INCH-POUND MIL-M-38510/306E <u>17 June 2003</u> SUPERSEDING MIL-M-38510/306D 16 NOVEMBER 1987

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, SHIFT REGISTERS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, TTL, low power, shift register microcircuits. Two product assurance classes and a choice of case outlines and lead finishes and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	4 bit bi-directional shift register
02	4 bit parallel-access shift register
03	4 bit parallel-access shift register
04	5 bit shift register
05	8 bit parallel-out shift register
06	4 bit right-shift, left-shift register, 3-state outputs
07	4 bit cascadable shift register, 3-state outputs
08	8 bit parallel-in shift register with clock inhibit
09	8 bit parallel-in shift register with clear

1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.

Beneficial comments (recommendations, additions deletions) and any pertinent data which may be used in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P.O. Box 3990, Columbus OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

FSC 5962

0	utline letter	Descriptive designator	Terminals	Package style
<u>ot</u>		Descriptive designator	Terminals	<u>i ackage style</u>
	А	GDFP5-F14 or CDFP6-F14	14	Flat pack
	В	GDFP4-14	14	Flat pack
	С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
	D	GDFP1-F14 or CDFP2-F14	14	Flat pack
	E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
	F	GDFP2-F16 or CDFP3-F16	16	Flat pack
	Х	CQCC2-N20	20	Square leadless chip carrier
	2	CQCC1-N20	20	Square leadless chip carrier
1.3 <u>Absc</u>	olute maximu	m ratings.		
Supp	ly voltage rar	nge		-0.5 V dc to 7.0 V dc
Input	voltage rang	e		-1.5 V dc at -18 mA to 5.5 V dc
		Ire range		
		lissipation per register, (P_D) <u>1</u> /:		
				127 mW dc
		2, 03		
		1		
		5		
		6, 07		
		3		
		9		
		(soldering, 10 seconds)		
	•	e, junction to case (θ_{JC}):		
		, E, F, 2, and X	(See MIL-S	STD-1835)
Junct	tion temperat	ure (T _J) <u>2</u> /		175°C
1.4 <u>Reco</u>	ommended o	perating conditions.		
Supp	ly voltage (V/			4.5 V dc minimum to 5.5 V dc maximum
		el input voltage (V _{IH})		
		el input voltage (VII)		
		mperature range (T _C)		
	num clock pu			33 10 1123 0
		I, 03, 05, 07, 09		20 ns
		2		
	21	4, 06, 08		
	num clear pul			20113
		I, 09		20 ns
		2		
		l		
	••	5, 07		
	num load puls		•••••	20110
		3		30 ns
		ne at mode control:	••••••	
				30 ns
		3, 06		
_				

^{1.2.3 &}lt;u>Case outlines.</u> The case outlines should be as designated in MIL-STD-1835 and as follows:

^{1/} Must withstand the added P_D due to short-circuit test (e.g., I_{OS}). 2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

Minimum setup time at shift/load:

Device type 02 25 n	iS
Device type 07 20 n	IS
Device type 08 42 n	IS
Device type 09 30 n	
Minimum setup time at serial data:	
Device type 08 10 n	IS
Minimum setup time at serial or parallel data:	
Device type 01, 02, 03, 05, 06, 07 20 n	IS
Device type 04 30 n	IS
Device type 09 18 n	IS
Minimum setup time at preset:	
Device type 04 30 n	IS
Minimum setup time at inhibit:	
Device type 08 30 n	IS
Minimum hold time:	
Device type 01, 02, 03, 04, 05, 07 10 n	IS
Device type 06 20 n	IS
Device type 08 3 ns	
Device type 09 2 ns	
Minimum enable or inhibit time of clock:	
Device type 03 20 n	IS
Maximum release time shift/load:	-
Device type 02 10 n	IS

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figure 1.

3.3.2 Truth tables. The truth tables and timing diagrams shall be as specified on figure 2.

3.3.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.

3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be _maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.

3.3.5 <u>Case outlines</u>. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

Test	Symbol		Conditions <u>1</u> /	Device	Limits		Unit
			$5^{\circ}C \le T_{C} \le +125^{\circ}C$ s otherwise specified	types	Min	Max	
High-level output voltage	V _{OH}	V _{CC} = 4.5 V V _{IN} = 2.0 V	I _{OH} = -1.0 mA	06,07	2.4		V
			I _{OH} = -400 μA	01,02,03 04,05, 07 (QD'), 08,09	2.5		V
Low-level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V},$ $V_{IN} = 0.7 \text{ V}$	I _{OL} = 4 mA	01,02,03 04,05, 07 (QD'), 08,09		0.4	V
			I _{OL} = 12 mA	06,07			
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{II}$	_N = -18 mA, T _C = 25°C	All		-1.5	V
High-level input current for all	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{IN} = 2.7 \text{ V}$		01,02,05, 06,07,08,		20	μA
inputs except S/L for type 08	I _{IH2}	$V_{CC} = 5.5 \text{ V}, I_{IN} = 5.5 \text{ V}$		09		100	
High-level input current at any	I _{IH3}	$V_{CC} = 5.5 \text{ V}, I_{IN} = 2.7 \text{ V}$		03		20	μA
input except mode	I _{IH4}	$V_{CC} = 5.5 \text{ V}, I_{IN} = 5.5 \text{ V}$				100	
High-level input current at any	I _{IH5}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{IN} = 2.7 \text{ V}$		04		20	μA
input except preset enable	I _{IH6}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{IN} = 5.5 \text{ V}$				100	
High-level input current at mode	I _{IH7}	$V_{CC} = 5.5 \text{ V}, I_{II}$	$V_{CC} = 5.5 \text{ V}, I_{IN} = 2.7 \text{ V}$			40	μA
	I _{IH8}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{IN} = 5.5 \text{ V}$				200	
High-level input current at preset	I _{IH9}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{\text{II}}$	$V_{CC} = 5.5 \text{ V}, \text{ I}_{IN} = 2.7 \text{ V}$			100	μA
enable	I _{IH10}	$V_{CC} = 5.5 \text{ V}, I_{IN} = 5.5 \text{ V}$				500	
High-level input current at S/L	Іін11	$V_{CC} = 5.5 \text{ V}, I_{II}$	_N = 2.7 V	08		60	μA
	I _{IH12}	$V_{CC} = 5.5 \text{ V}, \text{ I}_{\text{II}}$	_N = 5.5 V			300	

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions <u>1</u> /	Device	Lim	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Off-state output current, high level voltage applied	I _{OZH}	$V_{CC} = 5.5 \text{ V}, V_0 = 2.7 \text{ V}$	06,07		20	μΑ
Off-state output current, low level voltage applied	I _{OZL}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V}$	06,07		-20	μA
Low-level input	I _{IL1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V}$	01,02,06	03	44	mA
current (for all inputs except S/L,			05	10	44	
serial in & data			07	03	40	
for types 08 and 09)			08,09	001	72	
Low-level input current at any input except clock	I _{IL2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4 \text{ V}$	03	06	76	mA
Low-level input current at any input except preset enable	I _{IL3}		04	16	4	mA
Low-level input current at clock	I _{IL4}		03	03	44	mA
Low-level input current at preset enable	I _{IL5}		04	6	-2.0	mA
Low-level input current at data	I _{IL6}		08	100	380	mA
and serial in			09	100	340	mA
Low-level input current at S/L	I _{IL7}		08	001	-1.14	mA
			09	001	380	mA
Short-circuit output current	l _{os}	V _{CC} = 5.5 V <u>2</u> /	01,02,03, 04,05,08, 09	-15	-100	mA
			06,07	-15	-130	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol		Device	Lin	nits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Supply current	I _{CC}	V _{CC} = 5.5 V	04		20	mA
			02,03		21	
			01		23	
			05		27	
			06		29	
			07		34	
			08		36	
			09		38	
Maximum shift	f _{MAX}	$V_{CC} = 5.0 V$	04	17		MHz
frequency			06	18		
			01,03, 05,07	20		
			02	25		
			08	20		
			09	20		
Propagation delay time, low-to-high level from clock	t _{PLH1}	$R_L = 2 k\Omega$ for types 01 thru 05, 08 and	01,02	5	41	ns
		09. See figures 9 and 10 for R_L for types 06 and 07	03,05		48	
			07		56	
			04		68	
			06		46	
			08		58	
			09		40	

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions <u>1</u> /	Device	Lim	nits	Unit
		$-55^{\circ}C \leq T_{C} \leq +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Propagation delay time, low-to-high	t _{PLH2}	V_{CC} = 5.0, C_L = 50 pF ±10% R_L = 2 k Ω for types 01 thru 05, 08 and	02	5	53	ns
level form preset or preset enable		09. See figures 9 and 10 for R_L types 06 and 07	04		60	
Propagation delay time, high-to-low	t _{PLH1}		01,02	5	47	ns
level from clock			03,05,07	-	56	
			04	-	68	
			06	-	52	
			08	-	58	
			09		46	
Propagation delay time, high-to-low	t _{PLH2}		01,02	05	53	ns
level from clear			07	-	56 62	
			04	-	90	
Propagation delay time, low to high level from S/L	t _{PLH5}		08,09	5	52	ns
Propagation delay time, high to low level from S/L or clear	t _{PHL5}		08,09	5	52	ns
Propagation delay time, high to low level from data	t _{PHL3}		08	5	46	ns
Propagation delay time, low to high level from data	t _{PLH3}		08	5	39	ns

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions <u>1</u> /	Device	Limits		Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Propagation delay time, low to high level from data	t _{PLH4}	V_{CC} = 5.0 V, C_L = 50 pF $\pm 10\%$ R_L = $2k\Omega$ for types 01 thru 05, 08 and 09. See figures 9 and 10 for R_L types 06 and 07	08	5	46	ns
Propagation delay time, high to low level from data	t _{PHL4}		08	5	39	ns
Output enable time to low level	t _{ZL}	See figures 9 and 10 for conditions	06	5	45	ns
			07	5	53	ns
Output enable time to high level	t _{ZH}		06	5	39	ns
			07		53	
Output disable time from low level	t _{LZ}		07	5	53	ns
			06		71	
Output disable time from high level	t _{HZ}		07	5	53	ns
			06		84	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

 $\underline{1}$ / Complete terminal condition shall be as specified in table III. $\underline{2}$ / Not more than one output should be shorted at a time.

	Subgroups	(see table III)
MIL-PRF-38535 test requirements	Class S	Class B
	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9,	1*, 2, 3, 9
	10, 11	
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
	9, 10, 11	9, 10, 11
Group B test when using the method 5005	1, 2, 3	N1/A
QCI option.	9, 10, 11	N/A
Group C end-point electrical	1, 2, 3,	1, 2, 3
parameters	9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535 .

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.
- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified and as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

MIL	-M-38510/306E
-----	---------------

	Device	type 01	Device ty	/pe 02	Device	type 03	Device	type 04
				CAS	ES			
Pin number	2, X	E,F	2, X	E,F	2, X	A,B,C, and D	2, X	E,F
1	NC	CLEAR	NC	CLR	NC	SER INP	NC	CLK
2	CLEAR	SHF RHT SER INP	CLR	J	SER INP	A	CLK	A
3	SHF RHT SER INP	А	J	ĸ	A	В	A	В
4	A	В	ĸ	А	В	С	В	С
5	В	С	А	В	NC	D	С	Vcc
6	NC	D	NC	С	С	MODE CONT	NC	D
7	С	SHF LEFT SER INP	В	D	NC	GND	V _{CC}	E
8	D	GND	С	GND	D	CLK 2 L SHF LOAD	D	PRESET ENABLE
9	SHF LEFT SER INP	SO	D	SHF/ LOAD	MODE CONT	CLK1 R SHF	E	SER INP
10	GND	S1	GND	CLK	GND	QD	PRESET ENABLE	QE
11	NC	CLOCK	NC	QD	NC	QC	NC	QD
12	SO	QD	SHF/LOAD	QD	CLK 2 L SHF/LOAD	QB	SER INP	GND
13	S1	QC	CLK	QC	CLK1 R SHF	QA	QE	QC
14	CLK	QB	Q D	QB	QD	V _{CC}	QD	QB
15	QD	QA	QD	QA	NC		GND	QA
16	NC	Vcc	NC	Vcc	QC		NC	CLR
17	QC		QC		NC		QC	
18	QB		QB		QB		QB	
19	QA		QA		QA		QA	
20	V _{CC}		V _{CC}		V _{CC}		CLR	

FIGURE 1. Terminal connections.

MIL	-M-38510	0/306E
-----	----------	--------

	Device	e type 05	Device	type 06	Device	type 07	Device	type 08
Pin number	2, X	A,B,C, and D	2, X	A,B,C and D	2, X	E,F	2, X	E, F
1	NC	А	NC	SER INP	NC	CLR	NC	SHF LOAD
2	A	В	SER INP	A	CLR	SER INP	SHF LOAD	CLOCK
3	В	QA	А	В	SER INP	А	CLOCK	E
4	QA	QB	В	С	А	В	E	F
5	NC	QC	NC	D	В	С	F	G
6	QB	QD	С	MODE CONT	NC	D	NC	Н
7	NC	GND	NC	GND	С	LOAD SHF	G	QН
8	QC	CLK	D	OUTPUT CONT	D	GND	Н	GND
9	QD	CLR	MODE CONT	CLK	LOAD SHF	OUTPUT CONT	Qн	QH
10	GND	QE	GND	QD	GND	CLK	GND	SER INP
11	NC	QF	NC	QC	NC	QD'	NC	А
12	CLK	QG	OUTPUT CONT	QB	OUTPUT CONT	QD	QH	В
13	CLR	QH	CLK	QA	CLK	QC	SER INP	С
14	QE	Vcc	QD	Vcc	QD'	QB	А	D
15	NC		NC		QD	QA	В	CLOCK INHIBIT
16	QF		QC		NC	CC	NC	V _{CC}
17	NC		NC		QC		С	
18	QG		QB		QB		D	
19	QH		QA		QA		CLOCK INHIBIT	
20	V _{CC}		V _{cc}		V _{CC}		V _{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

	Devi	ce type 09
Pin	2, X	E,F
number		
1	NC	SERIAL INPUT
2	SERIAL INPUT	А
3	A	В
4	В	С
5	С	D
6	NC	CLOCK INHIBIT
7	D	CLOCK
8	CLOCK INHIBIT	GND
9	CLK	CLEAR
10	GND	Е
11	NC	F
12	CLR	G
13	E	OUTPUT QH
14	F	INPUT H
15	G	SHIFT LOAD
16	NC	V _{CC}
17	QH	
18	INPUT H	
19	SHIFT LOAD	
20	V _{CC}	

FIGURE 1. <u>Terminal connections</u> - Continued.

Device type 01

				INPU	TS						OUTF	PUTS	
CLEAR	MO	DE	CLOCK	SEI	RIAL		PARA	ALLEL		Q _A	Q _B	Q _C	Q _D
GLEAR	S1	S0	GLOCK	LEFT	RIGHT	А	В	С	D	QA	Y B	QC	QD
L	Х	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L
Н	Х	Х	L'	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Н	Η	Н	1	Х	Х	а	b	с	d	а	b	с	d
Н	L	Н	†	Х	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}
Н	L	Н	1	Х	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}
Н	Н	L	1	Н	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	Н
Н	Н	L	1	L	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	L
Н	L	L	Х	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively, before the

indicated steady state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D , respectively, before the most

recent 1 transition of the clock.

Typical clear, load, right-shift, left shift, inhibit, and clear sequences.

