----------------------|------------------|-------------------------|-------------------------|---------------------------------------|
| Subgroup       | Symbol            | method          | Test no.      | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub>       | A <sub>5</sub> | D <sub>OUT</sub> | WE          | V <sub>SS</sub> | CS          | D <sub>IN</sub> | A <sub>11</sub> | A <sub>10</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | A <sub>6</sub> | V <sub>CC</sub> | Algorithms 1/         | terminal         | Min                     | Max                     | Unit                                  |
| 7<br>Tc = 25°C | t <sub>ACS1</sub> | Fig. 5, 6       | 55            | <u>10</u> /          | <u>10</u> /    | <u>10</u> /      | <u>10</u> / | GND             | <u>10</u> / | <u>10</u> /     | <u>10</u> /     | <u>10</u> /     | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | CKBD and<br>CKBD      | D <sub>OUT</sub> | V <sub>OL</sub><br><1.5 | V <sub>ОН</sub><br>>1.5 | V                                     |
| 7<br>Tc = 25°C | t <sub>ACS2</sub> | Fig. 5, 6       | 56            | <u>10</u> /          | <u>10</u> /    | <u>10</u> /      | <u>10</u> / | GND             | <u>10</u> / | <u>10</u> /     | <u>10</u> /     | <u>10</u> /     | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | CKBD and<br>CKBD      | D <sub>OUT</sub> | V <sub>OL</sub><br><1.5 | V <sub>ОН</sub><br>>1.5 | v                                     |
| 8              | Same te           | sts, termina    | l conditions, | and limi       | its as sub     | group 7,       | except         | T <sub>C</sub> = 125 | 5°C and        | -55°C            |             |                 |             |                 |                 |                 |                |                |                |                |                 |                       |                  |                         |                         |                                       |
| 9              | t <sub>AA</sub>   | Fig. 5, 6       | 57            | <u>11</u> /          | <u>11</u> /    | <u>11</u> /      | <u>11</u> / | GND             | <u>11</u> / | <u>11</u> /     | <u>11</u> /     | <u>11</u> /     | <u>11</u> /    | <u>11</u> /    | <u>11</u> /    | <u>11</u> /    | 4.5 V           | GALPAT and<br>GALRESH | D <sub>OUT</sub> |                         | <u>12</u> /             | ns                                    |
| Tc = 25°C      | t <sub>AA</sub>   | "               | 58            | **             | "              | "              | "              | "                    | "              | u                | **          | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | u                |                         | 12/                     |                                       |
| "              | t <sub>ACS1</sub> | "               | 59            | "              | "              | "              | **             | "                    | "              | u                | **          | "               | "           | "               | 66              | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                |                         | 13/                     | "                                     |
| "              | t <sub>ACS1</sub> | "               | 60            | "              | и              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | и                |                         | 13/                     | "                                     |
| "              | t <sub>ACS2</sub> | "               | 61            | "              | и              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | и                |                         | 14/                     | "                                     |
| u              | t <sub>ACS2</sub> | "               | 62            | "              | "              | "              | "              | "                    | "              | u                | **          | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | и                |                         | 14/                     | "                                     |
| **             | t <sub>WC</sub>   | "               | 63            | "              | "              | "              | "              | "                    | "              | u                | **          | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | и                | 15/                     |                         | "                                     |
| "              | t <sub>WC</sub>   | "               | 64            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | "                | <u>15</u> /             |                         | "                                     |
| u              | t <sub>CW</sub>   | "               | 65            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                | <u>16</u> /             |                         | "                                     |
| "              | t <sub>CW</sub>   | "               | 66            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | u              | "              | 5.5 V           | "                     | "                | <u>16</u> /             |                         | "                                     |
| "              | t <sub>AW</sub>   | "               | 67            | **             | "              | "              | "              | "                    | u              | u                | **          | u               | "           | "               | **              | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                | <u>17/</u>              |                         | u                                     |
| "              | t <sub>AW</sub>   | "               | 68            | **             | "              | "              | "              | "                    | u              | u                | **          | u               | "           | "               | **              | "               | "              | "              | "              | "              | 5.5 V           | "                     | "                | <u>17</u> /             |                         | "                                     |
| u              | t <sub>AS</sub>   | "               | 69            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                | 0                       |                         | "                                     |
| "              | t <sub>AS</sub>   | "               | 70            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | u              | "              | 5.5 V           | "                     | "                | 0                       |                         | "                                     |
| "              | t <sub>WP</sub>   | "               | 71            | "              | "              | "              | "              | "                    | "              | u                | "           | u               | u           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | u                | <u>18</u> /             |                         | и                                     |
| "              | t <sub>WP</sub>   | "               | 72            | "              | "              | "              | "              | u                    | "              | u                | "           | u               | u           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | "                | <u>18</u> /             |                         | и                                     |
| "              | t <sub>WR</sub>   | "               | 73            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                | <u>19</u> /             |                         | "                                     |
| "              | t <sub>WR</sub>   | "               | 74            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | "                | <u>19</u> /             |                         | "                                     |
| "              | t <sub>DW</sub>   | "               | 75            | "              | "              | "              | u              | u                    | u              | u                | "           | u               | u           | "               | u               | "               | u              | "              | "              | "              | 4.5 V           | "                     | u                | 20/                     |                         | и                                     |
| "              | t <sub>DW</sub>   | "               | 76            | "              | u              | "              | u              | u                    | u              | u                | "           | u               | u           | "               | "               | "               | u              | "              | "              | "              | 5.5 V           | "                     | u                | <u>20</u> /             |                         | u                                     |
| "              | t <sub>DH</sub>   | "               | 77            | "              | "              | "              | "              | "                    | "              | u                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 4.5 V           | "                     | "                | 10                      |                         | u                                     |
| **             | t <sub>DH</sub>   | "               | 78            | "              | "              | "              | "              | "                    | "              | "                | "           | "               | "           | "               | "               | "               | "              | "              | "              | "              | 5.5 V           | "                     | "                | 10                      |                         | "                                     |

TABLE III. Group A inspection for device type 01, 03, 05, and 07 - Continued. Terminal conditions (pins not designated may be  $H \ge 2.0 V$ ; or  $L \le 0.8 V$ ; or open).

See footnotes at end of device types 01, 03, 05 and 07.

#### Terminal conditions (pins not designated may be high $\ge 2.0$ V; or low $\le 0.8$ V; or open). MIL-Case 2 4 5 6 8 9 10 11 12 13 14 15 16 17 18 Test Limits 3 STD-883 V Measured method terminal Subgroup Symbol Test no. $A_0$ $A_1$ $A_2$ $A_3$ $A_4$ $A_5$ D<sub>OUT</sub> $V_{SS}$ $\mathsf{D}_{\mathsf{IN}}$ $A_{11}$ $A_{10}$ A<sub>9</sub> $A_8$ $A_7$ $A_6$ $V_{CC}$ Algorithms 1/ Min WE cs 10 Same tests, terminal conditions, and limits as subgroup 9, except T<sub>C</sub> = 125°C. 11 Same tests, terminal conditions, and limits as subgroup 9, except T<sub>C</sub> = -55°C.

#### TABLE III. Group A inspection for device type 01, 03, 05, and 07 - Continued.

1/ See appendix for description of algorithms.

 $\frac{1}{2}$ / I<sub>CC</sub> = 160 for device type 01; 180 for device types 03, 05 and 07.

 $3/V_{IL} = GND, V_{IH} = 6.0 V$ , pause time = 250 ms/loop max,  $\overline{CS} = high$ , only performed once at 125°C, and  $V_{CC} = 0.7 V$  min.

 $4/V_{IL} = 0.8 V \text{ and } V_{IH} = 2.0 V.$ 

5/ Algorithm has 60 ms where chip is deselected between the write.

 $\frac{1}{6}$ / V<sub>IL</sub> = GND, V<sub>IH</sub> = 3.0 V, and all address setup times are shown at minimum.

 $\overline{7}$ / V<sub>IL</sub> = GND, V<sub>IH</sub> = 3.0 V and all write pulse timing are at a minimum.

 $\frac{1}{8}$  /  $V_{IL} = GND$ ,  $V_{IH} = 3.0$  V and all address ending timing are at minimums.

 $\overline{9}$ / V<sub>IL</sub> = GND, V<sub>IH</sub> = 3.0 V, and t<sub>AA</sub> is measured at minimum timing.

<u>10</u>/  $V_{IL}$  = GND,  $V_{IH}$  = 3.0 V,  $t_{ACS1}$  and  $t_{ACS2}$  are measured at minimum timing.

 $\overline{11}$  / V<sub>IL</sub> = 0.8 V, V<sub>IH</sub> = 2.0 V, and all parameters are measured at minimum timing.

 $\frac{12}{t_{AA}}$  = 85 ns for device type 01; 70 ns for device type 03; 55 ns for device type 05; 45 ns for device type 07.

 $\frac{13}{13}$ /  $t_{ACS1} = 85$  ns for device type 01; 70 ns for device type 03; 55 ns for device type 05; 45 ns for device type 07.

 $\frac{14}{t_{ACS1}}$  = 100 ns for device type 01; 80 ns for device type 03; 65 ns for device type 05; 555 ns for device type 07.

 $\frac{15}{15}$ /  $t_{WC}$  = 85 ns for device type 01; 70 ns for device type 03; 55 ns for device type 05; 45 ns for device type 07.

 $\frac{16}{16}$ /  $t_{CW}$  = 70 ns for device type 01; 55 ns for device type 03; 45 ns for device types 05 and 07.

 $\frac{17}{t_{AW}}$  = 70 ns for device type 01; 55 ns for device type 03; 45 ns for device types 05 and 07.

 $\frac{18}{18}$ /  $t_{WP}$  = 55 ns for device type 01; 40 ns for device type 03; 25 ns for device type 05; 25 ns for device type 07.

 $\frac{19}{19}$ /  $t_{WR}$  = 15 ns for device type 01 and 03; 10 ns for device type 05 and 07.

 $\frac{20}{t_{DW}}$  = 35 ns for device type 01; 30 ns for device type 03; 25 ns for device type 05; 25 ns for device type 07.

Max

Unit

|           |                 |                 |           |                |                |                |                |                | Termir         | nal condit     | ions (pins | not desi        | gnated r | nay be hig       | gh ≥ 2.0 V       | ; or low $\leq$  | 0.8 V; or        | open).         |                |                |                 |               |                  |      |        |      |
|-----------|-----------------|-----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|-----------------|----------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|---------------|------------------|------|--------|------|
|           |                 | MIL-<br>STD-883 | Case<br>V | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8          | 9               | 10       | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |               | Measured         | Test | Limits |      |
| Subgroup  | Symbol          | method          | Test no.  | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | CS         | V <sub>SS</sub> | WE       | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>cc</sub> | Algorithms 1/ | terminal         | Min  | Max    | Unit |
| 1         | V <sub>OH</sub> | 3006            | 1         | GND            | GND        | GND             | 3.0 V    | -1.0 mA          |                  |                  |                  | GND            | GND            | GND            | 4.5 V           |               | I/O <sub>4</sub> | 2.4  |        | V    |
| Tc = 25°C | "               | "               | 2         | "              | "              | "              | "              | "              | "              | "              | "          | **              | "        |                  | -1.0 mA          |                  |                  | **             | "              | "              | "               |               | I/O <sub>3</sub> | "    |        | "    |
| 66        | "               | "               | 3         | "              | "              | "              | "              | "              | "              | "              | "          | **              | "        |                  |                  | -1.0 mA          |                  | **             | "              | "              | "               |               | I/O <sub>2</sub> | "    |        | "    |
| "         | "               | "               | 4         | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        |                  |                  |                  | -1.0 mA          | **             | "              | "              | "               |               | I/O <sub>1</sub> | "    |        | "    |
| "         | V <sub>OL</sub> | 3007            | 5         | "              | "              | "              | "              | "              | "              | "              | "          | "               | u        | 2.1 mA           |                  |                  |                  | "              | "              | "              | "               |               | I/O <sub>4</sub> |      | 0.4    | "    |
| "         | "               | "               | 6         | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        |                  | 2.1 mA           |                  |                  | "              | "              | "              | "               |               | I/O <sub>3</sub> |      | "      | "    |
| "         | "               | "               | 7         | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        |                  |                  | 2.1 mA           |                  | "              | "              | "              | "               |               | I/O <sub>2</sub> |      | "      | "    |
| "         | "               | "               | 8         | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        |                  |                  |                  | 2.1 mA           | "              | "              | "              | "               |               | I/O <sub>1</sub> |      | "      | "    |
| 66        | IIH             | 3010            | 9         | 5.5 V          | "              | "              | "              | "              | "              | "              | u          | "               | u        | GND              | GND              | GND              | GND              | "              | "              | "              | 5.5 V           |               | A <sub>6</sub>   |      | 10     | μΑ   |
| **        | "               | "               | 10        | GND            | 5.5 V          | "              | "              | "              | "              | "              | "          | "               | "        | "                | "                | "                | "                | **             | "              | "              | "               |               | A <sub>5</sub>   |      | "      | "    |
| "         | "               | "               | 11        | "              | GND            | 5.5 V          | "              | "              | "              | "              | u          | "               | u        | "                | "                | "                | "                | "              | "              | "              | "               |               | A4               |      | "      | "    |
| "         | "               | "               | 12        | u              | "              | GND            | 5.5 V          | "              | "              | "              | ű          | "               | ű        | u                | "                | "                | "                | **             | "              | "              | "               |               | A <sub>3</sub>   |      | "      | "    |
| "         | "               | "               | 13        | u              | "              | "              | GND            | 5.5 V          | "              | "              | u          | "               | "        | "                | "                | "                | "                | "              | "              | "              | "               |               | A <sub>0</sub>   |      | "      | "    |
| "         | "               | ű               | 14        | "              | "              | "              | "              | GND            |                | "              | "          | "               | "        | "                | "                | "                | "                | "              | "              | "              | "               |               | A <sub>1</sub>   |      | "      | "    |
| "         |                 |                 | 15        | "              |                | "              | "              |                | GND            | 5.5 V          |            |                 |          |                  | "                |                  |                  | "              |                | "              | "               |               | A <sub>2</sub>   |      | "      |      |
|           |                 |                 | 16        | :              |                |                |                |                |                | GND            | 5.5 V      |                 | :        | :                |                  |                  |                  |                |                |                |                 |               | CS               |      |        |      |
| "         | "               | **              | 17        | u              | **             | 66             | "              | "              | 66             | 66             | GND        | "               | 5.5 V    | "                | "                | "                | "                | "              | **             | 66             | "               |               | WE               |      | "      | "    |
| 66        | "               | "               | 18        | "              | "              | "              | "              | "              | "              | "              | "          | **              | GND      | 5.5 V            | "                | "                | "                | **             | "              | "              | "               |               | I/O <sub>4</sub> |      | "      | "    |
| "         | "               | "               | 19        | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        | GND              | 5.5 V            | u                | "                | "              | "              | "              | "               |               | I/O <sub>3</sub> |      | "      | "    |
| "         | "               | "               | 20        | "              | "              | "              | "              | "              | "              | "              | "          | **              | u        | "                | GND              | 5.5 V            | "                | **             | "              | "              | "               |               | I/O <sub>2</sub> |      | "      | "    |
| "         | "               | "               | 21        | u              | **             | "              | "              | "              | **             | "              | "          | "               | "        | "                | "                | GND              | 5.5 V            | "              | **             | "              | "               |               | I/O <sub>1</sub> |      | "      | "    |
| "         | "               | "               | 22        | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        | "                | "                | "                | GND              | 5.5 V          | "              | "              | "               |               | A <sub>9</sub>   |      | "      | "    |
| "         | "               | ű               | 23        | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        | u                | "                | u                | "                | GND            | 5.5 V          | "              | "               |               | A <sub>8</sub>   |      | "      | "    |
| **        | "               | "               | 24        | "              | "              | "              | "              | "              | "              | "              | "          | **              | "        | "                | **               | "                | "                | **             | GND            | 5.5 V          | "               |               | A <sub>7</sub>   |      | "      | "    |
| 66        | l <sub>IL</sub> | 3009            | 25        | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        | "                | "                | "                | "                | "              | "              | GND            | "               |               | A <sub>6</sub>   |      | "      | "    |
| 66        | "               | "               | 26        | u              | "              | "              | "              | "              | "              | "              | "          | "               | u        | "                | "                | "                | "                | "              | "              | "              | "               |               | A <sub>5</sub>   |      | "      | "    |
| "         | "               | ű               | 27        | u              | "              | "              | "              | "              | "              | "              | "          | "               | u        | u                | "                | "                | "                | "              | "              | "              | "               |               | A4               |      | "      | "    |
| "         | "               | "               | 28        | "              | "              | "              | "              | "              | "              | "              | "          | "               | "        | "                | "                | "                | "                | "              | "              | "              | "               |               | A <sub>3</sub>   |      | "      | "    |
| "         | "               | "               | 29        | u              | "              | "              | "              | ű              | "              | "              | u          | "               | u        | u                | "                | "                | "                | "              | "              | "              | "               |               | A <sub>0</sub>   |      | "      | "    |

#### TABLE III. Group A inspection for device type 02 and 04.

See footnotes at end of device types 02 and 04.