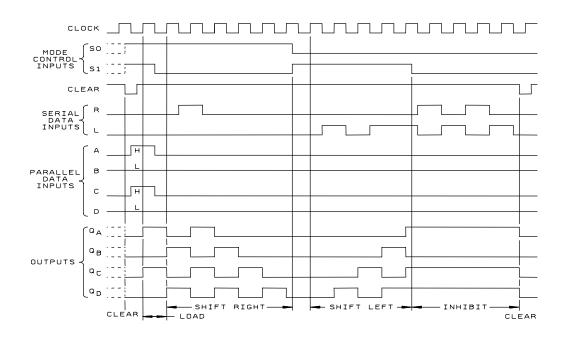


FIGURE 2. Truth tables and timing diagrams.

Device type 02

			INPU	JTS					OUTPUTS						
	SHIFT/		SEF	RIAL		PARA	LLEL		~	(0	0	Q D		
CLEAR	LOAD	CLOCK	J	ĸ	A	В	С	D	Q _A	QΒ	Qc	Q_D			
L	Х	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	Н		
Н	L	¢	Х	Х	а	b	С	d	а	b	С	d	d		
Н	Н	L	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}	\overline{Q}_{D0}		
Н	Н	1	L	Н	Х	Х	Х	Х	Q _{A0}	Q _{A0}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}		
Н	Н	¢	L	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}		
Н	Н	1	Н	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}	\overline{Q}_{Cn}		
Н	Н	↑	Н	L	Х	Х	Х	Х	\overline{Q}_{An}	Q _{An}	Q_Bn	Q_{Cn}	\overline{Q}_{Cn}		

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively. Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively, before the

RAO, QBO, QCO, QDO = level of QA, QB, QC, or QD, respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , = the level of Q_A , Q_B , or Q_C , respectively, before the most recent transition of the clock.

Typical clear, shift, and load sequences.

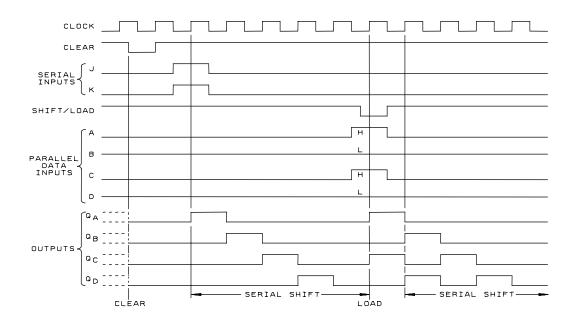


FIGURE 2. <u>Truth tables and timing diagrams</u> - Continued.

MODE	CLO	CKS	SERIAL		PARA	LLEL		Q _A	Q _B	Q _C	0
CONTROL	2 (L)	1 (R)	SERIAL	Α	В	С	D	QA	QB	QC	Q_D
Н	Н	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Н	Ļ	Х	Х	а	b	С	d	а	b	С	d
Н	Ļ	Х	Х	Q _B ↑	Q _C ↑	Q _D ↑	d	Q _{Bn}	Q _{Cn}	Q _{Dn}	d
L	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
L	Х	Ļ	Н	Х	Х	Х	Х	Н	Q _{An}	Q_{Bn}	Q _{Cn}
L	Х	Ļ	L	Х	Х	Х	Х	L	Q _{An}	Q_{Bn}	Q _{Cn}
1	L	L	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}
Ļ	L	L	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
Ļ	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}
↑ (Н	L	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}
↑	Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}

Device type 03

⁺Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

- H = High level (steady state), L = Low level (steady state),
- X = Irrelevant (any input, including transitions)
- \downarrow = Transition from high to low level, \uparrow = Transition from low to high level a, b, c,
- d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = level of Q_A , Q_B , Q_C , or Q_D , respectively,

before the indicated steady state input conditions were established. Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively,

most recent \downarrow transition of the clock.

FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 04

			INPL	JTS									
CLEAR	PRESET		PRESET				CLOCK	SERIAL	Q _A	Q _B	Q _C	QD	QE
OLLAN	ENABLE	Α	В	С	D	E	CLOCK	SERIAL	QA	QB	QC	QD	QL
L	L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
L	Х	L	L	L	L	L	Х	Х	L	L	L	L	L
Н	Н	Н	Н	Н	Н	Н	Х	Х	Н	Н	Н	Н	Н
Н	Н	L	L	L	L	L	L	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}	Q _{E0}
Н	Н	Н	L	Н	L	Н	L	Х	Н	Q _{B0}	Н	Q _{D0}	Н
Н	L	Х	Х	Х	Х	Х	L	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q _{D0}	Q _{E0}
Н	L	Х	Х	Х	Х	Х	↑ (Н	Н	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Dn}
Н	L	Х	Х	Х	Х	Х	1	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Dn}

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

 \uparrow = transition from low to high level

 Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc., respectively before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , etc. = the level of Q_A , Q_B , etc., respectively before the most recent \uparrow transition of the clock.

Typical clear, shift, preset and shift sequences

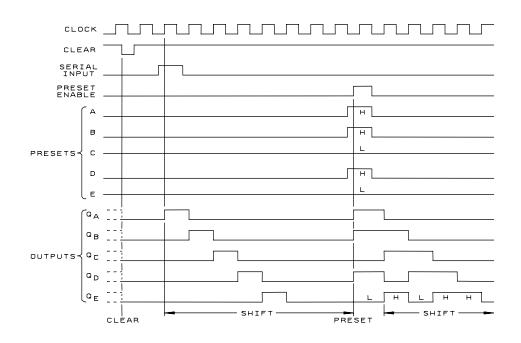


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 05

	INPUT	S		OUTPUTS					
CLEAR	CLOCK	Α	В	Q _A	Q _B Q _H				
L	Х	Х	Х	L	L	L			
Н	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}			
Н	1	Н	Н	Н	Q _{An}	Q_{Gn}			
Н	1	L	Х	L	Q _{An}	Q_{Gn}			
Н	1	Х	L	L	Q _{An}	Q_{Gn}			

H = high level (steady state), L = low level (steady state)

X = irrelevant (any input, including transitions)

↑ = transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A , or Q_G before the most recent \uparrow transition of the clock; indicates a one-bit shift.

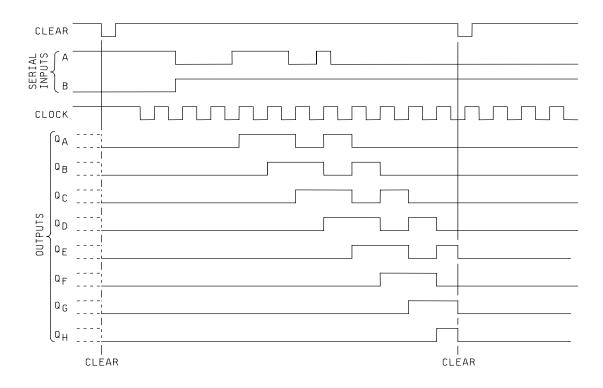


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 06

		INPUT	S					OUTF	PUTS		
MODE	CLOCK	SERIAL		PARA	LLEL		Q _A	QB	Q _C	Q_{D}	
CONTROL	OLOOK	OLIVIAL	Α	В	С	D	G A	Y B	G	QD	
Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}	
Н	Ļ	Х	а	b	С	d	а	b	С	d	
Н	Ļ	Х	Q _B ↑	Qc ↑	Q _D ↑	d	Q_{Bn}	Q _{Cn}	Q _{Dn}	d	
L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q _{D0}	
L	Ļ	Н	Х	Х	Х	Х	Н	Q _{An}	Q_{Bn}	Q _{Cn}	
L	Ļ	L	Х	Х	Х	Х	L	Q_{An}	Q_Bn	Q _{Cn}	
	When the output control is low, the outputs are disabled to high impedance state. however, sequential operation of the registers is not affected.										

⁺Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered to input D.

- H = high level (steady state), L = low level (steady state)
- X = irrelevant (any input, including transitions)
- \downarrow = transition from high to low level.
- a, b, c,d = the level of steady state input at inputs A, B, C, or D, respectively.
- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , \dot{Q}_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the most recent \downarrow transition of the clock.

Device type 07

		INPU	TS					3 S	TATE	OUTP	UTS	CASCADE
CLEAR	LOAD/SHIFT	CLOCK	SERIAL		PARA	LLEL		QA	QB	Qc	QD	OUTPUT
OLLAN	CONTROL	OLOOK	OLIVIAL	А	В	С	D	QA	3	y y	30	$Q_{D'}$
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
Н	Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}	Q _{D0}
Н	Н	Ļ	Х	а	b	С	d	а	b	С	d	d
Н	L	Н	Х	Х	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{C0}	Q_{D0}	Q _{D0}
Н	L	Ļ	Н	Х	Х	Х	Х	Н	\mathbf{Q}_{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}
Н	L	Ļ	L	Х	Х	Х	Х	L	Q_{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}
When the	When the output control is low, the outputs are disabled to high impedance state.											
however,	nowever, sequential operation of the registers is not affected.											

H = high level (steady state), L = low level (steady state),

X = irrelevant (any input, including transitions)

 \downarrow = transition from high to low level.

- Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established.
- Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C , or Q_D respectively, before the most recent \downarrow transition of the clock.

FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 08

		Input	S		Inter		Output
Shift/	Clock	Clock	Serial	Parallel	Outp	outs	Output Q _H
load	inhibit	CIUCK	Senai	AH	Q _A	Q _B	QH
L	Х	Х	Х	ah	а	b	h
Н	L	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}
Н	L	↑	Н	Х	Н	Q _{An}	Q_{Gn}
Н	L	1	L	Х	L	Q _{An}	Q_{Gn}
Н	Н	Х	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}

H = High level (steady state), L = Low level (steady state)

X = Irrelevant (any input, including transitions)

↑ = Transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = The level of Q_A or Q_G before the most recent transition of the clock; indicates a one-bit shift.

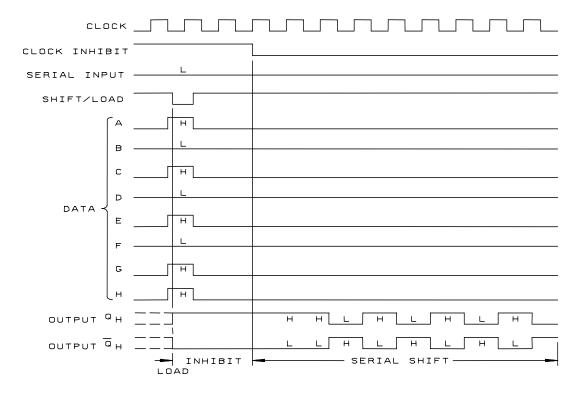


FIGURE 2. Truth tables and timing diagrams - Continued.

Device type 09

01	Shift/	Clock	Olash	Quidal	Parallel	Inter Outp		Output
Clear	load	inhibit	Clock	Serial	AH	Q _A	Q _B	Q _H
L	Х	Х	Х	Х	Х	L	L	L
Н	Х	L	L	Х	Х	Q _{A0}	Q _{B0}	Q _{H0}
Н	L	L	1	Х	ah	а	b	h
Н	Н	L	1	Н	Х	Н	Q_{An}	Q _{Gn}
Н	Н	L	1	L	Х	L	Q_{An}	Q _{Gn}
Н	Х	Н	↑	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}

H = High level (steady state), L = Low level (steady state)

X = Irrelevant (any input, including transitions)

 \uparrow = Transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H respectively, before the indicated steady state input conditions were established.

Q_{An}, Q_{Gn} = The level of Q_A or Q_G before the most recent ↑ transition of the clock; indicates a one-bit shift.

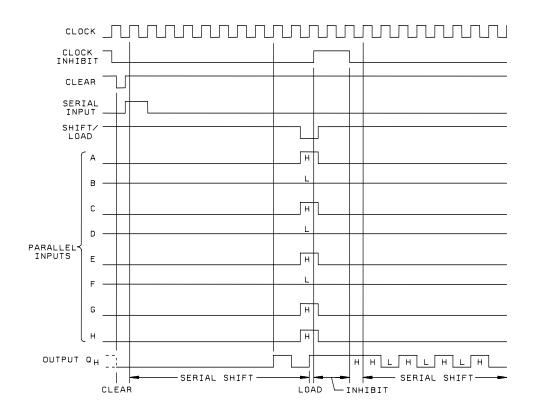


FIGURE 2. Truth tables and timing diagrams - Continued.

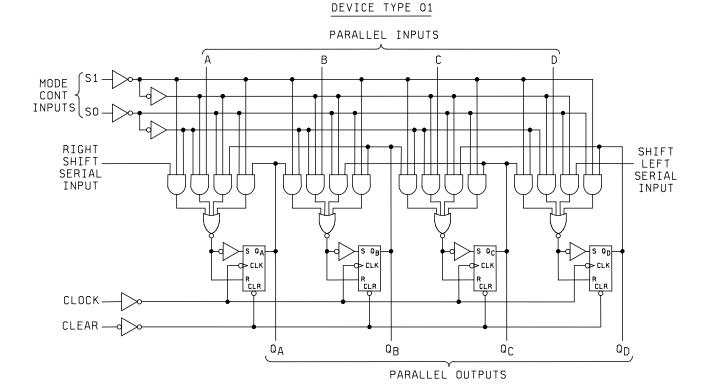
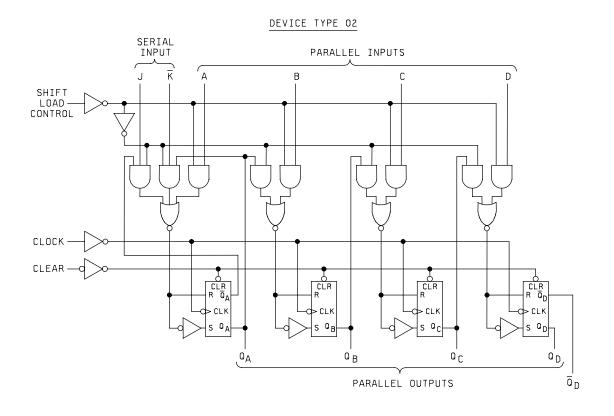



FIGURE 3. Logic diagrams.

23

-0 ... dynamic input activated from a high level to a low level

FIGURE 3. Logic diagrams - Continued.

DEVICE TYPE 03

CIRCUITS A,B,C,D, AND E

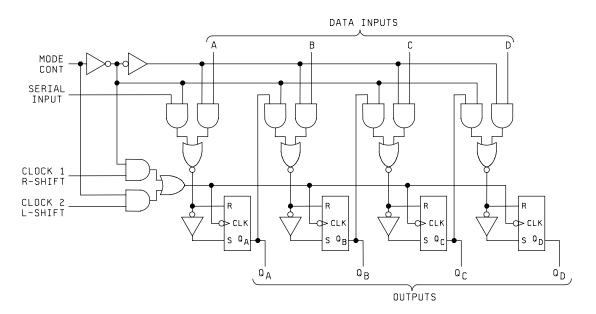


FIGURE 3. Logic diagrams - Continued.

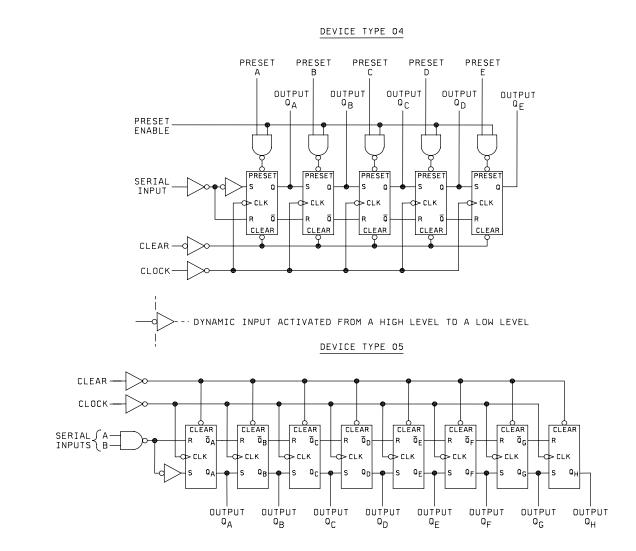
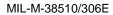



FIGURE 3. Logic diagram - Continued.