|                                 |                  |                 |           |                |                |                |                |                | Termin         | al conditi     | ons (pins i | not desig | nated m    | nay be h         | igh ≥ 2.0        | V; or low        | ≤ 0.8 V;         | or open)       |                |                |                 |                  |                  |                         |                         |      |
|---------------------------------|------------------|-----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|-----------|------------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|------------------|------------------|-------------------------|-------------------------|------|
|                                 |                  | MIL-<br>STD-883 | Case<br>V | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8           | 9         | 10         | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |                  | Measured         | Test                    | Limits                  | ĺ    |
| Subgroup                        | Symbol           | method          | Test no.  | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | CS          | $V_{SS}$  | WE         | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>cc</sub> | Algorithms 1/    | terminal         | Min                     | Max                     | Unit |
| 1<br>Tc = 25°C                  | IIL              | 3009            | 30        | GND            | GND         | GND       | GND        | GND              | GND              | GND              | GND              | GND            | GND            | GND            | 5.5 V           |                  | A <sub>1</sub>   |                         | 10                      | μΑ   |
| "                               | "                | "               | 31        | "              | "              | "              | **             | 66             | "              | u              | "           | "         | "          | "                | "                | "                | "                | "              | "              | "              | "               |                  | A <sub>2</sub>   |                         | "                       | "    |
| "                               | "                | "               | 32        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | u                | "                | "                | "                | "              | "              | "              | "               |                  | CS               |                         | "                       | "    |
| ű                               | "                | "               | 33        | "              | "              | "              | "              | "              | "              | "              | "           | u         | "          | u                | 66               | "                | "                | u              | "              | "              | "               |                  | WE               |                         | u                       | "    |
| "                               | "                | "               | 34        | "              | u              | "              | "              | "              | "              | u              | "           | "         | "          | "                | "                | ű                | "                | "              | u              | "              | "               |                  | I/O <sub>4</sub> |                         | "                       | u    |
| "                               | "                | u               | 35        | "              | u              | "              | "              | **             | "              | u              | "           | "         | "          | "                | **               | "                | **               | "              | "              | "              | "               |                  | I/O <sub>3</sub> |                         | "                       | u    |
| "                               | "                | u               | 36        | "              | u              | "              | "              | **             | "              | u              | "           | "         | "          | "                | **               | "                | **               | "              | "              | "              | "               |                  | I/O <sub>2</sub> |                         | "                       | u    |
| "                               | "                | "               | 37        | "              | "              | "              | "              | "              | "              | u              | "           | "         | "          | "                | "                | "                | "                | "              | "              | "              | "               |                  | I/O <sub>1</sub> |                         | "                       | "    |
| "                               | "                | u               | 38        | "              | u              | "              | "              | "              | "              | u              | "           | "         | "          | "                | "                | "                | "                | "              | "              | "              | "               |                  | A <sub>9</sub>   |                         | "                       | u    |
| "                               | "                | "               | 39        | **             | "              | **             | 66             | 66             | "              | "              | "           | "         | "          | "                | "                | "                | "                | "              | "              | "              | "               |                  | A <sub>8</sub>   |                         | "                       | "    |
| "                               | "                | ű               | 40        | "              | "              | "              | "              | "              | "              | u              | "           | "         | "          | "                | "                | "                | "                | "              | "              | "              | "               |                  | A <sub>7</sub>   |                         | "                       | "    |
| "                               | I <sub>L01</sub> |                 | 41        | "              | "              | "              | "              | "              | "              | u              | 3.0 V       | "         | 3.0 V      | "                |                  |                  |                  | "              | "              | "              | "               |                  | I/O <sub>4</sub> |                         | 50                      | "    |
| "                               | "                |                 | 42        | "              | u              | "              | "              | 66             | "              | u              | "           | "         | "          |                  | GND              |                  |                  | "              | "              | "              | "               |                  | I/O <sub>3</sub> |                         | "                       | u    |
| "                               | "                |                 | 43        | "              | "              | **             | **             | "              | "              | u              | "           | "         | "          |                  |                  | GND              |                  | "              | "              | "              | "               |                  | I/O <sub>2</sub> |                         | "                       | "    |
| "                               | "                |                 | 44        | "              | "              | "              | "              | "              | "              | u              | "           | "         | "          |                  |                  |                  | GND              | "              | "              | "              | "               |                  | I/O <sub>1</sub> |                         | "                       | ű    |
| "                               | I <sub>L02</sub> |                 | 45        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | 4.5 V            |                  |                  |                  | "              | "              | "              | "               |                  | I/O <sub>4</sub> |                         | "                       | "    |
| "                               | "                |                 | 46        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  | 4.5 V            |                  |                  | "              | "              | "              | "               |                  | I/O <sub>3</sub> |                         | "                       | "    |
| "                               | "                |                 | 47        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  |                  | 4.5 V            |                  | "              | "              | "              | "               |                  | I/O <sub>2</sub> |                         | "                       | u    |
| "                               | "                |                 | 48        | "              | ű              | "              | **             | "              | "              | ű              | "           | "         | "          |                  |                  |                  | 4.5 V            | "              | u              | "              | "               |                  | I/O <sub>1</sub> |                         | "                       | ű    |
| "                               | Icc              | 3005            | 49        | "              | "              | "              | "              | "              | "              | "              | GND         | u         | GND        | GND              | GND              | GND              | GND              | "              | "              | "              | "               |                  | V <sub>CC</sub>  |                         | <u>2</u> /              | mA   |
| BITS                            | STRESS T         | EST             | 50        | <u>3</u> /     | <u>3</u> /  | "         | <u>3</u> / | "                | <u>3</u> /       | <u>3</u> /       | <u>3</u> /       | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | <u>3</u> /      | CKBD and<br>CKBD | All I/O          | V <sub>OL</sub><br><1.5 | V <sub>ОН</sub><br>>1.5 | V    |
| 7                               | t <sub>AA</sub>  | Fig. 5,6        | 51        | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/          | "         | 4/         | 4/               | 4/               | 4/               | 4/               | 4/             | 4/             | 4/             | 4.5 V           | "                | u                | **                      | "                       | "    |
| $T_{\rm C} = 25^{\circ}{\rm C}$ | "                | "               | 52        | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/          | "         | 4/         | 4/               | 4/               | 4/               | 4/               | 4/             | 4/             | 4/             | 5.5 V           | "                | "                | "                       | "                       | "    |
| "                               | "                | u               | 53        | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/          | u         | 5/         | 5/               | 5/               | 5/               | 5/               | 5/             | 5/             | 5/             | 4.5 V           | "                | "                | "                       | "                       | u    |
| **                              | "                | u               | 54        | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/          | "         | 5/         | 5/               | 5/               | 5/               | 5/               | 5/             | 5/             | 5/             | 5.5 V           | "                | u                | **                      | "                       | u    |
| "                               | "                | u               | 55        | <u>6</u> /     | 6/             | <u>6</u> /     | <u>6</u> /  | "         | <u>6</u> / | <u>6</u> /       | <u>6</u> /       | <u>6</u> /       | <u>6</u> /       | <u>6</u> /     | <u>6</u> /     | <u>6</u> /     | 4.5 V           | "                | и                | **                      | "                       | "    |
| "                               | "                | "               | 56        | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/          | "         | 6/         | 6/               | 6/               | 6/               | 6/               | 6/             | 6/             | 6/             | 5.5 V           | "                | и                | "                       | "                       | "    |

#### TABLE III. Group A inspection for device type 02 and 04 - Continued.

See footnotes at end of device types 02 and 04.