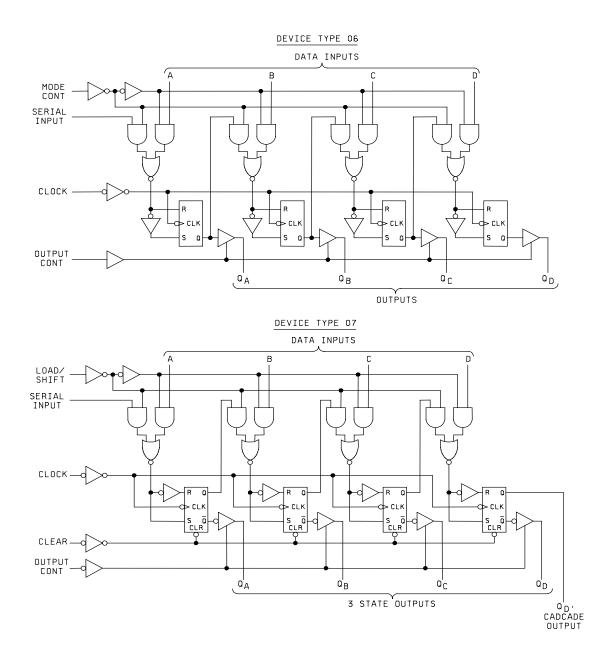
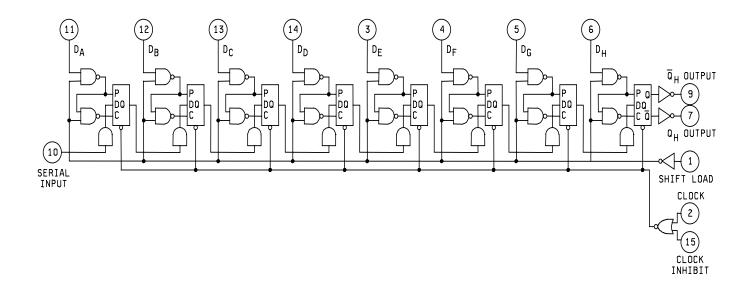



FIGURE 3. Logic diagrams - Continued.

DEVICE TYPE 08

Pin numbers are for cases E and F only.

FIGURE 3. Logic diagrams - Continued.

CIRCUIT C AND F

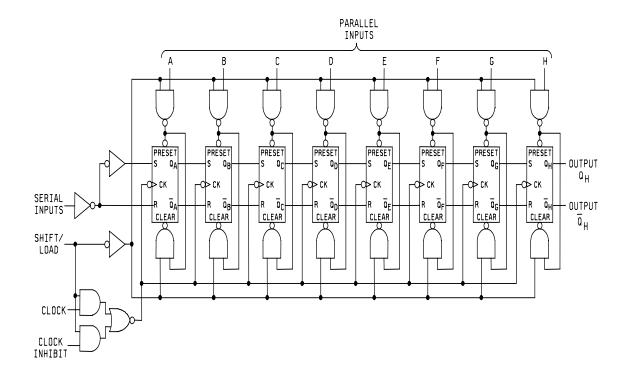
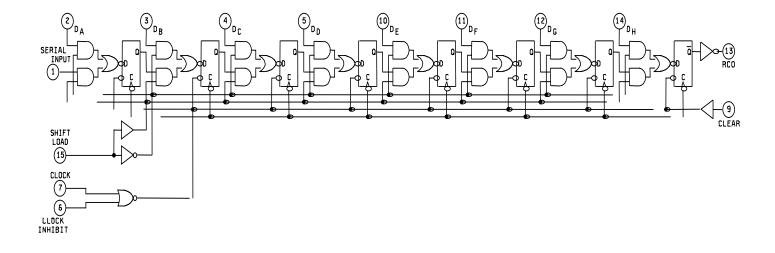



FIGURE 3. Logic diagrams - Continued.

Pin numbers are for cases E and F only.

FIGURE 3. Logic diagrams - Continued.

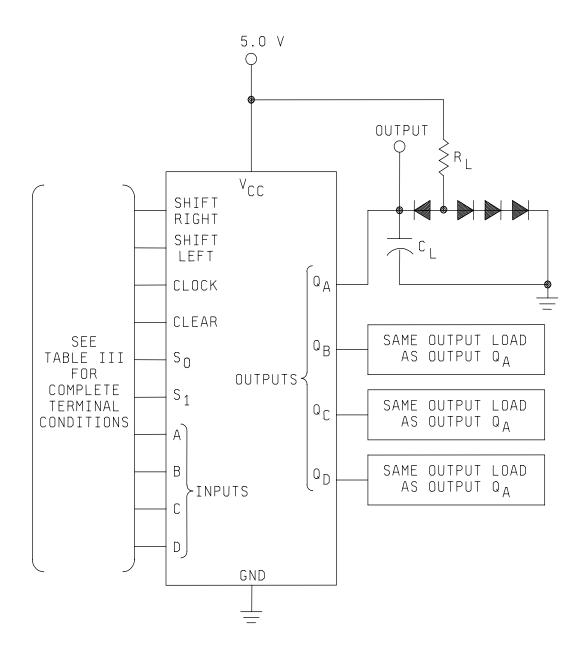
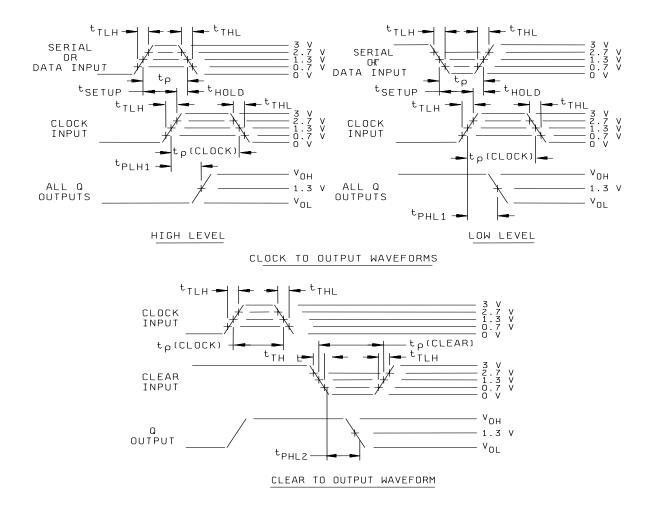



FIGURE 4. Switching test circuit and waveforms for device type 01.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 Mhz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial or data pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, t_p (serial) or t_p (data) = 30 ns.
- 3. Clear pulse characteristics: $t_{THL} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 20 ns.
- 4. $C_L = 50 \text{ pF} \pm 10 \text{ percent}$ incliding scope, probe, wiring and stray capacitance without package in test fixture.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_L = 2.0 \text{ k}\Omega \pm 5 \text{ percent.}$
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 4. Switching test circuit and waveforms for device type 01 - Continued.

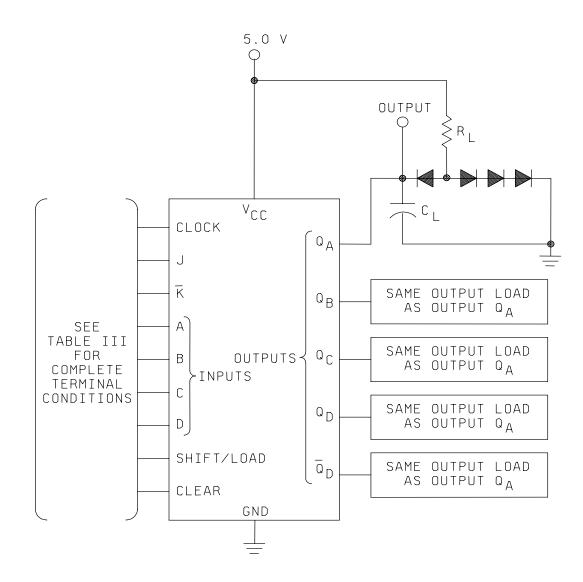


FIGURE 5. Switching test circuit and waveforms for device type 02.

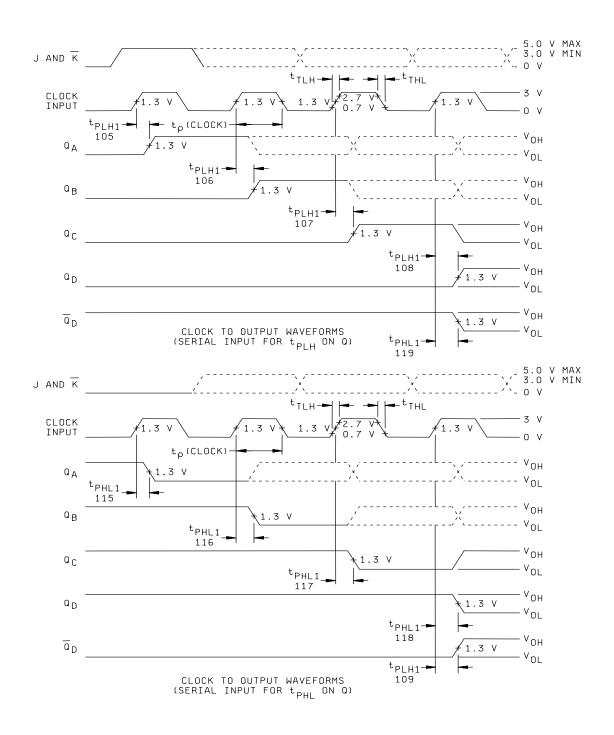
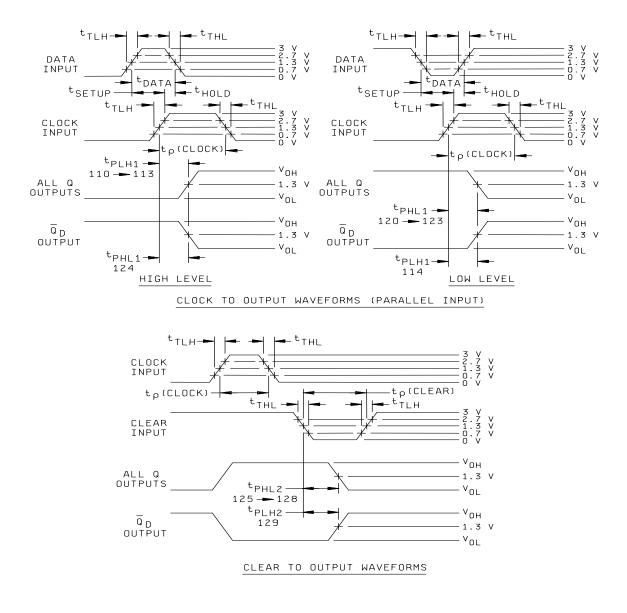



FIGURE 5. Switching test circuit and waveforms for device type 02 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{TLH} \leq 6 ns, t_p (clock) \geq 18 ns.
- 2. Data pulse characteristics: $t_{TLH} \le 20$ ns, $t_{THL} \le 6$ ns, $t_{SETUP} = 20$ ns, $t_{HOLD} = 10$ ns, $t_{DATA} = 30$ ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns; t_p (clear) = 15 ns.
- 4. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. $R_L = 2.0 \text{ k}\Omega \pm 5 \text{ percent.}$
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 5. Switching test circuit and waveforms for device type 02 - Continued.

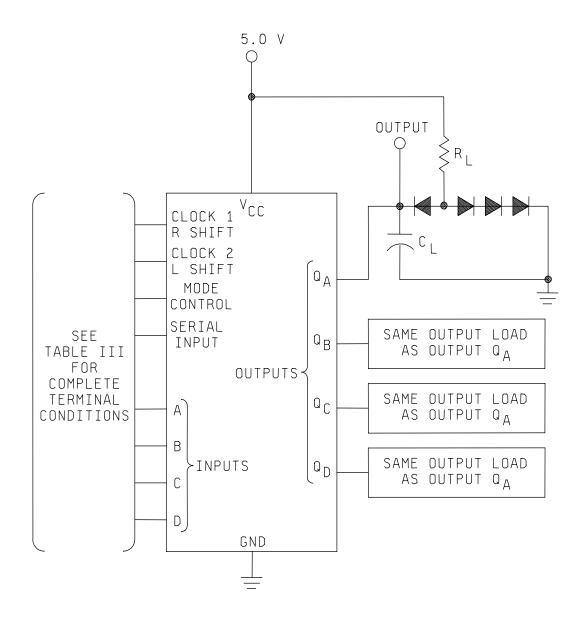
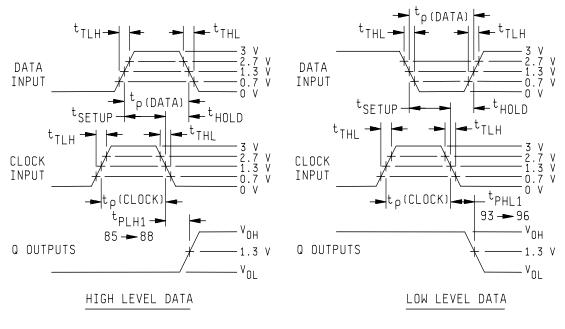
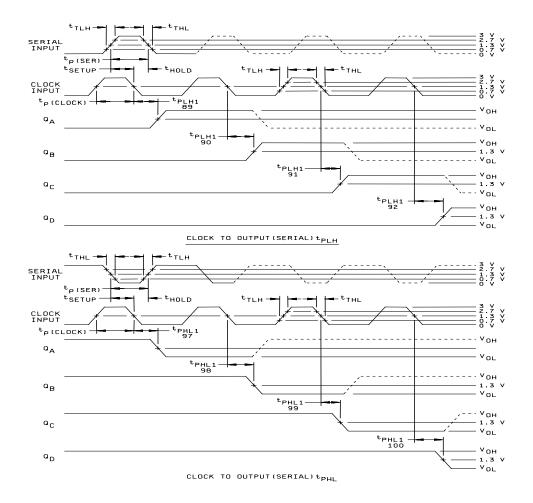




FIGURE 6. Switching test circuit and waveforms for device type 03.

CLOCK TO OUTPUT (PARALLEL)

FIGURE 6. Switching test circuit and waveforms for device type 03 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (SER) or t_p (DATA) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 6. Switching test circuit and waveforms for device type 03 - Continued.

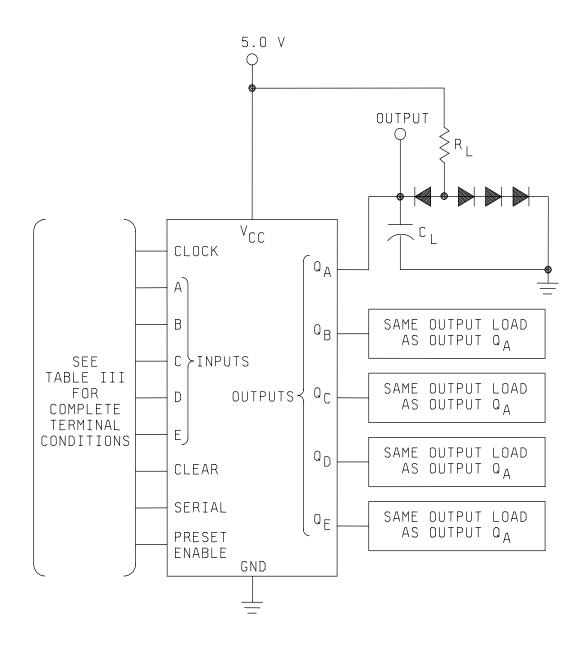


FIGURE 7. Switching test circuit and waveforms for device type 04.