| -              |                   |                 |             |                | r              | -              | r              | r                    |                | al conditio    |             |                 |             |                  | gh ≥ 2.0 \       |                  |                  |                | r              |                |                 |                       |          |                          |                          |      |
|----------------|-------------------|-----------------|-------------|----------------|----------------|----------------|----------------|----------------------|----------------|----------------|-------------|-----------------|-------------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|-----------------------|----------|--------------------------|--------------------------|------|
|                |                   | MIL-<br>STD-883 | Case<br>V   | 1              | 2              | 3              | 4              | 5                    | 6              | 7              | 8           | 9               | 10          | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |                       | Measured | Test                     | Limits                   |      |
| Subgroup       | Symbol            | method          | Test no.    | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub>       | A <sub>1</sub> | A <sub>2</sub> | cs          | V <sub>SS</sub> | WE          | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>cc</sub> | Algorithms 1/         | terminal | Min                      | Max                      | Unit |
| 7<br>Tc = 25°C | t <sub>AA</sub>   | Fig. 5, 6       | 57          | <u>7</u> /     | <u>7</u> /     | <u>7/</u>      | <u>7</u> /     | <u>7</u> /           | <u>7</u> /     | <u>7</u> /     | <u>7</u> /  | GND             | <u>7</u> /  | <u>7</u> /       | <u>7</u> /       | <u>7</u> /       | <u>7</u> /       | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | 4.5 V           | CKBD and<br>CKBD      | Ali I/O  | V <sub>OL</sub><br>< 1.5 | V <sub>ОН</sub><br>> 1.5 | V    |
| "              | "                 | "               | 58          | <u>7</u> /           | <u>7</u> /     | <u>7</u> /     | <u>7</u> /  | "               | <u>7</u> /  | <u>7</u> /       | <u>7</u> /       | <u>7</u> /       | <u>7</u> /       | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | 5.5 V           | "                     | **       | **                       | "                        | "    |
| "              | "                 | "               | 59          | <u>8</u> /           | <u>8</u> /     | <u>8</u> /     | <u>8</u> /  | "               | <u>8</u> /  | <u>8</u> /       | <u>8</u> /       | <u>8</u> /       | <u>8</u> /       | <u>8</u> /     | <u>8</u> /     | <u>8</u> /     | 4.5 V           | 66                    | 66       | "                        | "                        | "    |
| "              | "                 | "               | 60          | <u>8</u> /           | <u>8</u> /     | <u>8</u> /     | <u>8</u> /  | "               | <u>8</u> /  | <u>8</u> /       | <u>8</u> /       | <u>8</u> /       | <u>8</u> /       | <u>8</u> /     | <u>8</u> /     | <u>8</u> /     | 5.5 V           | "                     | "        | "                        | "                        | "    |
| "              | "                 | "               | 61          | <u>9</u> /           | <u>9</u> /     | <u>9</u> /     | <u>9</u> /  | "               | <u>9</u> /  | <u>9</u> /       | <u>9</u> /       | <u>9</u> /       | <u>9</u> /       | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | 4.5 V           | "                     | "        | "                        | "                        | "    |
| "              | "                 | "               | 62          | <u>9</u> /           | <u>9</u> /     | <u>9</u> /     | <u>9</u> /  | "               | <u>9</u> /  | <u>9</u> /       | <u>9</u> /       | <u>9</u> /       | <u>9</u> /       | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | 5.5 V           | "                     | "        | "                        | "                        | u    |
| "              | t <sub>ACS1</sub> | "               | 63          | <u>10</u> /          | <u>10</u> /    | <u>10</u> /    | <u>10</u> / | 66              | <u>10</u> / | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | "                     | "        | **                       | "                        | "    |
| "              | t <sub>ACS1</sub> | "               | 64          | <u>10</u> /          | <u>10</u> /    | <u>10</u> /    | <u>10</u> / | 66              | <u>10</u> / | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 5.5 V           | "                     | **       | **                       | "                        | "    |
| "              | t <sub>ACS1</sub> | "               | 65          | <u>10</u> /          | <u>10</u> /    | <u>10</u> /    | <u>10</u> / | 66              | <u>10</u> / | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | MARCH                 | "        | **                       | "                        | **   |
| "              | t <sub>ACS1</sub> | "               | 66          | <u>10</u> /          | <u>10</u> /    | <u>10</u> /    | <u>10</u> / | 66              | <u>10</u> / | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /      | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 5.5 V           | MARCH                 | "        | **                       | "                        | **   |
| 8              | Same tes          | sts, terminal   | conditions, | and limi       | ts as sub      | group 7,       | except         | T <sub>c</sub> = 125 | 5°C and        | -55°C          |             |                 |             |                  |                  | 1                | I                |                |                |                | 1               |                       |          | 1                        |                          |      |
| 9<br>Tc =25°C  | t <sub>AA</sub>   | Fig. 5, 6       | 67          | <u>11</u> /          | <u>11</u> /    | <u>11</u> /    | <u>11</u> / | GND             | <u>11</u> / | <u>11</u> /      | <u>11</u> /      | <u>11</u> /      | <u>11</u> /      | <u>11</u> /    | <u>11</u> /    | <u>11</u> /    | 4.5 V           | GALPAT and<br>GALRESH | All I/O  |                          | <u>12</u> /              | ns   |
| 10 -20 0       | t₄₄               | "               | 68          | "              | "              | "              | "              | "                    | "              | u              | "           | "               | "           | "                | "                | u                | "                | u              | "              | "              | 5.5 V           | "                     | "        |                          | 12/                      | 1    |
| "              | t <sub>ACS1</sub> | "               | 69          | "              | "              | "              | "              | "                    | "              | "              | "           | "               | "           | "                | "                | "                | "                | "              | "              | "              | 4.5 V           | "                     | **       |                          | 13/                      | "    |
| "              | t <sub>ACS1</sub> | "               | 70          | "              | "              | "              | "              | "                    | "              | u              | "           | "               | "           | "                | "                | u                | "                | u              | "              | "              | 5.5 V           | "                     | "        |                          | 13/                      | "    |
| "              | t <sub>WC</sub>   | "               | 71          | "              | "              | "              | "              | "                    | "              | "              | "           | **              | u           | u                | "                | u                | **               | u              | "              | "              | 4.5 V           | "                     | **       | 14/                      |                          | "    |
| "              | t <sub>WC</sub>   | "               | 72          | "              | "              | "              | "              | "                    | "              | "              | "           | "               | "           | "                | "                | "                | "                | u              | "              | "              | 5.5 V           | "                     | "        | <u>14</u> /              |                          | "    |
| "              | t <sub>WP</sub>   | u               | 73          | "              | u              | "              | "              | u                    | "              | и              | "           | "               | u           | u                | u                | и                | "                | u              | u              | "              | 4.5 V           | "                     | "        | <u>15</u> /              |                          | и    |
| "              | t <sub>WP</sub>   | "               | 74          | "              | "              | "              | "              | "                    | "              | "              | "           | "               | "           | "                | "                | "                | "                | "              | "              | "              | 5.5 V           | "                     | "        | <u>15</u> /              |                          | "    |
| "              | t <sub>WR</sub>   | "               | 75          | "              | ű              | "              | "              | "                    | "              | "              | "           | "               | "           | "                | "                | "                | "                | "              | "              | "              | 4.5 V           | "                     | 66       | <u>0</u>                 |                          | "    |
| "              | t <sub>WR</sub>   | "               | 76          | "              | "              | "              | "              | "                    | "              | u              | "           | "               | u           | "                | "                | ű                | "                | "              | "              | "              | 5.5 V           | "                     | "        | <u>0</u>                 | $\square$                | "    |
| "              | t <sub>DW</sub>   | "               | 77          | "              | "              | "              | "              | "                    | "              | "              | "           | "               | "           | "                | "                | "                | "                | "              | "              | "              | 4.5 V           | "                     | "        | <u>16</u> /              | L                        | "    |
| "              | t <sub>DW</sub>   | .4              | 78          |                | "              | a              | "              |                      |                | .4             | a           | "               |             |                  | 4                |                  | "                | "              |                | 4              | 5.5 V           |                       | 4        | <u>16</u> /              |                          | "    |

#### TABLE III. Group A inspection for device type 02 and 04 - Continued. Terminal conditions (pins not designated may be bigh > 2.0 V; or low < 0.8 V; or open).

See footnotes at end of device types 02 and 04.