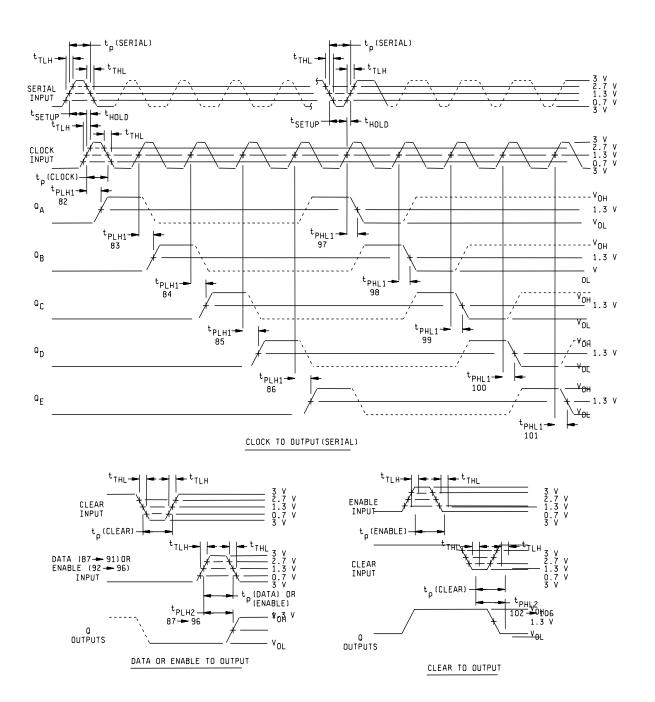


FIGURE 7. Switching test circuit and waveforms for device type 04 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 25 ns.
- 2. Serial data pulse characteristics: $t_{TLH} \leq 15$ ns, $t_{THL} \leq 6$ ns, t_p = 30 ns.
- 3. Clear, data, and enable pulse characteristics: $t_{TLH} \leq$ 15 ns, $t_{THL} \leq$ 6 ns, t_p = 30 ns.
- 4. C_L = 50 pF ±10 percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 4. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 5. All diodes are 1N3064, 1N916 or equivalent.
- 6. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 7. Switching test circuit and waveforms for device type 04 - Continued.

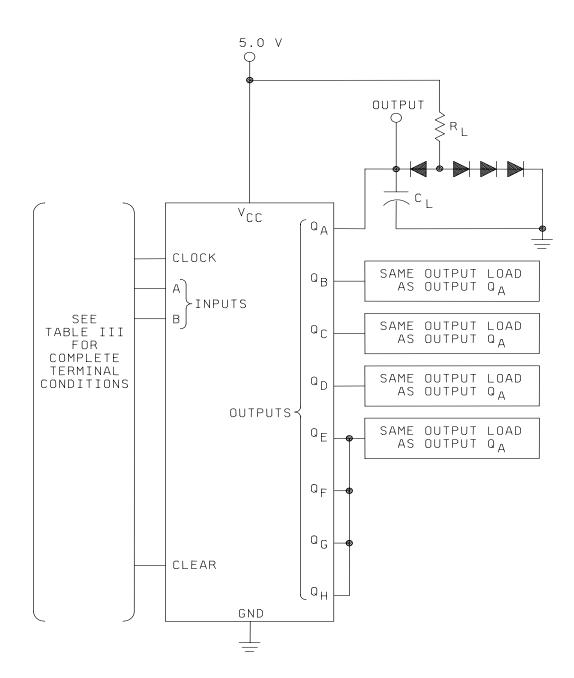


FIGURE 8. Switching test circuit and waveforms for device type 05.

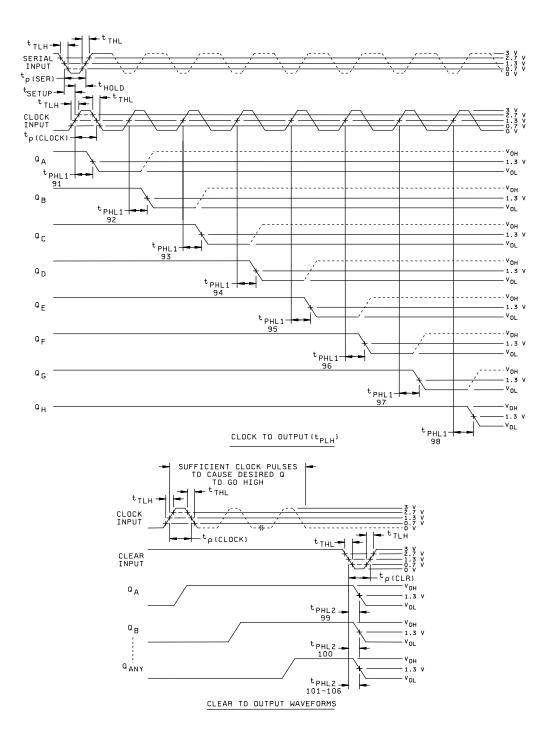
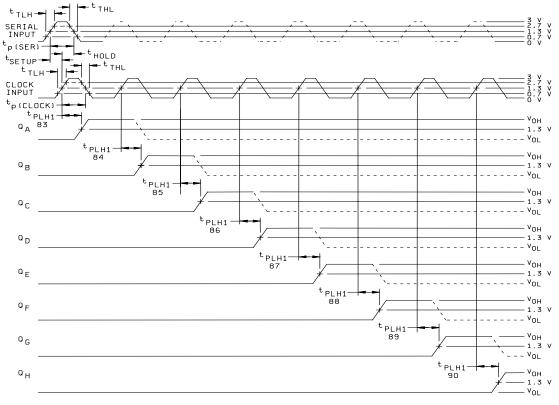



FIGURE 8. Switching test circuit and waveforms for device type 05 - Continued.

CLOCK TO OUTPUT(t_{PLH})

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (clear) = 30 ns.
- 3. Serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 4. $C_L = 50 \text{ pF} \pm 10$ percent including scope, probe, wiring and stray capacitance without package in test fixture.
- 5. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 6. All diodes are 1N3064, 1N916 or equivalent.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 8. Switching test circuit and waveforms for device type 05 - Continued.

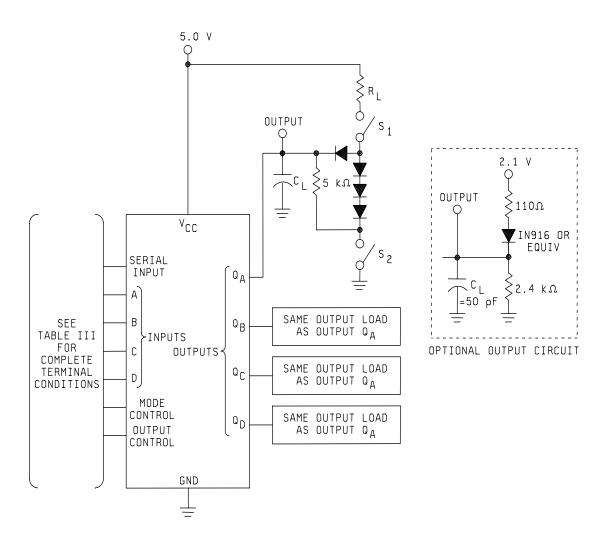


FIGURE 9. Switching test circuit and waveforms for device type 06.

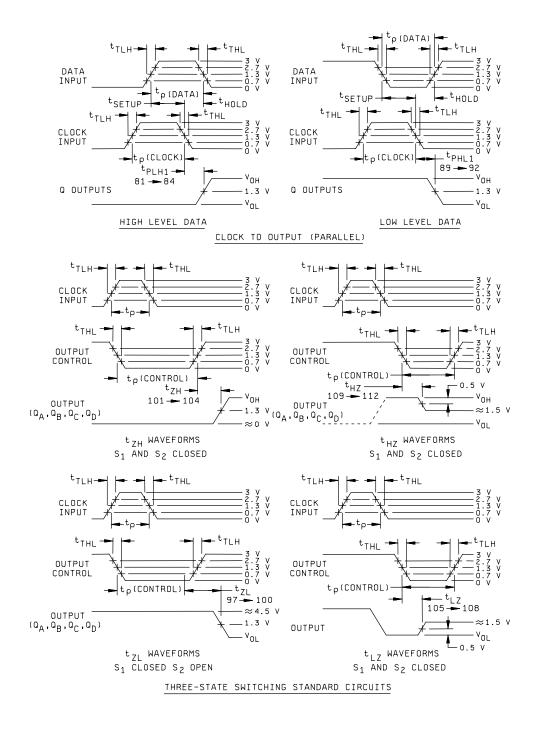


FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

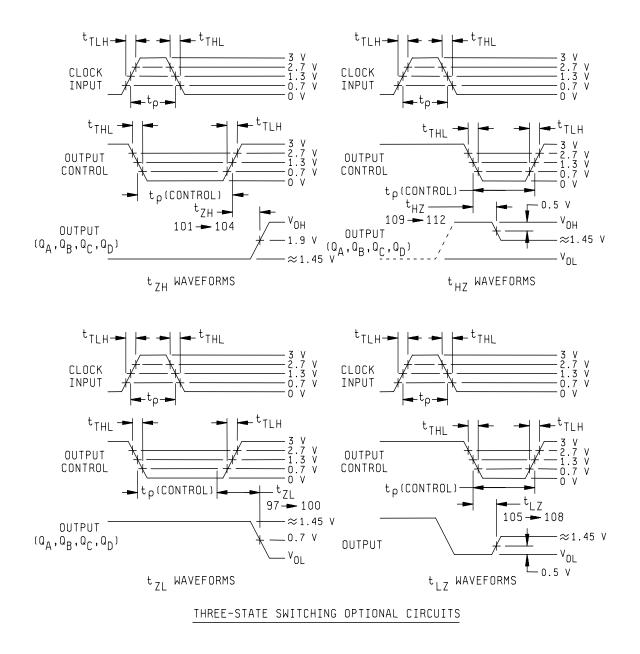
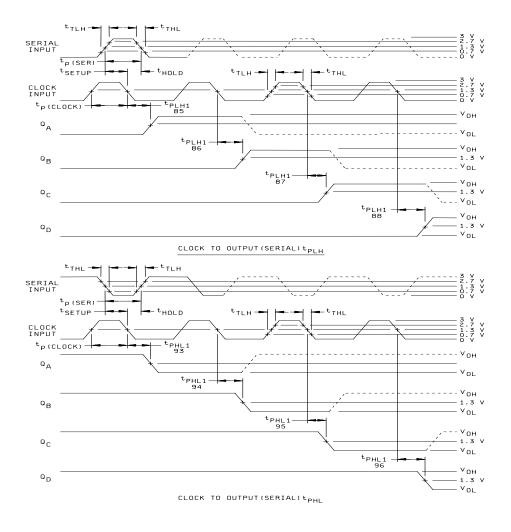



FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 25 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 40 ns, t_{SETUP} = 20 ns, t_{HOLD} = 20 ns.
- 3. Output control characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns, except when optional load is used, $C_L = 50$ pF $\pm 10\%$ for all tests.
- 4. $C_L = 50 \text{ pF} \pm 10\%$ for propagation delay, t_{ZL} , t_{ZH} , and $C_L = 15\text{pF}$ minimum for t_{HZ} , t_{LZ} except when optional load is used, $C_L = \text{pF} \pm 10\%$ for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture. All diodes are 1N3064, 1N916, or equivalent.
- 6. $R_L = 680 \ \Omega \pm 5\%$.
- 7. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 9. Switching test circuit and waveforms for device type 06 - Continued.

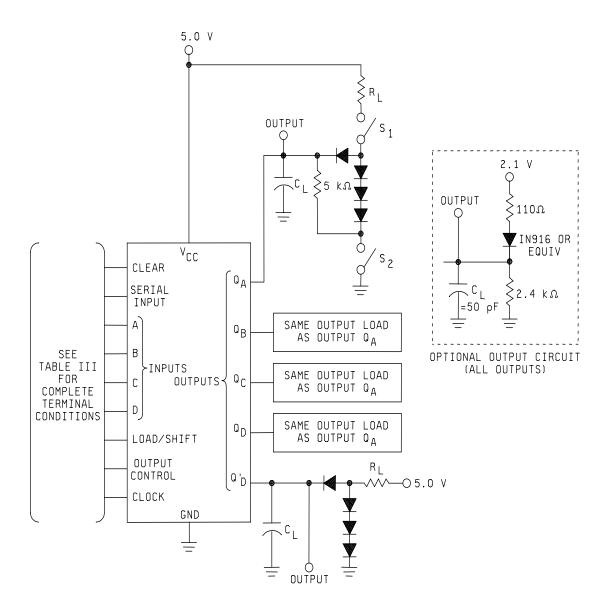
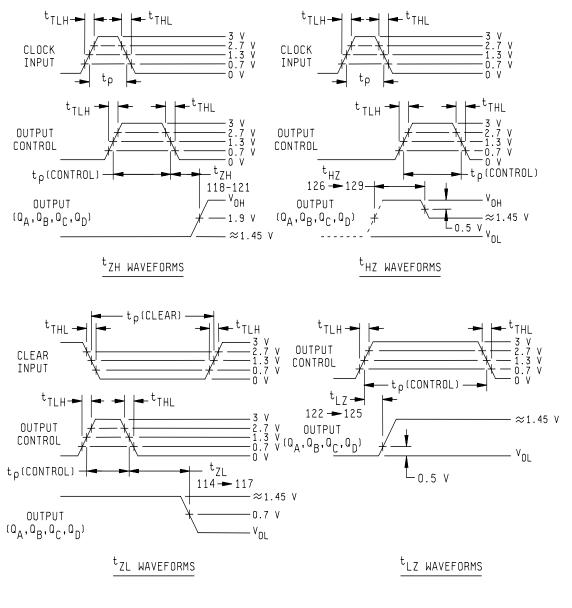
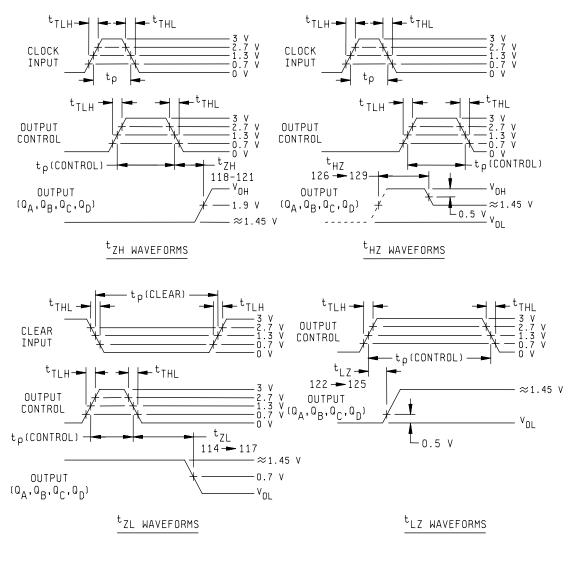
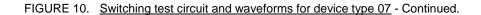




FIGURE 10. Switching test circuit and waveforms for device type 07.