|                 | MIL-                                                    | Case                                                                                                                                  | 1                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                             | 4                                                      | 5                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                      | 16                                                     | 17                                                     | 18                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Test                                                                                                               | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | STD-883                                                 | V                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                             |                                                        | -                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                       | -                                                      |                                                        | -                                                       |                                                         | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Symbol          | method                                                  | Test no.                                                                                                                              | A <sub>6</sub>                                                                                                                                                                                                        | A <sub>5</sub>                                                                                                                                                                                                                                                                                      | A <sub>4</sub>                                                                                                                                                                                                                                                                                | A <sub>3</sub>                                         | A <sub>0</sub>                                         | A <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A <sub>2</sub>                                         | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $V_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I/O <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I/O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I/O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I/O <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A <sub>9</sub>                                          | A <sub>8</sub>                                         | A <sub>7</sub>                                         | V <sub>cc</sub>                                         | Algorithms 1/                                           | terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min                                                                                                                | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| t <sub>DH</sub> | Fig. 5, 6                                               | 79                                                                                                                                    | <u>11</u> /                                                                                                                                                                                                           | <u>11</u> /                                                                                                                                                                                                                                                                                         | <u>11</u> /                                                                                                                                                                                                                                                                                   | <u>11</u> /                                            | <u>11</u> /                                            | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>11</u> /                                            | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>11/</u>                                              | <u>11</u> /                                            | <u>11</u> /                                            | 4.5 V                                                   | GALPAT and<br>GALRESH                                   | Ali I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| t <sub>DH</sub> | Fig. 5 ,6                                               | 80                                                                                                                                    | <u>11</u> /                                                                                                                                                                                                           | <u>11</u> /                                                                                                                                                                                                                                                                                         | <u>11</u> /                                                                                                                                                                                                                                                                                   | <u>11</u> /                                            | <u>11</u> /                                            | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>11</u> /                                            | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>11</u> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>11</u> /                                             | <u>11</u> /                                            | <u>11</u> /                                            | 4.5 V                                                   | GALPAT and<br>GALRESH                                   | Ali I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Same tes        | ts, terminal                                            | l conditions,                                                                                                                         | and limi                                                                                                                                                                                                              | ts as su                                                                                                                                                                                                                                                                                            | bgroup 9                                                                                                                                                                                                                                                                                      | ), excep                                               | t T <sub>C</sub> = 12                                  | 25°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                        |                                                        |                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Same tes        | ts, terminal                                            | l conditions,                                                                                                                         | and limi                                                                                                                                                                                                              | ts as su                                                                                                                                                                                                                                                                                            | bgroup 9                                                                                                                                                                                                                                                                                      | ), excep                                               | t T <sub>C</sub> = -5                                  | 5°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                        |                                                        |                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| s               | Symbol<br>t <sub>DH</sub><br>t <sub>DH</sub><br>ame tes | Symbol         STD-883<br>method           t <sub>DH</sub> Fig. 5, 6           t <sub>DH</sub> Fig. 5, 6           ame tests, termina | STD-883<br>method         V           Test no.         Test no.           t <sub>DH</sub> Fig. 5, 6         79           t <sub>DH</sub> Fig. 5, 6         80           ame tests, terminal conditions,         State | $\begin{array}{c c} \text{STD-883} & V \\ \hline \text{Test no.} & A_6 \\ \hline t_{\text{DH}} & \text{Fig. 5, 6} & 79 & \underline{11}^{\prime} \\ \hline t_{\text{DH}} & \text{Fig. 5, 6} & 80 & \underline{11}^{\prime} \\ \hline \text{ame tests, terminal conditions, and limits} \end{array}$ | STD-883<br>method         V         Test no.         A <sub>6</sub> A <sub>5</sub> t <sub>DH</sub> Fig. 5, 6         79         11/         11/           t <sub>DH</sub> Fig. 5, 6         80         11/         11/           t <sub>DH</sub> Fig. 5, 6         80         11/         11/ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | STD-883<br>method         V         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | STD-883<br>method         V         Image: Constraint of the state of | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\frac{\text{STD-883}}{\text{method}} \xrightarrow[]{V} [1]{V} [1]$ | $\frac{\text{STD-883}}{\text{method}} \xrightarrow{V} \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\frac{\text{STD-883}}{\text{method}} \xrightarrow{V}$ $\frac{V}{\text{Test no.}}$ $\frac{A_{6}}{A_{5}}$ $\frac{A_{4}}{A_{3}}$ $\frac{A_{0}}{A_{1}}$ $\frac{A_{1}}{A_{2}}$ $\frac{A_{2}}{CS}$ $\frac{V_{SS}}{VS}$ $\frac{V_{SS}}{VE}$ $\frac{V_{VC}}{VE}$ $\frac{VO_{1}}{VO_{1}}$ $\frac{VO_{1}}{A_{9}}$ $\frac{A_{8}}{A_{7}}$ $\frac{A_{7}}{VC}$ $\frac{V_{CC}}{Algorithms 1/}$ $\frac{All VO}{Algorithms 1/}$ $A$ | $\frac{\text{STD-883}}{\text{method}} \xrightarrow{V}  \boxed{\text{Test no.}}  A_6  A_5  A_4  A_3  A_0  A_1  A_2  \boxed{\text{CS}}  V_{SS}  \boxed{\text{WE}}  \boxed{VO_4}  \boxed{VO_3}  \boxed{VO_2}  \boxed{VO_1}  A_9  A_8  A_7  V_{CC}  Algorithms \underline{1}/  \underbrace{\text{Measured}}_{\text{terminal}}  \underbrace{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Min}}  \underline{\text{Max}}  \underbrace{\text{Min}}  \underline{\text{Min}}  \text{M$ |

#### TABLE III. Group A inspection for device type 02 and 04 - Continued. Terminal conditions (pins not designated may be high $\ge 2.0$ V; or low $\le 0.8$ V; or open).

 $\underline{1}'$  See appendix for description of algorithms.  $\underline{2}'$  I\_{CC} = 100 mA for device type 02; 70 mA for device type 04.

 $\underline{3}$ / V<sub>IL</sub> = GND, V<sub>IH</sub> = 6.0 V, pause time = 250 ms/loop max,  $\overline{CS}$  = high, only performed once at 125°C, and V<sub>CC</sub> = 7.0 V min.

4/  $V_{II} = 0.8$  V and  $V_{IH} = 2.0$  V.

 $S_1 = V_{11} = 0.0 \text{ v and } V_{11} = 2.0 \text{ v}$ .  $S_1 = S_1 = S_1 = 0.0 \text{ ms}$  where chip is deselected between the write.  $S_1 = S_1 = S_1 = 3.0 \text{ V}$ , and all address setup times are at minimums.

 $\underline{7}$ /  $V_{IL} = GND$ ,  $V_{IH} = 3.0$  V and all write pulse timing are at a minimum.

 $\frac{1}{2}$   $V_{IL} = 0$  ND,  $V_{IH} = 3.0$  V and all address ending timing are at minimum.  $\frac{9}{2}$   $V_{L} = 6$  ND,  $V_{IH} = 3.0$  V and all address ending timing are at minimum.

 $\begin{array}{c} \underline{y} & v_{L} = 0.05, v_{H} = 5.0, v_{AB} q_{AB} (s) measured at minimum timing. \\ \underline{10} & v_{L} = 0.8 \text{ V}, V_{IA} = 2.0 \text{ V}, \text{ tacs}; \text{ and } q_{AB} (s) measured at minimum timing. \\ \underline{11} & V_{L} = 0.8 \text{ V}, V_{H} = 2.0 \text{ V}, \text{ and all parameters are measured at minimum timing.} \end{array}$ 

 $\frac{15}{10}$ /  $t_{WP}$  = 200 ns for device type 02; 135 ns for device type 04.  $\frac{16}{10}$ /  $t_{DW}$  = 200 ns for device type 02; 135 ns for device type 04.