THREE-STATE OPTIONAL CIRCUITS

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

THREE-STATE OPTIONAL CIRCUITS

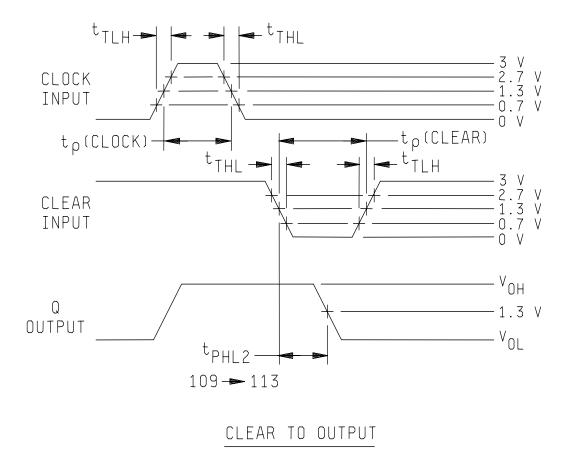
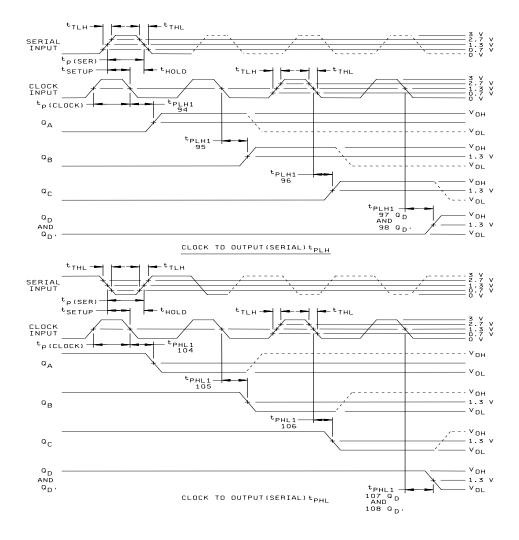



FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

NOTES:

- 1. Clock pulse characteristics: PRR \leq 1.0 MHz, t_{TLH} \leq 15 ns, t_{THL} \leq 6 ns, t_p (clock) \geq 20 ns.
- 2. Data or serial pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (serial) or t_p (data) = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.
- 3. Clear pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (clear) = 25 ns, except ≥ 200 ns for t_{ZL} test.
- 4. Output control pulse characteristics: $t_{TLH} \le 15$ ns, $t_{THL} \le 6$ ns, t_p (control) ≥ 100 ns.
- 5. $C_L = 50 \text{ pF} \pm 10\%$ for propagation delay, t_{ZH} , t_{ZL} test, and $C_L = 15 \text{ pF}$ minimum (all except Q_D ,) for t_{HZ} , t_{LZ} tests except when optional load is used, $C_L = 50 \text{ pF} \pm 10\%$ for all tests. C_L includes scope probe, wiring, and stray capacitance without package in test fixture.
- 6. All diodes are 1N3064, 1N916, or equivalent.
- 7. $R_L = 680 \Omega \pm 5\%$ except for Q_D , $R_L = 2 k\Omega \pm 5\%$.
- 8. Prior to initiating tests, the output shall be placed in the proper state.

FIGURE 10. Switching test circuit and waveforms for device type 07 - Continued.

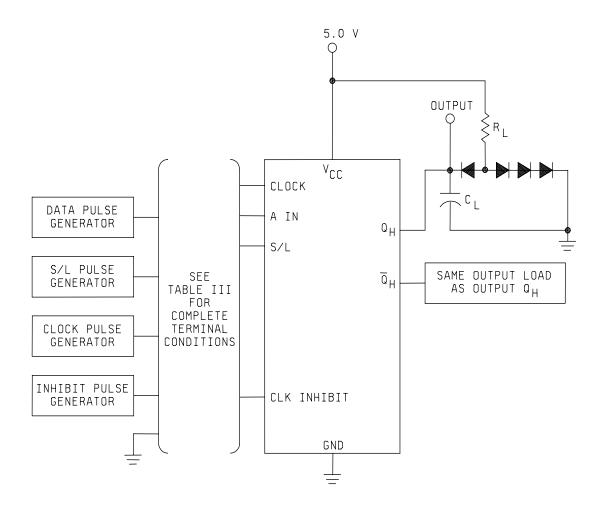
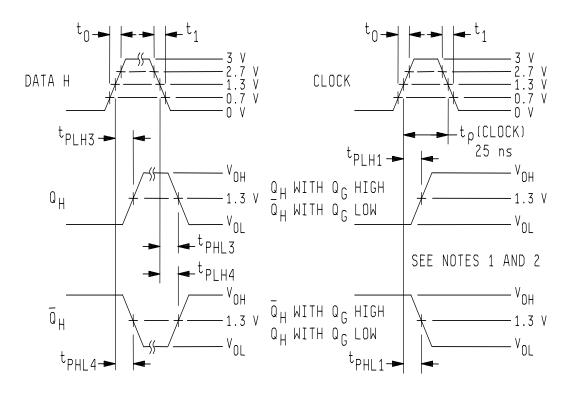
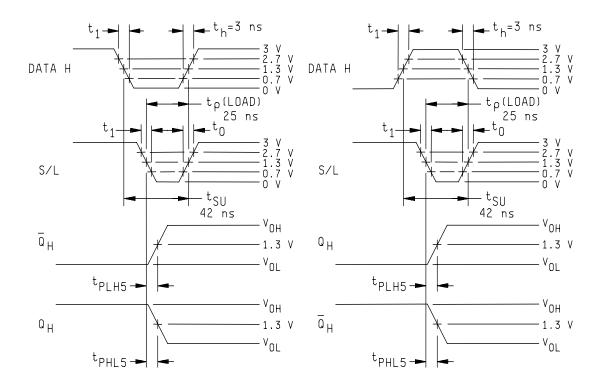




FIGURE 11. Switching test circuit and waveforms for device type 08.

FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

NOTES:

- For t_{PHL2} measurements, internal output G must be set to a low and Q_H to a high prior to tests.
- 2. For t_{PHL2} measurements, internal output G must be set to a high and Q_{H} to a low prior to test.
- 3. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 4. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 5. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 6. All diodes 1N3064 or equivalent.

FIGURE 11. Switching test circuit and waveforms for device type 08 - Continued.

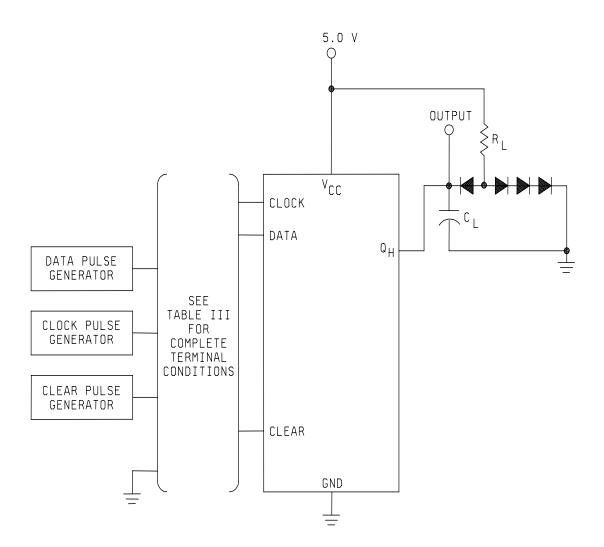
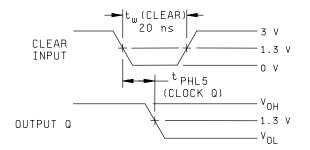
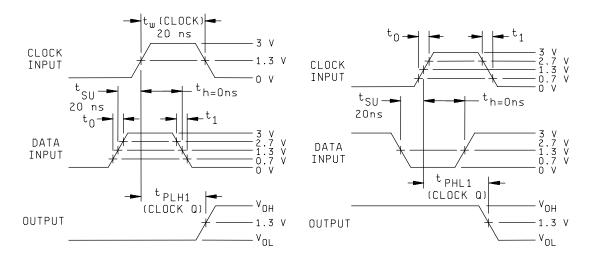




FIGURE 12. Switching test circuit and waveforms for device type 09.

CLEAR TO OUTPUT WAVEFORM

NOTES:

- 1. $R_L = 2.0 \text{ k}\Omega \pm 5\%$.
- 2. $C_L = 50 \text{ pF} \pm 10\%$, which includes probe, and jug capacitance.
- 3. All pulse generators have the following characteristics: $Z_{OUT} \approx 50\Omega$, $t_0 \le 15$ ns, $t_1 \le 6$ ns and PRR ≤ 1 MHz.
- 4. All diodes 1N3064 or equivalent.

FIGURE 12. Switching test circuit and waveforms for device type 09 - Continued.

-	1									ot design											-		
		MIL-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te		
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lin		Unit
		883 method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	Vcc	terminal	Min	Max	L
1	V _{OH}	3006	1	Α	GND	2.0 V	GND	GND	GND	GND	GND	4.5 V	4.5 V	A <u>1</u> /				4 mA	4.5 V	QA	2.5		V
Tc = 25°C			2	"	"	GND	2.0 V	GND	GND	"	"	"		"			4 mA		"	QB	=		-
			3	"	"	"	GND	2.0 V	GND	"	"	"	"	"		4 mA			"	QC	=		=
			4	"	"	"	"	GND	2.0 V	"	"	"	"	"	4 mA				"	QD	=		=
			5	-	2.0 V	-	"	GND	GND			"	0.7 V	"				4 mA	"	QA	"		"
			6	-	GND	-	"	GND	GND	2.0 V	-	0.7 V	4.5 V	"	4 mA				"	QD	=		=
			7	"	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V		4.5 V	GND	"				4 mA	"	QA			-
	V _{OL}	3007	8	"	4.5 V	0.7 V	4.5 V	4.5 V	4.5 V	4.5 V	"	"	4.5 V	"				4 mA	"	QA		0.4	=
			9	"	"	4.5 V	0.7 V	4.5 V	4.5 V	"	"	"	"	"			4 mA		"	QB		"	=
			10	"	"	"	4.5 V	0.7 V	4.5 V	"	"	"	"	"		4mA			"	QC		"	"
			11	"	"	-	"	4.5 V	0.7 V	"		"		"	4 mA				"	QD		"	-
			12	"	0.7 V	"	"	4.5 V	4.5 V	"	"	"	0.7 V	"				4 mA	"	QA		"	=
			13	"	4.5 V	"	"	4.5 V	4.5 V	0.7 V	"	0.7 V	4.5 V	"	4 mA				"	QD		"	=
	VIC		14	-18 mA							"								"	CLR		-1.5	=
			15		-18 mA						-								"	S/R		"	-
			16			-18 mA					"								"	A _{IN}		"	=
			17				-18 mA				"								"	B _{IN}		"	=
			18					-18 mA			"								"	CIN		"	
			19						-18 mA		-								"	D _{IN}		"	"
			20							-18 mA	-								"	S/L		"	"
			21								-	-18 mA							"	S ₀		"	=
			22								"		-18 mA						"	S ₁		"	=
			23								"			-18 mA					"	CLK		"	
	I _{IH1}	3010	24	2.7 V							-								5.5 V	CLR		20	μΑ
			25		2.7 V						"	GND	4.5 V						"	S/R		"	"
			26			2.7 V					"	"	GND						"	A _{IN}		"	"
			27				2.7 V				"	"	"						"	BIN		"	"
			28					2.7 V			"	"	"						"	CIN		"	-
			29						2.7 V		"	"	"						"	D _{IN}		"	"
			30							2.7 V	"	4.5 V	"						"	S/L		"	"
			31								"	2.7 V							"	S ₀		"	"
			32								"		2.7 V						"	S ₁		"	-
			33	GND					1		"	1		2.7 V	İ.	1			"	CLK		"	"
	I _{IH2}		34	5.5 V							"		5.5 V						"	CLR		100	-
			35		5.5 V						"	GND	4.5 V							S/R		"	"
			36			5.5 V					"	GND	GND							A _{IN}		"	"
			37	1			5.5 V		1		"	"	"	İ.	İ.	1			"	B _{IN}		"	"
			38					5.5 V			"	"	"							C _{IN}		"	"
			39						5.5 V		"	:"	"							D _{IN}		"	"
			40	l					İ	5.5 V	"	4.5 V	"	İ.	İ.				"	S/L		"	"
			41	İ					İ		"	5.5 V	"	1	1	1			"	S ₀		"	"
			42	1					1		"		5.5 V	1	1				"	S ₁		"	"
1			43	GND					l		"	l		5.5 V	1	1			"	CLK		"	"

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device types 01.

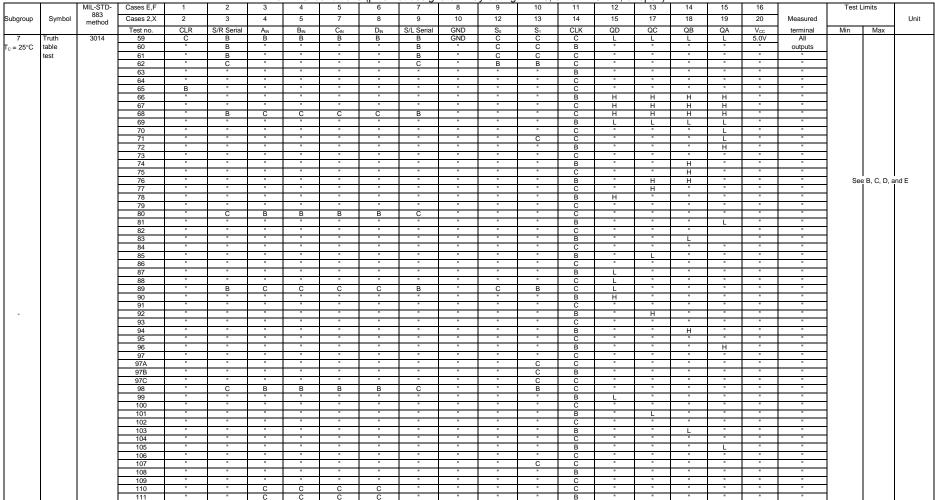

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	* 2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal		ļ	l
		method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V _{cc}		Min	Max	
1	I _{IL1}	3009	44	0.4 V							GND								5.5 V	CLR	<u>2</u> /	2/	mA
c = 25°C	I _{IL2}		45		0.4 V						"	4.5 V	GND						"	S/R	"	"	
			46			0.4 V					"	"	4.5 V						"	A _{IN}	"	"	"
			47				0.4 V				"	"	"						"	BIN	"	"	"
			48					0.4 V			"	"	"						"	CIN	"	"	"
			49						0.4 V		"	"	"						"	D _{IN}	"	"	
			50							0.4 V	"	GND	"						"	S/L	"	"	
	I _{IL3}		51								"	0.4 V							"	S ₀	"	"	
	I _{IL3}		52								"		0.4 V						"	S ₁		"	"
	I_{IL4}		53	4.5 V										0.4 V					"	CLK	"	"	"
	I _{0S}	3011	54	А		4.5 V	GND	GND	GND			4.5 V	4.5 V	A <u>1</u> /				GND	"	QA	-15	-100	
			55	"		GND	4.5 V	GND	GND		"		"				GND		"	QB	"	"	
			56	"		"	GND	4.5 V	GND		"	"	"			GND				QC		"	
			57	"		"	GND	GND	4.5 V		"	"	"	"	GND				"	QD	"	"	-
	Icc	3005	58	5.5 V	5.5 V	"	GND	GND	GND	5.5 V	"	5.5 V	5.5 V	"					"	V _{cc}		23	"
2	Same te	sts, terminal c	conditions and	limits as	subgrou	p 1, exce	ept T _C = 12	25°C, and	V _{IC} tests	are omitte	ed.												
3	Same te	sts. terminal c	conditions and	limits as	subarou	n 1 exce	ept T _c = -5	5°C and	V _{ic} tests a	are omitte	d												

TABLE III. <u>Group A inspection for device type 01</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device type 01.

_	
Ξ	

TABLE III.	Group A inspection for device type 01 - Continued.	
Terminal conditions (pins not designated may be high \ge 2.0; or low \le 0.7 V; or open).	

See footnotes at end of device type 01.

MIL-M-38510/306E

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLR	S/R Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	S/L Serial	GND	S ₀	S ₁	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
8	Same tes	sts, terminal	conditions, a	nd limits	as subg	roup 7, e	except T _C	= 125°C	and -55°	С													
9 Г _C = 25°C	f _{MAX} See F and J	(Fig. 4)	112	G		IN					GND	G	G	IN				OUT	5.0 V	CLK to QA	22		MH
	t _{PHL1}	3003	113			IN					"	"	"					OUT	"	CLK TO QA	5	27	ns
	SPILL	(Fig. 4)	114	"			IN				"	"	"	"			OUT	00.	"	CLK TO QB	"	"	"
		(5)	115	"				IN			"	"	"	"		OUT			"	CLK TO QC	"	"	"
			116	"					IN		"	"	"	"	OUT				"	CLK TO QD	"	"	"
			117	=	IN						=	=	GND	=				OUT	"	CLK TO QA	"	"	"
			118	=						IN	-	GND	G	=	OUT				"	CLK TO QD	-	"	-
	t _{PHL1}		119	"		IN					"	G	"	"				OUT	"	CLK TO QA	"	31	"
			120				IN				"	"	"				OUT		"	CLK TO QB	"	"	"
			121	"				IN			"	"	"	"		OUT			"	CLK TO QC	"	"	"
			122		15.1				IN						OUT			OUT		CLK TO QD			
			123		IN					IN		GND	GND		OUT			OUT		CLK TO QA			
	+		124 125	IN		G				IN	"	GND	G	"	001			OUT	"	CLK TO QD CLK TO QA	"	35	
	t _{PHL2}		125	11N "		6	G				"	9 =	"				OUT	001	"	CLK TO QA		35	
			120	"			9	G			"	"	"	"		OUT	001		"	CLK TO QD	"	"	"
			128	"				0	G		"	"	"	"	OUT	001			"	CLK TO QD	"	"	"
10 Г _С = 25°C	f _{MAX} See F and J	3003 (Fig. 4)	129		•									<i>.</i> .				I			20		MH
	t _{PHL1}		130 to 135						S	ame tests	s and terr	ninal conc	litions as	tor subgr	oup 9						5	41	ns
	t _{PHL1}		136 to 141																		5	47	ns
	t _{PHL2}		142 to 145																		5	53	ns

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pips not designated may be high > 2.0 or low < 0.7 V; or open).

See footnotes at end of device type 01.

FOOTNOTES:

ദ

- B. $V_{IN} = 2.5 V.$
- C. $V_{IN} = 0.4 V.$
- D. Test numbers 59 through 111 shall be run in sequence.
- E. Output voltages shall be either: (1) H≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator: (2) H≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the clock input frequency. The input frequency on the A_{IN} data shall be one-half of the clock input frequency and the A_{IN} shall be shifted such that the A_{IN} \uparrow and \downarrow are coincident with the clock \downarrow . Rise and fall times \leq 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- J. At the manufacturer's option, the following alternate procedure may be used to guarantee f_{MAX}. Serial mode f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 x 1/ f_{MAX}) plus allowed propagation delay. Two tests are performed, depending on the state of the data input, to guarantee both LH and HL transition of the output pulse.
- 1/ This pulse must occur after the clear pulse.
 - $\underline{2}$ / I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	A	В	С	D	E	F	G
I _{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
I _{IL2}	S/R, A _{IN} , B _{IN}	"	11/35	"	16/4	105/345	"	"
	C _{IN} , D _{IN} , S/L							
I _{IL3}	S ₀ , S ₁	"	03/3	"	12/36	12/36	"	"
I _{IL4}	CLK	"	03/3	20/44	12/36	12/36	"	15/38

					_				oins not o												-		
			Cases E,F		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te		
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim		Unit
		method	Test no.	CLR	J	x	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Load	CLK	Q D	QD	QC	QB	QA	V _{cc}	terminal	Min	Max	
1 Tc = 25°C	V _{он}	3005	1	В	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	0.7 V	GND	0.7 V	В <u>1</u> /	4 mA					4.5 V	Q D	2.5		V
			2	"	"	"	"	"	"	2.0 V	"	"	"		4 mA				"	QD	"		"
			3	"	"	"	"	"	"	"	"	"	"			4 mA			"	QC			"
			4	"	-	-	"	-	=	"	"	"	-				4 mA		-	QB			"
			5	"	-	-	"	-	=		"	"	-					4 mA	-	QA			"
	V _{OL}	3007	6	-	"	"	0.7	0.7	0.7	"	-	-	"	4 mA					"	Q D		0.4	"
			7	"	"	"	"	"	"	0.7	"	"	"		4 mA				"	QD			"
			8	"	"	"	"	"	"	"	"	"	"			4 mA			"	QC			"
			9	"	"	"	"	"	"	"	"	"	"				4 mA		"	QB		"	"
			10	"	"	"	"		"	"	"	"						4 mA	"	QA		"	"
	VIC		11	-18 mA							"									CLR		-1.5	
			12 13		-18 mA	-18 mA					"									J			"
			14			-	-18 mA				"								"	A _{IN}			"
			14				-10 IIIA	-18 mA			"								"	B _{IN}			
			16					-10111A	-18 mA		"								"	C _{IN}			"
			17			1			10111/1	-18 mA	"							1	"	D _{IN}			
			18							10 11/1	"	-18 mA							"	Shift load			
			19								"	10111/1	-18 mA						"	CLK			
	I _{IH1}	3010	20	2.7 V							"		1011.01						5.5 V	CLR		20	μA
			21		2.7 V						"	GND	Α						"	J			"
			22		,	2.7 V					"	GND							"	ĸ		"	"
			23				2.7 V				"	4.5 V							"	A _{IN}		"	"
			24					2.7 V			"	"							-	BIN		"	
			25						2.7 V		"	"							-	CIN		"	"
			26							2.7 V	-	-								D _{IN}			"
			27								"	2.7 V							"	Shift load			
			28								"		2.7 V						"	CLK		"	"
	I _{IH2}		29	5.5 V							"								"	CLR		100	"
			30		5.5 V						"	GND	A						"	J		"	
			31			5.5 V						GND								ĸ		"	
			32	ļ		ļ	5.5 V				"	4.5 V			ļ			ļ		A _{IN}			
			33	ļ		ļ		5.5 V				"			ļ			ļ		B _{IN}			"
			34	ļ		ļ			5.5 V						ļ			ļ		CIN			"
			35							5.5 V	"									D _{IN}			
			36		L					I		5.5 V	5.5.1	L		L				Shift load			
			37		I								5.5 V	I						CLK			

TABLE III. <u>Group A inspection for device type 02.</u> Terminal conditions (pins not designated may be high \ge 2.0; or low \le 0.7 V; or open).

See footnotes at end of device types 02.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			ł
		method	Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Load	CLK	Q D	QD	QC	QB	QA	V _{cc}		Min	Max	ł
1	I _{IL1}	3009	38	0.4 V							GND								5.5 V	CLR	<u>2</u> /	<u>2</u> /	mA
Гс = 25°С			39	В	0.4 V						"	4.5 V							"	J	"	"	"
			40	В		0.4 V					"	4.5 V	<u>1</u> / A or B						"	ĸ	"	"	"
			41				0.4 V				"	GND							"	A _{IN}	"	"	"
			42					0.4 V			"	"							"	BIN		"	"
			43						0.4 V		"	"							"	CIN		"	"
			44							0.4 V	"	-							"	D _{IN}	-	"	"
			45								"	0.4 V							"	Shift load		"	"
			46								"		0.4 V						"	CLK		"	"
	I _{0S}	3011	47	GND							"	4.5 V	4.5 V	GND					"	Q D	-15	-100	mA
			48	4.5 V			4.5 V	4.5 V	4.5 V	4.5 V	"	GND	В		GND				"	QD	-	"	"
			49	=			"	"	"	-	"	=	"			GND			"	QC	=	"	-
			50	-			"	"			"	-	"				GND		"	QB		"	-
			51	"			"	"	"	"	"	"	"					GND	"	QA		"	"
	I _{CC}	3005	52	В			"	"	"	"	"	-	4.5 V						"	V _{cc}		21	
		3005	53	4.5 V			"	"	"	"	"	"	В						"	V _{CC}		21	"
2	Same te	sts, termina	al conditions a	and limits a	as subgro	oup 1, exc	cept T _C =	125°C, a	and V _{IC} te	sts are or	nitted.												
3	Same te	sts, termina	al conditions a	and limits a	as subgro	oup 1, exc	cept T _c =	-55°C, a	nd V _{IC} te	sts are on	nitted.												

TABLE III.Group A inspection for device type 02Continued.Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

65

See footnotes at end of device type 02.

											nated m									-			
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Te	est	
Subgroup	Symbol	883 method	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lin	nits	Unit
		method	Test no.	CLR	J		A _{IN}	B _{IN}	C⊪	D _{IN}	GND	Shift	CLK	-	QD	QC	QB	QA	Vcc	terminal	Min	Max	
				-		ĸ					-	Load	-	Q D									
7	Truth	3014	54	D	С	С	С	С	С	С	GND	D	D	Н	L	L	L	L	5.0V	All			
$T_c = 25^{\circ}C$	table		55		D	С			-			D								outputs			
	test		56		D	D	"					D											
			57						-			С							-				
			58	С								С											
			59 60									D	c		Н	н		н			-		
			61										D	L	Н	Н	H	Н					
			62		С	С	D	D	D	D			D	L	Н	Н	Н	Н			-		
			63		"	"	"	"		"			c	Ĥ	L	Ľ	Ľ	Ľ					
			64										D	"				Ē					
			65				"					С	D	"				L					
			66		"	"			н				С	"				Н					
			67		"								D	"					-				
			68		"	"							С				Н		-				
			69										D								-		
			70 71										C D			н							
			72										C	L	н						56	e C, D, E, a	and F
			73										D								-		
			74		D	D	С	С	С	С			D										
			75		"		"		-	"			č					L		"	-		
			76				"						D	"									
			77		"			"					С	"			L						
			78		"			-					D	"									
			79										C	"	-	L							
			80										D		- ·						-		
			81 82										C D	H	L.								
			83		С		D	D	D	D			D	"									
			84		"		"	"	"	"			C					н					
			85										D					H					
			86		"		"	"		"			С				Н	L					
			87		"	"	"		-				D	"			Н	L		"			
			88										С			Η	L	Н					
			89		"	"							D	"		Н	L	Н		"			
			90										С	L	Н	L	н	L					
			91 92										DC	L	Н	L	н	L					
			92										D	H H	L	H	L	Н					
			94		D	С	С	С	С	C			D	Н	L	Н	L				-		
			95		"	"	"	"	"	"			C	L	H	L	H						
			96		"		"	"					D	Ĺ	H	Ĺ							
			97			"							С	Н	L	Н				"			
			98				"		-				D	Н	L	Н			-				
			99		"								С	L	Н	Н							
8	Same tests	s, terminal cor	ditions, and limits	as subgrou	ip 7 except	T _c = 125°C	and -55°C.																
9	f _{MAX}	(Fig. 5)	100	J			IN				GND	GND	IN					OUT	5.0 V	QA	27		MHz
$T_{\rm C}=25^{\circ}C$	See G		101					IN									OUT			QB	"		"
			102						IN							OUT				QC			
			103							IN				0.117	OUT		L			QD			
			104			1	1			IN	-	-	-	OUT	1					Q D			
				l	I	<u> </u>	ļ		l		l		l		1	I	1		l		l	ļ	l

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device type 02.

	1			1		erminal o																	
- .		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
Subgroup	Symbol		Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
		method	Test no.	CLR	J	ĸ	A _{IN}	B _{IN}	C _{IN}	D _{IN}	GND	Shift Ioad	CLK	Q D	QD	QC	QB	QA	V _{cc}		Min	Max	
9	t _{PHL1}	3003	105	J	J	J					GND	J	IN					OUT	5.0 V	CLK to QA	5	27	ns
$T_C = 25^{\circ}C$		(Fig. 5)	106	=	See	See					"	"	"				OUT		"	CLK TO QB	"	"	
			107	"	Fig. 5	Fig. 5					"	"	"			OUT			"	CLK TO QC	"	"	"
			107	"	"	"					"	"			OUT	001			"	CLK TO QD	"	"	"
			109	"	"	"					"	"	"	OUT					"		"	"	"
			110	"			IN				"	GND	"					OUT	"	CLK TO QA	"	"	"
			111	"				IN			"	"	"				OUT		"	CLK TO QB	"	"	"
			112	"					IN		"	=	"			OUT			"	CLK TO QC	"	"	"
			113	"						IN	"	"	"		OUT				"	CLK TO QD	"	"	"
			114	"						IN	"	-	"	OUT						CLK TO QD	"	"	"
	t _{PHL1}		115	"	GND	GND					"	J	"					OUT	"	CLK TO QA	"	31	<u> </u>
			116		See Fig. 5	See Fig. 5											OUT		"	CLK TO QB			
			117	"	"	"					"	=	"			OUT			"	CLK TO QC	"	"	"
			118	"	"	"					"	"	"		OUT				"	CLK TO QD	"	"	"
			119	"	"						"	"	"	OUT					"		"	"	
			120	"			IN				"	GND	"					OUT	"	CLK TO QA	"	"	"
			121	"				IN			"	"	"				OUT		"	CLK TO QB	"	"	"
			122	"					IN		"	"	"			OUT			"	CLK TO QC	"	"	"
			123 124							IN IN				OUT	OUT				"	CLK TO QD			"
										IN				001						CLK TO Q D			<u> </u>
	t _{PHL2}		125	IN			J										OUT	OUT		CLK TO QA	"	35	<u> </u>
			126 127					J	J							OUT	OUT			CLK TO QB CLK TO QC			
			127	"					J	J	"	"			OUT	001				CLK TO QD	"	"	"
	t _{PHL2}		120	"						J	"	"	"	OUT	001				"		"	"	"
10	f _{MAX}		130 to 134		1	1	1	1	I	1			1			1		1	1	I	25		MHz
T _C = 125°C	See G		125 to 144			4		(-		- 0											5	41	ns
	t _{PLH1}		135 to 144	Same t	ests and	terminal	condition	is as for	subgrou	9.9											5		"
	t _{PHL1}		145 to 154																			47	
	t _{PHL2}		155 to 158																		"	53	
	t _{PHL2}		159																		"	53	"
11	Same te	ests, termina	al conditions,	and limi	its as sub	ogroups 1	0, excep	t T _C = -5	5°C.														

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high > 2.0 V; or low < 0.7 V; or open).

See footnotes at end of device type 02.