|           |                 |                 |           |                |                |                |                |                | Termir         | nal condit     | ions (pins | not des  | ignated r | nay be hig       | gh ≥ 2.0 V       | '; or low ≤      | 0.8 V; or        | open).         |                |                |                 |               |                  |      |        |      |
|-----------|-----------------|-----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|----------|-----------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|---------------|------------------|------|--------|------|
|           |                 | MIL-<br>STD-883 | Case<br>V | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8          | 9        | 10        | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |               | Measured         | Test | Limits |      |
| Subgroup  | Symbol          | method          | Test no.  | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | CS         | $V_{SS}$ | WE        | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>cc</sub> | Algorithms 1/ | terminal         | Min  | Max    | Unit |
| 1         | V <sub>OH</sub> | 3006            | 1         | GND            | GND        | GND      | 3.0 V     | -4 mA            |                  |                  |                  | GND            | GND            | GND            | 4.5 V           |               | I/O <sub>4</sub> | 2.4  |        | V    |
| Tc = 25°C | "               | "               | 2         | "              | "              | "              | "              | "              | "              | "              | "          | "        | "         |                  | -4 mA            |                  |                  | "              | "              | "              | ű               |               | I/O <sub>3</sub> | "    |        | "    |
| "         | "               | "               | 3         | "              | "              | "              | "              | "              | "              | "              | "          | "        | "         |                  |                  | -4 mA            |                  | "              | "              | "              | u               |               | I/O <sub>2</sub> | "    |        | "    |
| u         | "               | "               | 4         | u              | "              | u              | "              | "              | "              | "              | u          | "        | и         |                  |                  |                  | -4 mA            | "              | "              | "              | u               |               | I/O <sub>1</sub> | "    |        | "    |
| "         | VoL             | 3007            | 5         | "              | "              | "              | "              | **             | **             | "              | "          | "        | **        | 8 mA             |                  |                  |                  | "              | "              | "              | u               |               | I/O <sub>4</sub> |      | 0.4    | **   |
| "         | "               | "               | 6         | "              | "              | "              | "              | "              | "              | "              | "          | "        | **        | "                | 8 mA             |                  |                  | "              | "              | "              | u               |               | I/O <sub>3</sub> |      | "      | "    |
| "         | "               | "               | 7         | u              | "              | u              | "              | **             | "              | "              | "          | "        | "         | "                | "                | 8 mA             |                  | "              | "              | "              | u               |               | I/O <sub>2</sub> |      | "      | "    |
| ű         | u               | "               | 8         | u              | "              | ű              | "              | "              | "              | ű              | ű          | "        | "         | "                | "                | ű                | 8 mA             | "              | "              | "              | u               |               | I/O <sub>1</sub> |      | "      | ű    |
| "         | Ь               | 3010            | 9         | 5.5 V          | "              | "              | "              | "              | 66             | **             | "          | "        | 66        | GND              | GND              | GND              | GND              | "              | **             | "              | 5.5 V           |               | A <sub>6</sub>   |      | 10     | μΑ   |
| ű         | "               | "               | 10        | GND            | 5.5 V          | ű              | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>5</sub>   |      | "      | "    |
| ű         | "               | "               | 11        | "              | GND            | 5.5 V          | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>4</sub>   |      | "      | "    |
| "         | "               | "               | 12        | "              | "              | GND            | 5.5 V          | **             | 66             | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>3</sub>   |      | "      | "    |
| "         | "               | "               | 13        | "              | "              | "              | GND            | 5.5 V          | 66             | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>0</sub>   |      | "      | "    |
| "         | "               | "               | 14        | "              | "              | "              | "              | GND            | 5.5 V          | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>1</sub>   |      | "      | "    |
| u         | "               | "               | 15        | "              | "              | ű              | "              | "              | GND            | 5.5 V          | u          | "        | **        | "                | "                | ű                | ű                | "              | "              | "              | u               |               | A <sub>2</sub>   |      | ű      | "    |
| "         | "               | "               | 16        | "              | 44             | "              | "              | "              | "              | GND            | 5.5 V      | "        | "         | "                | "                | "                | "                | "              | "              | "              | "               |               | CS               |      | "      | "    |
| "         | "               | "               | 17        | "              | "              | "              | "              | "              | "              | "              | GND        | "        | 5.5 V     | "                | "                | "                | "                | "              | "              | "              | "               |               | WE               |      | "      | "    |
| "         | "               | "               | 18        | u              | "              | u              | "              | **             | "              | "              | u          | "        | GND       | 5.5 V            | "                | u                | u                | "              | "              | "              | u               |               | I/O <sub>4</sub> |      | u      | "    |
| u         | "               | "               | 19        | u              | "              | u              | "              | "              | "              | "              | u          | "        | и         | GND              | 5.5 V            | u                | u                | "              | "              | "              | u               |               | I/O <sub>3</sub> |      | "      | "    |
| "         | "               | "               | 20        | "              | "              | "              | "              | **             | **             | "              | "          | "        | **        | "                | GND              | 5.5 V            | "                | "              | "              | "              | u               |               | I/O <sub>2</sub> |      | "      | **   |
| "         | "               | "               | 21        | "              | "              | "              | "              | "              | "              | "              | "          | "        | **        | "                | "                | GND              | 5.5 V            | "              | "              | "              | u               |               | I/O <sub>1</sub> |      | "      | "    |
| u         | "               | "               | 22        | "              | "              | "              | "              | "              | 66             | "              | "          | "        | "         | "                | "                | "                | GND              | 5.5 V          | "              | "              | u               |               | A <sub>9</sub>   |      | "      | "    |
| "         | "               | "               | 23        | u              | "              | ű              | "              | **             | "              | "              | "          | "        | ш         | "                | "                | u                | "                | GND            | 5.5 V          | u              | u               |               | A <sub>8</sub>   |      | "      | "    |
| u         | "               | "               | 24        | ű              | "              | u              | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | GND            | 5.5 V          | u               |               | A <sub>7</sub>   |      | "      | "    |
| ű         | IL              | 3009            | 25        | ű              | "              | u              | "              | "              | "              | "              | ű          | "        | "         | "                | "                | ű                | "                | "              | "              | GND            | u               |               | A <sub>6</sub>   |      | ű      | "    |
| ű         | "               | "               | 26        | "              | "              | u              | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>5</sub>   |      | "      | "    |
| "         | "               | "               | 27        | ű              | "              | u              | "              | "              | "              | "              | ű          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>4</sub>   |      | "      | "    |
| ű         | "               | "               | 28        | "              | "              | "              | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | ű               |               | A <sub>3</sub>   |      | "      | "    |
| "         | "               | "               | 29        | "              | "              | u              | "              | "              | "              | "              | "          | "        | "         | "                | "                | "                | "                | "              | "              | "              | u               |               | A <sub>0</sub>   |      | "      | "    |

#### TABLE III. <u>Group A inspection for device type 06.</u> Terminal conditions (airs not designated may be birth $\ge 2.0$ V; or low $\le 0.8$ V; or open).

See footnotes at end of device types 06.

|                                 |                  |                 |           |                |                |                |                |                | Termin         | al condition   | ons (pins r | not desig | gnated m   | nay be h         | igh ≥ 2.0 '      | V; or low        | ≤ 0.8 V;         | or open)       |                |                |                 |                       |                  |                         |                         |      |
|---------------------------------|------------------|-----------------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|-----------|------------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|-----------------------|------------------|-------------------------|-------------------------|------|
|                                 |                  | MIL-<br>STD-883 | Case<br>V | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8           | 9         | 10         | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |                       | Measured         | Test                    | Limits                  |      |
| Subgroup                        | Symbol           | method          | Test no.  | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub> | A <sub>1</sub> | A <sub>2</sub> | CS          | $V_{SS}$  | WE         | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>CC</sub> | Algorithms <u>1</u> / | terminal         | Min                     | Max                     | Unit |
| 1<br>Tc = 25°C                  | l⊫               | 3009            | 30        | GND            | GND         | GND       | GND        | GND              | GND              | GND              | GND              | GND            | GND            | GND            | 5.5 V           |                       | A <sub>1</sub>   |                         | 10                      | μΑ   |
| "                               | "                | "               | 31        | "              | "              | "              | "              | и              | "              | u              | "           | "         | "          | "                | u                | "                | "                | "              | "              | "              | "               |                       | A <sub>2</sub>   |                         | "                       | ű    |
| **                              | "                | "               | 32        | "              | **             | "              | "              | "              | "              | "              | "           | "         | **         | "                | u                | "                | "                | "              | "              | "              | **              |                       | cs               |                         | "                       | "    |
| "                               | "                | "               | 33        | "              | 66             | "              | "              | "              | "              | u              | u           | u         | **         | u                | u                | **               | "                | "              | "              | **             | 66              |                       | WE               |                         | "                       | u    |
| "                               | "                | "               | 34        | "              | "              | "              | "              | и              | "              | u              | "           | "         | "          | "                | u                | "                | "                | "              | "              | "              | "               |                       | I/O <sub>4</sub> |                         | "                       | ű    |
| "                               | "                | "               | 35        | "              | "              | "              | "              | "              | "              | "              | "           | "         | **         | "                | "                | "                | "                | "              | "              | **             | **              |                       | I/O <sub>3</sub> |                         | "                       | ű    |
| "                               | "                | "               | 36        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | "                | u                | "                | "                | "              | "              | "              | **              |                       | I/O <sub>2</sub> |                         | "                       | u    |
| "                               | "                | "               | 37        | "              | "              | "              | "              | и              | "              | u              | "           | "         | "          | "                | u                | "                | "                | "              | "              | "              | "               |                       | I/O <sub>1</sub> |                         | "                       | ű    |
| "                               | "                | "               | 38        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | "                | "                | "                | "                | "              | u              | "              | "               |                       | A <sub>9</sub>   |                         | "                       | "    |
| "                               | "                | "               | 39        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | "                | "                | "                | "                | "              | u              | "              | "               |                       | A <sub>8</sub>   |                         | "                       | "    |
| "                               | "                | "               | 40        | "              | "              | "              | "              | "              | "              | "              | "           | "         | **         | "                | u                | "                | "                | "              | "              | **             | "               |                       | A <sub>7</sub>   |                         | "                       | u    |
| "                               | IL01             |                 | 41        | "              | "              | "              | "              | "              | "              | "              | 3.0 V       | "         | 3.0 V      | "                |                  |                  |                  | "              | "              | **             | "               |                       | I/O <sub>4</sub> |                         | 50                      | u    |
| "                               | "                |                 | 42        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  | GND              |                  |                  | "              | u              | "              | "               |                       | I/O <sub>3</sub> |                         | "                       | "    |
| "                               | "                |                 | 43        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  |                  | GND              |                  | "              | u              | "              | "               |                       | I/O <sub>2</sub> |                         | "                       | "    |
| "                               | "                |                 | 44        | "              | "              | "              | "              | "              | "              | "              | "           | "         | **         |                  |                  |                  | GND              | "              | "              | **             | "               |                       | I/O <sub>1</sub> |                         | "                       | u    |
| "                               | I <sub>L02</sub> |                 | 45        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          | 4.5 V            |                  |                  |                  | "              | "              | "              | "               |                       | I/O <sub>4</sub> |                         | "                       | "    |
| "                               | "                |                 | 46        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  | 4.5 V            |                  |                  | "              | "              | "              | "               |                       | I/O <sub>3</sub> |                         | "                       | "    |
| "                               | "                |                 | 47        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  |                  | 4.5 V            |                  | "              | "              | "              | **              |                       | I/O <sub>2</sub> |                         | "                       | u    |
| "                               | "                |                 | 48        | "              | "              | "              | "              | "              | "              | "              | "           | "         | "          |                  |                  |                  | 4.5 V            | "              | "              | "              | **              |                       | I/O <sub>1</sub> |                         | "                       | u    |
| "                               | I <sub>cc</sub>  | 3005            | 49        | "              | "              | "              | "              | и              | "              | u              | GND         | "         | GND        | GND              | GND              | GND              | GND              | "              | "              | "              | "               |                       | V <sub>cc</sub>  |                         | <u>2</u> /              | mA   |
| BIT S                           | STRESS 1         | TEST            | 50        | <u>3</u> /     | <u>3</u> /  | "         | <u>3</u> / | "                | <u>3</u> /       | <u>3</u> /       | <u>3</u> /       | <u>3</u> /     | <u>3</u> /     | <u>3</u> /     | <u>3</u> /      | CKBD and<br>CKBD      | All I/O          | V <sub>OL</sub><br><1.5 | V <sub>ОН</sub><br>>1.5 | V    |
| 7                               | t <sub>AA</sub>  | Fig. 5,6        | 51        | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/          | u         | 4/         | 4/               | 4/               | 4/               | 4/               | 4/             | 4/             | 4/             | 4.5 V           | "                     | u                | "                       | "                       | u    |
| $T_{\rm C} = 25^{\circ}{\rm C}$ | "                | "               | 52        | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/             | 4/          | "         | 4/         | 4/               | 4/               | 4/               | 4/               | 4/             | 4/             | 4/             | 5.5 V           | "                     | "                | "                       | "                       | "    |
| "                               | "                | "               | 53        | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/          | "         | 5/         | 5/               | 5/               | 5/               | 5/               | 5/             | 5/             | 5/             | 4.5 V           | "                     | "                | "                       | "                       | "    |
| "                               | "                | "               | 54        | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/             | 5/          | "         | 5/         | 5/               | 5/               | 5/               | 5/               | 5/             | 5/             | 5/             | 5.5 V           | "                     | "                | "                       | "                       | "    |
| **                              | "                | "               | 55        | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/          | "         | 6/         | 6/               | 6/               | 6/               | 6/               | 6/             | 6/             | 6/             | 4.5 V           | "                     | "                | "                       | "                       | ű    |
| "                               | "                | "               | 56        | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/             | 6/          | u         | 6/         | 6/               | 6/               | 6/               | 6/               | 6/             | 6/             | 6/             | 5.5 V           | "                     | u                | "                       | "                       | u    |