FOOTNOTES:

- A. Apply input pulse: 2.5 V minimum/5.5 V maximum 0 V
- B. Apply input pulse:

2.5 V minimum/5.5 V maximum. 0 V

- C. $V_{IN} = 2.5 V.$
- D. $V_{IN} = 0.4 V.$

E. Test numbers 54 through 99 shall be run in sequence.

- F. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- J. 3.0 V minimum/5.0 V maximum.
- 1/ This pulse must occur after the clear pulse.
- 2/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D	E	F	G
I_{IL1}	CLR	16/4	11/35	16/4	12/35	12/36	12/36	16/4
	J, K, A _{IN} ,	"	16/4	"	16/4	105/345	"	"
	BIN, CIN, DIN							
	Shift load	-	08/3	-	12/36	12/36	=	"
	CLK	"	03/3	20/44	12/36	12/36	"	15/38

		MIL-	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Lin	nits	
Cubaroup	Cumhal	STD- 883	A,B,C,D	2	3	4	5	8	9	10	12	13	14	16	10	19	20	Measured		1	Unit
Subgroup	Symbol	method	Cases 2,X Test no.	∠ Serial	A _{IN}	B _{IN}	C _{IN}	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	18 QB	QA	V _{CC}	terminal	Min	Мах	Unit
		metriou	Test no.	Senai	AIN	DIN	CIN	DIN	wode	GND	CLR ₂	OLR1	QD	QC	QD	QA	VCC	lemina	IVIIII	Wax	
1	V _{OH}	3006	1	2.0 V	GND	GND	GND	GND	0.7 V	GND	GND	A				4 mA	4.5 V	QA	2.5		V
Tc = 25°C	• OH	0000	2	2.0 1	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	"	A	GND				4 mA	"	QA	"		"
			3		"	"	"	"	"	"	"	"			4 mA		"	QB	"		"
			4		"	"	"	"	"		"	"		4 mA			"	QC	-		"
			5		"	"	"	"	"	"	"	"	4 mA				"	QD	"		"
	Vol	3007	6	0.7 V	4.5 V	4.5 V	4.5 V	4.5 V	0.7 V	-	GND	Α				4 mA	"	QA	=	0.4	
			7		0.7 V	0.7 V	0.7 V	0.7	2.0 V	=	Α	GND				4 mA	-	QA		-	=
			8		-	"	"	"	-	=		"			4 mA		"	QB			=
			9		"	"	"	"	"	"	"	"		4 mA			"	QC		"	"
			10		"	"	"	"	"	"	"	"	4 mA				"	QD			"
	VIC		11	-18 mA						-							"	Serial		-1.5	"
			12		-18 mA					"							"	A _{IN}		"	"
			13			-18 mA				"							"	B _{IN}		"	"
			14				-18 mA										"	CIN			"
			15					-18 mA									"	D _{IN}			
			16						-18 mA		404							Mode			"
			17								-18 mA	40						CLK ₂			
	1	3010	18 19	2.7 V					4.5 V			-18 mA					5.5 V	CLK ₁ Serial		20	
	I _{IH3}	3010	20	2.7 V	2.7 V				4.5 V GND	"							0.5 V			20	μA "
			20		2.7 V	2.7 V			GND "	"							"	A _{IN} B _{IN}			"
			21			2.1 V	2.7 V		"	"							"	C _{IN}			"
			23				2.1 V	2.7 V	"	"							"	D _{IN}			"
			24					2.1 V	4.5 V	"	2.7 V						"			"	"
			25						4.5 V	"		2.7 V					"			"	"
	I _{IH4}		26	5.5 V					4.5 V	н		,					"	Serial		100	"
			27		5.5 V				GND	"							"	A _{IN}		"	"
			28			5.5 V			"	"							"	BIN		"	"
			29				5.5 V		"	-							"	C _{IN}		"	
1			30					5.5 V	"	-							"	D _{IN}		"	
			31						4.5 V	-	5.5 V						"	CLK ₂		"	"
			32						4.5 V			5.5 V					"	CLK ₁		"	"
	I _{IH7}		33						2.7 V	"	GND						"	Mode		40	"
	I _{IH8}		34						5.5 V	-	GND						"	Mode		200	=

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 03.

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	CIN	DIN	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	Vcc		Min	Max	
1	I _{IL2}	3009	35	0.4 V					GND	GND							5.5 V	Serial	<u>1</u> /	<u>1</u> /	mA
Tc = 25°C			36		0.4 V				4.5 V								"	А	"	-	-
			37			0.4 V			"	"							"	В	"	"	"
			38				0.4 V		"								"	С	"	-	-
			39					0.4 V	"								"	D	"	-	-
			40						0.4 V		4.5 V						"	Mode	"	-	-
	I_{IL4}		41						4.5 V	-	0.4 V						"	CLK ₂	"	=	-
			42						GND	"		0.4 V					"	CLK ₁	"	"	
	I _{0S}	3011	43		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V	-	А	GND				GND	"	QA	-15	-100	-
			44		"		"	=	"	"	=	"			GND		"	QB	"	"	
			45		-	-		"	"		"			GND			"	QC	"	-	
			46		"		"	"	"	"	"	"	GND				"	QD	"		"
0		3005	47		GND	GND	GND	GND	5.5 V	"	"	A					"	V _{cc}		21	"
2	Same te	ests, terminal c	onditions and		ubgroup 1	, except T	_c = 125°C	and V _{IC} t	ests are o	mitted.	"	A					"	V _{cc}		21	n
3	Same te Same te	ests, terminal c ests, terminal c	onditions and onditions and	limits as s	subgroup 1 subgroup 1	, except T , except T	c = 125°C c = -55°C	and V _{IC} t	ests are or	mitted. nitted.						~	"		 	21	"
3	Same te Same te Truth	ests, terminal c	onditions and onditions and 48	limits as s B	ubgroup 1 ubgroup 1 B	, except T , except T B	^c c = 125°C ^c c = -55°C B	and V _{IC} t and V _{IC} te B	ests are o	mitted.	В	A C	X	X	x	X	" 5.0 V	All		21	
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49	limits as s B B	subgroup 1 subgroup 1 B B B	, except T , except T B B	c = 125°C c = -55°C B B	and V _{IC} to and V _{IC} to B B	ests are or	mitted. nitted. GND	B C		Н	Н	Н	Н	" 5.0 V "			21	
3	Same te Same te Truth	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50	limits as s B	subgroup 1 subgroup 1 B B B B	, except T , except T B B B	c = 125°C c = -55°C B B B	and V _{IC} t and V _{IC} te B B B	ests are or	mitted. nitted.	B C B		H	H H	H H	H	" 5.0 V "	All		21	
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51	limits as s B B	subgroup 1 subgroup 1 B B B C	, except T , except T B B B C	$T_{c} = 125^{\circ}C$ $T_{c} = -55^{\circ}C$ B B B C	and V _{IC} t and V _{IC} te B B C	ests are or	mitted. nitted. GND	B C B B		Н	Н	Н	Н	" 5.0 V " "	All outputs		21	
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 51 52	limits as s B B "	subgroup 1 subgroup 1 B B B C C	, except T , except T B B B C C	$T_{c} = 125^{\circ}C$ $= -55^{\circ}C$ B B C C	and V _{IC} te and V _{IC} te B B C C	ests are or ests are or B " "	nitted. nitted. GND "	B C B	С " " "	H	H H	H H	H	" 5.0 V " "	All outputs "			
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53	limits as s B B "	subgroup 1 Bubgroup 1 B B C C C B	, except T , except T B B C C B	$T_{c} = 125^{\circ}C$ B B C C B B C C B	and V _{IC} te and V _{IC} te B B C C B	ests are or	nitted. nitted. GND "	B C B B C	С " " " В	H	H H	H H	H	" 5.0 V " " "	All outputs "	See	21 B,C,D,	
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54	limits as s B " " "	subgroup 1 subgroup 1 B B B C C	, except T , except T B B B C C	$T_{c} = 125^{\circ}C$ $= -55^{\circ}C$ B B C C	and V _{IC} te and V _{IC} te B B C C	ests are or ests are or B " "	nitted. nitted. " " " "	B C B B C	C " " B B	H	H H	H H		" 5.0 V " " " "	All outputs " "	See		
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54 55	limits as s B " " " " " " " "	subgroup 1 Bubgroup 1 B B C C C B	, except T , except T B B C C B	$T_{c} = 125^{\circ}C$ B B C C B B C C B	and V _{IC} t and V _{IC} te B B C C B C	ests are or ests are or B " "	mitted. nitted. " " " " "	B C B C "	C " " B B C	H	H H	H H	H	" 5.0 V " " " " " " "	All outputs " " "	See		
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54 55 56	limits as s B R R R R R R R R R R R R R R R R R R	subgroup 1 Bubgroup 1 B B C C C B	, except T , except T B B C C B	C = 125°C C = -55°C B B C C C B C C "	and V _{IC} t and V _{IC} te B C C B C C	ests are or ests are or B " "	mitted. nitted. " " " " " "	B C B C "	C " " B B C B	H	H H L "	H H L " "		" 5.0 V " " " " " " "	All outputs " " " " "	See		
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54 55 56 57	limits as s B B " " " " " " " " " " " " " " " " "	B B B C C C B C C B C C U U U U U U U U	, except T , except T B B C C C B C C "	c = 125°C c = -55°C B B C C C B C C T T T T	and V _{IC} te and V _{IC} te B B C C C B C C "	ests are or ests are or " " " " C C " "	mitted. GND " " " " " " " "	B C B C " "	C " B B C B C		H H L "	H H		" " " " " " " " " "	All outputs " " " " " "	See		
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54 55 55 56 57 58	limits as s B B " " " " " " " " " " " " " " " " "	B B B B C C C B C B C U U U U U U U U U	, except T , except T B B C C C B C C " "	c = 125°C c = -55°C B B C C C B C C " "	and V _{IC} te and V _{IC} te B B C C C B C C B C C "	ests are or ests are or " " " " C C " "	mitted. GND " " " " " " " " " " " " "	B C B C " " " "	C " " B B B C C B C B	H H 	H H 	H H L " "		" 5.0 V " " " " " " " " " " " " " " " " " " "	All outputs " " " " " " "	See		
3	Same te Same te Truth table	ests, terminal c ests, terminal c	onditions and onditions and 48 49 50 51 52 53 54 55 56 57	limits as s B B	ubgroup 1 ubgroup 1 B B C C C B C C " " " "	, except T , except T B B B C C C B C C B C C " "	C = 125°C C = -55°C B B B C C C B C C B C C " "	and V _{IC} te and V _{IC} te B B C C C B B C C " "	ests are or ests are or " " " " C C " "	nitted. nitted. GND " " " " " " " " " " " " "	B C B C " " " "	C " B B C B C	H H 	H H L " "	H H 	H H L L H "	" 5.0 V " " " " " " " " " " " "	All outputs " " " " " " " " "	See		

TABLE III.Group A inspection for device type 03ContinuedTerminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

See footnotes at end of device type 03.

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Limits		Unit
Subgroup	Symbol		Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	terminar			
oung.oup	0,		,				-	-	-	-		-		QC					Min	Max	-
7	Tauratha	method 3014	Test no. 62	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Mode	GND GND			QD		QB	QA	V _{CC} 5.0 V	A II	IVIIN	wax	
7	Truth	3014		В	С	С	С	С	C	GND	С	B	H	H	н	Н	5.0 V	All			
Гс = 25°C	table		63	С	В	В	B	В			B	В				Н		outputs			
	tests		64	"	"	H	"	"		"		С	-	"	"	L	"	"			
			65	"	-	-	-	"		-	"	В		"	"	"	"				
			66	-	"	-	-	"	"	-	-	С		"	L	"	"	"			
			67	"	"	=	-	"	"	-	-	В	"	"	"	"	"	"			
			68	-		"		"			-	С		L	"	"	"		See I	B,C,D,	and
			69	-	"	-	-	"	"	-	-	В			"	"					
			70		"		-	"	"			С	L	"	"	"		-			
			71	"	-	"	"	"	"	"	С		"	"	"	-	"	"			
			72	"	"	"	"	"	В	"	С	"		"	"	"	"	"			
			73	"	"		-	"	С	-	С	"		"	"	"	"	"			
			74	"	"	"	"	"	С	"	В	"		"	"	"	"	"			
			75	"	"	"	"	"	В	"	В	"	"	"	"	"	"	"			
			76	"	"	"	"	"	B	"	C	В	Н	Н	н	н	"	"			
			77	"	"	"	"	"	C	"	Č	"	"	"	"	"	"	"			
				"		"		"	C	"	B			"	"		"	"			
			/8																		
8	Same tes	sts, terminal c	78 79 onditions, and	" limits as s	" subgroup	" 7 except T	" c = 125°C	" C and -55°	В	H	В	n	H	н	"	H	H	n			
9	f _{MAX}	sts, terminal c (Fig. 6)	79 onditions, and 80			•		" 2 and -55°	B C. G	GND	B	н	"	н	"		" 5.0 V	QA	22		MI
9	f _{MAX}		79 onditions, and 80 81		subgroup	" 7 except T IN	r _c = 125°C	" and -55°	B C. G "	GND "	B IN "	"	"		" OUT		" 5.0 V	QA QB	22		M
9	f _{MAX}		79 onditions, and 80 81 82		subgroup	•			B C. G	GND "	B IN "	H	"	" OUT	" OUT		" 5.0 V "	QA QB QC	22 "		M
9	f _{MAX}		79 onditions, and 80 81 82 83	limits as s	subgroup	•	r _c = 125°C	" C and -55°	B C. " "	GND " "	B IN "		" OUT		UUT	OUT	" 5.0 V "	QA QB QC QD	22 " "		MI
9	f _{MAX}	(Fig. 6)	79 onditions, and 80 81 82 83 83 84		subgroup 7	•	r _c = 125°C		B C. " " GND	GND "	B IN "	" IN	" OUT		OUT	OUT	" 5.0 V " "	QA QB QC QD QA	"		
9	f _{MAX}	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85	limits as s	subgroup	IN	r _c = 125°C		B C. " "	GND " "	B IN "		OUT			OUT	" 5.0 V " " "	QA QB QC QD QA CLK to QA	22 " " " 5	32	
9	f _{MAX} See F,J	(Fig. 6)	79 onditions, and 80 81 82 83 84 85 86	limits as s	subgroup 7	•	i _c = 125°C		B C. " " GND	GND " "	B " " " " "		" OUT	OUT	UUT	OUT	" 5.0 V " " "	QA QB QC QD QA CLK to QA CLK to QB	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 86 87	limits as s	subgroup 7	IN	r _c = 125°C	IN	B C. " " GND G "	GND " " " " "	B IN " " " IN "					OUT	" 5.0 V " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QC	"	32 "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88	limits as s	subgroup 7	IN	i _c = 125°C		B C. " " " GND G " "	GND " " " " " " " " " " " " " " " " " " "	B " " " " "		" OUT	OUT		OUT OUT OUT	" 5.0 V " " " " " " " " " " " " " " " " " " "	QA QB QC QA CLK to QA CLK to QB CLK to QC CLK to QD	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 86 87 88 88 89	limits as s	subgroup 7	IN	i _c = 125°C	IN	B C. " " GND G "	GND " " " " "	B IN " " " IN "			OUT	OUT	OUT	" 5.0 V " " " " " " " " " " " " " " " " " " "	QA QB QC QD CLK to QA CLK to QA CLK to QC CLK to QD CLK to QA	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88	limits as s	subgroup 7	IN	i _c = 125°C	IN	B C. " " " GND G " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " IN "	IN		OUT		OUT OUT OUT	" 5.0 V " " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QA CLK to QB	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 87 88 89 90 91	limits as s	subgroup 7	IN	i _c = 125°C	IN	B C. " " " GND G " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " IN "	IN		OUT	OUT	OUT OUT OUT	" 5.0 V " " " " " " " " " " " " " " " " " " "	QA QB QC QD CLK to QA CLK to QA CLK to QC CLK to QD CLK to QA	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90	limits as s	subgroup 7	IN	i _c = 125°C	IN	B C. " " " GND G " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " IN "	IN		OUT	OUT	OUT OUT OUT	" 5.0 V " " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QA CLK to QB	"	"	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 87 88 89 90 91	IIMITS AS S	subgroup	IN	i _c = 125°C	IN	B C. " " GND G G " " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " IN "	IN "	OUT	OUT	OUT	OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QD CLK to QB CLK to QB CLK to QC	"	" " " " " " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 89 90 91 91 92 93 94	IIMITS AS S	IN IN IN IN	IN	i _c = 125°C	IN	B C. " " " GND GND " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B " " " " " "	IN "	OUT	OUT	OUT	OUT OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QC CLK to QD CLK to QD	"	" " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 88 89 90 91 91 92 93	IIMITS AS S	IN IN IN IN		i _c = 125°C	IN	B C. " " " GND GND " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B " " " " " "	IN "	OUT	OUT	OUT	OUT OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QC QD QA CLK to QA CLK to QA CLK to QD CLK to QD CLK to QB CLK to QD CLK to QD CLK to QD CLK to QD	"	" " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	IIMITS AS S	IN IN IN IN		IN	IN	B C. " " " GND GND " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " " " " " "	IN "	OUT	OUT	OUT	OUT OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QC QD QA CLK to QA CLK to QA CLK to QD CLK to QD CLK to QD CLK to QC CLK to QC CLK to QC CLK to QD CLK to QA CLK to QA	"	" " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Ilmits as s IN IN IN IN IN IN IN IN IN IN IN IN IN	IN IN IN IN		IN	IN IN IN	B C. " " " GND GND " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " " " " " "	IN ""	OUT	OUT	OUT	OUT OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD	"	" " " "	
9	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	IIMITS AS S	IN IN IN IN		IN	IN IN IN	B C. " " " GND G " " " " " " " " " " " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " " " " " "	IN "	OUT	OUT	OUT	OUT OUT OUT OUT	" " " " " " " " " " " " " " " " " " "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QA	"	" " " "	
-	f _{MAX} See F,J	(Fig. 6) 3003	79 onditions, and 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	Ilmits as s IN IN IN IN IN IN IN IN IN IN IN IN IN	IN IN IN IN		IN	IN IN IN	B C. " " " GND G " " " " " " " " " " " " " " " " "	GND " " " " " " " " " " " " " " " " " " "	B IN " " " " " " " "	IN ""	OUT	OUT	OUT	OUT OUT OUT OUT	" "	QA QB QC QD QA CLK to QA CLK to QB CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD CLK to QD	"	" " " " " " " " " " " " " " " " " " "	MH "" "" "" "" "" "" "" "" "" "" "" "" ""

TABLE III. <u>Group A inspection for device type 03</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device type 03.