# TABLE III. <u>Group A inspection for device type 06</u> - Continued.

See footnotes at end of device types 02 and 04.

| Symbol         method         Test no.         A <sub>0</sub> A <sub>0</sub> A <sub>0</sub> A <sub>1</sub> A <sub>2</sub> CS         VS0         VVE         UO <sub>1</sub> UO <sub>2</sub> UO <sub>1</sub> A <sub>0</sub> A <sub>0</sub> A <sub>1</sub> A <sub>2</sub> CS         VS0         VVE         UO <sub>3</sub> UO <sub>2</sub> UO <sub>1</sub> A <sub>0</sub> A <sub>0</sub> A <sub>1</sub> A <sub>1</sub> A <sub>1</sub> A <sub>2</sub> CS         VS0         VVE         UO <sub>3</sub> UO <sub>2</sub> UO <sub>1</sub> A <sub>0</sub> A <sub>0</sub> A <sub>1</sub> |           |                 | 14               |             | <u>≤ 0.8 V;</u><br>14 |            | 15             | 16             | 17             | 18              |               | Measured | Test                     | Limits                   |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------------|-------------|-----------------------|------------|----------------|----------------|----------------|-----------------|---------------|----------|--------------------------|--------------------------|------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9         | ′O <sub>1</sub> | I/O <sub>1</sub> | <u>2</u> 1/ | I/O <sub>1</sub>      | 1 A        | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>CC</sub> | Algorithms 1/ | terminal | Min                      | Max                      | Unit |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /         | <u>7</u> /      | <u>Z</u> /       |             | <u>7</u> /            | 7          | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | 4.5 V           |               | Ali I/O  | V <sub>OL</sub><br>< 1.5 | V <sub>ОН</sub><br>> 1.5 | V    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7         | <u>7</u> /      | <u>7</u> /       |             | <u>7</u> /            | 7          | <u>7</u> /     | <u>7</u> /     | <u>7</u> /     | 5.5 V           | "             | "        | 66                       | u                        | "    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /         | 8/              | 8/               |             | 8/                    | 8          | 8/             | 8/             | 8/             | 4.5 V           | **            | "        | "                        | ű                        | "    |
| ""       ""       61       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/       9/ <th< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td>5.5 V</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td></th<>                                                                                                                                                                                                   |           |                 |                  |             |                       | _          | _              |                |                | 5.5 V           | "             | "        | "                        | "                        | "    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                 |                  |             |                       | _          |                |                | -              | _               | "             | u        | **                       | u                        | "    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                 | -                |             |                       | -          |                |                | -              |                 | "             | "        | "                        | u                        | u    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y         | 9/              | <u>9</u> /       |             | <u>9</u> /            | 2          | <u>9</u> /     | <u>9</u> /     | <u>9</u> /     | 5.5 V           | "             | "        | "                        | "                        | "    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>)/</u> | 10/             | <u>10</u> /      | <u>1</u>    | <u>10</u> /           | ' <u>1</u> | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 5.5 V           |               |          |                          |                          |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>)/</u> | 10/             | <u>10</u> /      | 1           | <u>10</u> /           | ′ <u>1</u> | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 5.5 V           | **            | "        | "                        | u                        | "    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>)/</u> | 10/             | <u>10</u> /      | 1           | <u>10</u> /           | ′ <u>1</u> | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | MARCH         | u        | "                        | ű                        | "    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>)/</u> | 10/             | <u>10</u> /      | 1           | <u>10</u> /           | ′ <u>1</u> | <u>10</u> /    | <u>10</u> /    | <u>10</u> /    | 4.5 V           | MARCH         | "        | "                        | "                        | "    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                 |                  | -           |                       |            |                |                | 1              |                 |               |          |                          |                          |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>1/</u> | <u> 1</u> /     | <u>11</u> /      | <u>1</u>    | <u>11</u> /           | ′ <u>1</u> | <u>11</u> /    | <u>11</u> /    | <u>11</u> /    | 4.5 V           |               | Ali I/O  |                          | 70                       | ns   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "         | "               | "                |             | "                     |            | "              | "              | "              | 5.5 V           | "             | "        |                          | 70                       |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                 |                  |             |                       |            |                |                |                |                 |               |          |                          | 70                       | "    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                 |                  |             |                       |            |                |                |                |                 |               |          |                          | 70                       | "    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "         |                 |                  |             |                       |            | "              |                | "              |                 |               |          |                          | 80                       | "    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •         |                 |                  |             |                       |            | "              |                | "              |                 |               |          |                          | 80                       | "    |
| a         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h                                                                                                                                                                                                                                                                                                            | •         |                 |                  |             |                       |            | "              |                | "              |                 |               |          | 70                       |                          | "    |
| wp         "75"         """"""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |                  |             |                       |            |                |                | "              |                 |               |          | 70                       |                          | "    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |                  |             |                       |            |                |                |                |                 |               |          | 50                       |                          | "    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                 |                  |             |                       | _          | "              | "              | "              |                 |               | "        | 50<br>5                  |                          | "    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | "               | "                | _           | "                     | _          | u              | "              | "              |                 | "             | "        | 5<br>5                   |                          | "    |

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high  $\ge 2.0$  V; or low  $\le 0.8$  V; or open).

See footnotes at end of device types 06.

|                |                 | MIL-         | Case          | 1              | 2              | 3              | 4              | 5                     | 6              | 7              | 8           | 9               | 10          | 11               | 12               | 13               | 14               | 15             | 16             | 17             | 18              |                       |          | Test | Limits |      |
|----------------|-----------------|--------------|---------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|-------------|-----------------|-------------|------------------|------------------|------------------|------------------|----------------|----------------|----------------|-----------------|-----------------------|----------|------|--------|------|
|                |                 | STD-883      | V             |                |                |                |                |                       |                |                |             |                 |             |                  |                  |                  |                  |                |                |                |                 |                       | Measured |      |        | ļ    |
| Subgroup       | Symbol          | method       | Test no.      | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>0</sub>        | A <sub>1</sub> | A <sub>2</sub> | CS          | V <sub>SS</sub> | WE          | I/O <sub>4</sub> | I/O <sub>3</sub> | I/O <sub>2</sub> | I/O <sub>1</sub> | A <sub>9</sub> | A <sub>8</sub> | A <sub>7</sub> | V <sub>cc</sub> | Algorithms 1/         | terminal | Min  | Max    | Unit |
| 9<br>Tc = 25°C | t <sub>DW</sub> | Fig. 5, 6    | 79            | <u>11</u> /           | <u>11</u> /    | <u>11</u> /    | <u>11</u> / | GND             | <u>11</u> / | <u>11</u> /      | <u>11</u> /      | <u>11</u> /      | <u>11</u> /      | <u>11</u> /    | <u>11</u> /    | <u>11</u> /    | 4.5 V           | GALPAT and<br>GALRESH | All I/O  | 25   |        | ns   |
| "              | t <sub>DW</sub> | "            | 80            | u              | **             | "              | "              | "                     | "              | "              | 66          | "               | 66          | "                | "                | "                | "                | **             | **             | "              | 5.5 V           | "                     | "        | 25   |        | "    |
| "              | t <sub>DH</sub> | "            | 81            | u              | **             | "              | "              | "                     | "              | "              | "           | "               | 66          | "                | "                | "                | "                | **             | **             | "              | 4.5 V           | "                     | "        | 0    |        | "    |
| "              | t <sub>DH</sub> | "            | 82            | u              | **             | "              | "              | "                     | "              | "              | 66          | "               | **          | "                | "                | "                | "                | 66             | 66             | "              | 4.5 V           | "                     | "        | 0    |        | "    |
| 10             | Same tes        | sts, termina | l conditions, | and limi       | ts as su       | ibgroup §      | 9, excep       | t T <sub>C</sub> = 12 | 25°C.          |                |             |                 |             |                  |                  |                  |                  |                |                |                |                 |                       |          |      |        |      |
| 11             | Same tes        | sts, termina | I conditions, | and limi       | ts as su       | ibgroup §      | 9, excep       | t T <sub>C</sub> = -5 | 5°C.           |                |             |                 |             |                  |                  |                  |                  |                |                |                |                 |                       |          |      |        |      |

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high  $\ge 2.0$  V; or low  $\le 0.8$  V; or open).

 $\underline{1}/$  See appendix for description of algorithms.  $\underline{2}/$   $I_{CC}$  = 180 mA .

 $\underline{3}$ / V<sub>IL</sub> = GND, V<sub>IH</sub> = 6.0 V,cycle time = 250 ms/loop max,  $\overline{CS}$  = high, only performed once at 125°C, and V<sub>CC</sub> = 7.0 V min.

 $\frac{4}{5} / V_{lL} = 0.8 V and V_{lH} = 2.0 V.$   $\frac{5}{5} / Algorithm has 60 ms where chip is deselected between the write.$ 

Z / V<sub>IL</sub> = GND, V<sub>IH</sub> = 3.0 V and all address setup times are at minimums. Z / V<sub>IL</sub> = GND, V<sub>H</sub> = 3.0 V and all write pulse timing are at a minimum.

#### 5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

#### 6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

6.2 <u>Acquisition requirements.</u> Acquisition documents should specify the following:

- a. Title, number, and date of the specification.
- b. Complete part number (see 1.2).
- c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
- d. Requirements for certificate of compliance, if applicable.
- e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
- f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
- g. Requirements for product assurance options.
- h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
- j. Requirements for packaging (see 5.1.)

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

| V <sub>CC</sub>     | Supply voltage                               |
|---------------------|----------------------------------------------|
| V <sub>SS</sub>     | Common or reference voltage node             |
| CS                  | Chip-selection, input                        |
| D <sub>IN</sub>     | Data input                                   |
| D <sub>OUT</sub>    | Data output                                  |
| $A_0$ thru $A_{11}$ | Address input                                |
| WE                  | Read or write input                          |
| I <sub>ОНZ</sub>    | High-impedance-state high output current     |
| I <sub>OLZ</sub>    | High-impedance-state low output current      |
| Icc                 | Supply current from V <sub>CC</sub> supply   |
| t <sub>RC</sub>     | Read cycle time                              |
| t <sub>AS</sub>     | Address set-up time                          |
| t <sub>WP</sub>     | Write pulse width                            |
| t <sub>WR</sub>     |                                              |
| t <sub>DW</sub>     | Data valid to end of write                   |
| t <sub>DH</sub>     | Data hold time                               |
|                     | Output hold time from address change         |
| t <sub>AA</sub>     | Address access time                          |
| t <sub>ACS</sub>    | Chip selection to output valid               |
| t <sub>WC</sub>     |                                              |
| t <sub>CW</sub>     |                                              |
| t <sub>AW</sub>     |                                              |
|                     | Chip selection to output in low impedance    |
|                     | Chip deselection to output in high impedance |
| t <sub>PU</sub>     |                                              |
|                     | Chip deselection to power down time          |
|                     | Write enabled to output in high impedance    |
| t <sub>OW</sub>     |                                              |
| T <sub>LO</sub>     |                                              |
| <u>T</u> c          |                                              |
| T <sub>A</sub>      | Ambient temperature                          |

6.6 Logistic support. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

| Military device<br>type<br>01 | Generic-industry |  |  |  |
|-------------------------------|------------------|--|--|--|
| type                          | type             |  |  |  |
| 01                            | 2147, 9147-85    |  |  |  |
| 02                            | 2114, 9114B      |  |  |  |
| 03                            | 2147H, 9147-70   |  |  |  |
| 04                            | 2114A, 9114D     |  |  |  |
| 05                            | 2147H-3, 9147-55 |  |  |  |
| 06                            | 2148H, 9148-70   |  |  |  |
| 07                            | 2147H-2, 9147-45 |  |  |  |

6.8 <u>Change from previous issue</u>. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

#### APPENDIX A

#### FUNCTIONAL ALGORITHMS

Functional algorithms are test patterns which define the exact sequence of tests used to verify proper operation of a random access memory (RAM). Each algorithm serves a specified purpose for the testing of the device.

#### A.1 FUNCTIONAL PATTERNS.

#### A.1.1 Pattern 1.

CKBD.

- a. Write a checkerboard pattern into memory (O in address O) from address O to N.
- b. When the CS off test is performed, attempt to write the complement pattern into cell memory with the device not selected.
- c. Read checkerboard pattern in the memory.

#### A.1.2 Pattern 2.

CKBD. Same as CKBD only with data complemented.

#### A.1.3 Pattern 3.

MARCH.

- a. Write test word into every location.
- b. The addressing is then scanned from location "O" to location "N".
- c. At each address, the test word is read and a complemented test word is written back into the same location.
- d. The addressing is then scanned in reverse from location "N" to location "O".
- e. At each address, the complemented test word is read and the test word is written back in.

#### A.1.4 Pattern 4.

<u>GALPAT</u>. This program will test all bits in the array. The addressing and interaction between bits for ac performance. The memory is initialized by writing a field of "1" and then a field of "0" into the cell memory.

- a. Write a "1" in word location 0 (reference location).
- b. Word 0 is read.
- c. Word 1 is read.
- d. Word 0 is read.
- e. Word 2 is read.
- f. Word 0 is read.
- g. The reading procedure continues back and forth between word 0 and the next higher number word until word 4095(-1) or 1023(-2) is reached. Then increment to the next word which becomes the reference location and then step a through g again until all the words in the memory are used at least once as a reference.

#### APPENDIX A

#### A.1.5 Pattern 5.

<u>Diagonal GALRESH (with row column ping pong read GG II).</u> This pattern will test all bits in the array for writing interaction for switching performance.

- a. Initialize the memory by writing a field of 0's.
- b. Perform the following read write sequence moving the test bit along the diagonal of the memory; and reading only the row and column of the test bit in ping ping fashion:

| R0  | = | Read | "()" |
|-----|---|------|------|
| 1.0 | _ | reau | 0    |

WI = Write "1" etc.

|               | STEP |    |    |    |    |    |    |    |    |
|---------------|------|----|----|----|----|----|----|----|----|
|               | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| BACKROUND BIT |      | RO |    | RO |    | RO |    | RO |    |
| TEST BIT      | R0   |    | WI |    | RI |    | WO |    | RO |

c. Reinitialize the memory by writing a field of l's.

d. Perform the following read write sequence moving the test bit along the diagonal of the memory; and reading only the row and column of the test bit in ping pong fashion:

|     | STEP |    |    |    |    |    |    |    |    |
|-----|------|----|----|----|----|----|----|----|----|
|     | 1    | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| BIT |      | RI |    | RI |    | RI |    | RI |    |
|     | RI   |    | WO |    | RO |    | WI |    | RI |

# BACKROUND BI

TEST BIT

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC

Review activities: Army – SM, MI Navy - AS, CG, MC, SH TD Air Force – 03, 19, 99 Preparing activity: DLA - CC

(Project 5962-2012)