		MIL-STD-	Cases A.B.C.D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	6	8	9	10	12	13	14	16	18	19	20	terminar			
		method	Test no.	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Mode	GND	CLK ₂	CLK ₁	QD	QC	QB	QA	V _{CC}		Min	Max	1
10 Tc = 25°C	f _{MAX} See F,J	3003 (Fig. 6)	101 to 105																20		MHz
	t _{PLH1}	3003 (Fig. 6)	106 to 113	Same tes	ts and ter	minal conc	litions as f	or subgro	up 9.										5	48	ns
	t _{PHL1}	3003 (Fig. 6)	114 to 121																5	56	ns
11	Same tes	sts, terminal c	onditions as s	ubgroup 1	0 except	Г _С = -55°С	-												-	•	·

TABLE III. Group A inspection for device type 03 - Continued.

Terminal conditions (pins not designated may be high > 2.0 V or low < 0.7 V or open)

Notes:

22

A. Apply input pulse: ______ 2.5 V minimum/5.5 V maximum 0 V

B. $V_{IN} = 2.5 V.$

C. $V_{IN} = 0.4 V.$

- D. Tests numbers 48 through 79 shall be run in sequence.
- E. Output voltages shall be either: (1) H ≥2.5 minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
 - F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial input shall be one-half of the clock input frequency and the input shall be shifted such that the input ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.

G. 3.0 V minimum/5.0 V maximum.

J. At the manufacturer's option, the following alternate procedures may be used to guarantee f_{MAX} :

- a. Parallel mode. f_{MAX} for the parallel mode shall be guaranteed by performing propagation delay measurements with the clock pulse width at 1/2 x 1/f_{MAX}. In addition to the constraints on the clock pulse, the inputs are set to the worst-case condition for the t_{set-up} and t_{hold} requirements. Both positive and negative clock pulse widths shall be tested. The five tests to justify each JAN f_{MAX} requirement shall be used to test all possible input/output combinations. A failing limit or nontoggle will indicate that the device fails to function at f_{MAX} and/or the propagation delay from input to output has exceeded the allowed limit .
- b. Serial mode. f_{MAX} for the serial mode shall be guaranteed by clocking the device four times (after reset) at f_{MAX} and looking for the Q_D output to toggle within three periods (3 x 1/f_{MAX}) plus allowed propagation delay. Two tests are performed, depending on the state of data input, to guarantee both LH and HL transition of the output pulse.

<u>1</u> /	ΙL	limits	(mA)	min/max	values	for	circuits	shown:

Parameter	Terminal	А	В	С	D	E
I _{IL2}	Serial A,	16/4	11/35	16/4	105/345	12/35
	B, C, D					
I _{IL4}	Mode	"	06/6	30/75	24/72	"
	CLK _{2,}	"	03/3	20/44	12/36	"
	CLK ₁					

		MIL-STD-	Cases E,F	1	2	erminal c	4	5	6	7	8	iigi1 <u>≥</u> 2. 9	10	0₩ <u>≤</u> 0. 11	12	13	14	15	16		Lir	nits	
Subgroup	Symbol	883	Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured		111.5	Unit
eusg.eup	0,	method	Test no.	CLK	A _{IN}	B _{IN}	C _{IN}	V _{cc}	D _{IN}	EIN	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V	4.5 V	2.0 V	2.0 V	2.0 V	2.0 V			GND			4 mA	2.0 V	QA	2.5		V
Гс = 25°С	011		2	"	"	"	"	"	"	"	"	"			"		4 mA		"	QB	"		"
			3	-	"	"		"	"	=	"	-			"	4 mA			=	QC	-		"
			4	=	"	"	=	"	"	-	"	=		4 mA	"				=	QD	=		"
			5	-	"	"	=	"	"	-		-	4 mA		"				-	QE	=		"
	V _{OL}	3007	6	-		"	-	"	-	-	0.7 V				"			4 mA	0.7 V	QA		0.4	"
			7	-	"	"	"	"	"	"	"				"		4 mA		"	QB		"	
			8	= =	"	"	"	"			"				"	4 mA			"	QC		"	<u> </u>
			9			"	"				"			4 mA	"				"	QD		"	<u> </u>
	N/		10			"	"				"		4 mA		"				"	QE			- <u>-</u>
	V _{IC}		11 12	-18 mA	40 4															CLK		-1.5	
			12		-18 mA	-18 mA														A _{IN} B _{IN}			
			13			-16 mA	-18 mA													B _{IN} C _{IN}		п	"
			14				- 10 IIIA		-18 mA														"
			16					"	-10 IIIA	-18 mA					н							н	"
			10					"		1011//	-18 mA				"					Enable		"	
			18					"			10 11/1	-18 mA								Serial		"	
			19					"							н				-18 mA	CLR		н	"
	I _{IH5}		20	2.7 V	GND	GND	GND	5.5 V	GND	GND	GND	GND			"				GND	CLK		20	μA
			21	GND	2.7 V	GND	GND	"	"		"	"			"				"	A _{IN}		"	"
			22	"	GND	2.7 V	GND	"	"	"	"	"			"				"	B _{IN}		"	
			23	-		GND	2.7 V	"	"	=	"	-			"				=	CIN		"	"
			24	=	"	"	GND	"	2.7 V	-	"	=			"				=	D _{IN}		"	"
			25	-	"	"	-	-	GND	2.7 V		-			"				=	E _{IN}		"	
			26	"	"	"	"		"	GND	"	2.7 V							"	Serial		"	=
			27		"	"	"	"	"		"	GND			"				2.7 V	CLR		"	"
	I _{IH6}		28	5.5 V	"	"		"	"	"	"	"			"				GND	CLK		100	
			29	GND	5.5 V	"	"	"	"	"	"	"			"				"	A _{IN}		"	<u> </u>
			30		GND	5.5 V	"	"	"	"	"									B _{IN}			
			31 32			GND	5.5 V GND													CIN			
			32	"		"	GND		5.5 V GND	5.5 V		"								D _{IN}			
			33	"	"	"	"		GND "	GND		5.5 V								E _{IN} Serial			
			35	"	"	"	"			GND "		GND							5.5 V	CLR		"	
				"																			
	I _{IH9}		36		"						2.7 V	GND							GND	Enable		"	
	I _{IH10}		37	=	"	"	-		"	=	5.5 V	GND							GND	Enable		500	"
	I _{IL3}	3009	38	0.4 V	4.5 V	4.5 V	4.5 V	"	4.5 V	4.5 V	4.5 V	4.5 V			"				4.5 V	CLK	1/	1/	mA
			39	4.5 V	0.4 V	4.5 V	"		"	"	"	"							"	A _{IN}		"	"
			40		4.5 V	0.4 V	=	"		-	"	-			"				-	B _{IN}	"		"
			41	-	"	4.5 V	0.4 V	"	"	"	"	"			"				"	CIN	"	"	"
			42	"	"	4.5 V	4.5 V	"	0.4 V	"	"	"			"				"	D _{IN}		"	

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 04.

						Termin				inspectic signated			V or low		or oper	า).							
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	 13	14	15	16	Measured	Test L	imits.	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	B _{IN}	CIN	V _{CC}	D _{IN}	EIN	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR	1	Min	Max	
1	I _{IL3}	3009	43	4.5 V	4.5 V	4.5 V	4.5 V	5.5 V	4.5 V	0.4 V	4.5 V	4.5 V	~-	<u> </u>	GND	~~	<u> </u>	<u> </u>	4.5 V	E _{IN}	1/	1/	
Tc = 25°C	120		44	"	"	"	"	"	"	4.5 V	"	0.4 V			"				4.5 V	Serial	"	"	"
			45	"	"	"	"	"	"	"	"	4.5 V			"				0.4 V	CLR	"	"	"
	I _{IL5}		46	"	"				"		0.4 V	"			"				4.5 V	Enable		"	"
	los	3011	47	"	"	"	"	"	"	"	4.5 V	"			"			GND	"	QA	-15	-100	"
			48	-	"	"	"	"	"	"	"	"			"		GND		"	QB	-	"	"
			49	"	"	"	"	"	"	"	"	"			"	GND			"	QC	-	"	"
			50		"	"		-		"	"	"		GND	-				-	QD	=	-	"
			51	"	"	"				"	"	"	GND						"	QE	-	=	"
	I _{CC}	3005	52												"				GND	V _{cc}		20	"
2	Same te	sts, termina	l conditions, a	nd limits	as subgr	roup 1, ex	cept T _C =	125°C and	d V _{IC} tests	s are omit	ed.				•				•				
3	Same te	sts, termina	l conditions, a	nd limits	as subgr	roup 1, ex	cept T _C =	-55°C and	VIC tests	are omitte	ed.												
7	Truth	3014	53	В	А	Α	Α	5.0 V	Α	Α	В	В	L	L	GND	L	L	L	В	All			Т
$T_{\rm C} = 25^{\circ}{\rm C}$			54	Ā	"	"	"	"	"	"	B	Ā	L	Ĺ	"	Ĺ	L	L	B	outputs			
0	test		55	В	"	"	"	"	"	"	В	В	L	L	"	L	L	L	В	"			
			56		"	"	"	"	"	"	А	"	Н	Н	"	Н	Н	Н	Α	"			
			57	-	В	В	В		В	В	"	"	Н	H		H	Н	Н	Α	"			
			58	-	"	"	-	"	"	"	"	"	L	L		L	L	L	В	"			
			59	"	"	"	"	"	"	"	В	"	"	"	"		"	L	A	"			
			60	"	"					"	"	A		"	"			L	"	"			
			61	A B														H			• •		
			62 63	A						"	"		"				Н				See A	,в,с, Г	and D
			63	B		"		"		"	"	"	"	"	"		"		"	"			
			65	A	"	"				"	"	"	"	"	"	Н	"		"	"			
			66	B	"	"	"	"	"	"	"	"	"		"		"	"	"	"			
			67	A	"	"	"	"	"	"	"	"	"	Н	"	"	"	"	"	"			
			68	В	"	"	"	"	"	"	"	"	"	"	"		"	"	"	"			
			69	Α	"	"	"	"	"	"	"	"	Н	"	"	"	"	"	"	"			
			70	В	"	"	"	"	"	"	"	"	"	=	"	=	=	"	"	"			
			71	В	А	А	Α		Α	A	"	В	"	-	-	=	-			"			
			72	Α	"	"	"	"	"	"	"	"	"	"		-	"	L	"	"			
			73	В	"	"	"	"	"	"	"	"	"	"		-		"	"	"			
			74	A	"					"	"		"	"	"		L						
			75	В											"								
			76 77	A B						"						L "							
			77	A										Ľ									
			78	B	"	"	"	"		"	"	"	"	 			"		"	"			
			80	A											<u> </u>	<u> </u>							

TABLE III. <u>Group A inspection for device type 04</u> - Continued management of the second tions of the second tions of 2.0 V or low < 0.7 V or 0

See footnotes at end of device type 04.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
ubgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			1
		method	Test no.	CLK	A _{IN}	B _{IN}	CIN	V _{cc}	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	<u> </u>
8	Same tes	sts, terminal	conditions, ar	nd limits a	as subgro	up 7, exc	ept T _C =	125°C an	d -55°C														
9	f _{MAX}	(Fig. 7)	81	IN				5.0 V			GND	IN			GND			OUT	F	QA	20		MH
; = 25°C	see note E																						ł
	t _{PLH1}	3003	82	"				"			"	IN			"			OUT	"	CLK TO QA	5	45	ns
		(Fig. 7)	83	"				"			"	See figure 7			"		OUT			CLK TO QB	"	"	"
			84	"				"			"	ligaro /			"	OUT				CLK TO QC	"	"	"
			85	"				"			"			OUT	"				"	CLK TO QD	"	"	"
			86	"				"			"		OUT						"	CLK TO QE	"	"	"
	t _{PLH2}		87	GND	IN			"			F				"			OUT	IN	A _{IN} TO QA	"	40	"
			88	"		IN		"			"				"		OUT		"	B _{IN} TO QB	"	"	"
			89	=			IN	"			"				"	OUT			-	C _{IN} TO QC		"	"
			90	-				"	IN		"			OUT	"				"	D _{IN} TO QD		"	-
			91	"				"		IN	"		OUT		"				"	E _{IN} TO QE		"	
			92	"	F			"			IN							OUT	"	Enable to QA	"	"	
			93	-		F		"			"				"		OUT		"	Enable to QB	"	"	"
			94	"			F	"			"				"	OUT			"	Enable to QC	"	"	"
			95	"				"	F		"			OUT	"				"	Enable to QD	"	"	"
			96	"				"	"	F	"		OUT		"				"	Enable to QE	"	"	"
	t _{PHL1}		97	IN				"			GND	IN			"			OUT	F	CLK TO QA	"	45	í – –
			98	"				"			"				"		OUT		"	CLK TO QB	"	"	í
			99	"				"			"				"	OUT			"	CLK TO QC	"	"	1
			100	"				"			"			OUT	"				"	CLK TO QD	"	"	1
			101	=				"			"		OUT		"				-	CLK to QE		"	-
	t _{PHL2}		102	GND	F			"			IN				"			OUT	IN	CLR to QA	"	60	
			103	"		F		"			"				"		OUT		"	CLR to QB	"	"	
			104	-			F	"			"				"	OUT			"	CLR to QC	"	"	ļ
			105					"	F		"			OUT	"				"	CLR to QD	"	"	
			106	-				"		F			OUT		"				"	CLR to QE	"	"	i

TABLE III. <u>Group A inspection for device type 04</u> - Continued. Terminal conditions (pins not designated may be high \geq 2.0; or low \leq 0.7 V; or open).

See footnotes at end of device type 04.

					10		Jonanai			orginatot	i may be			011 - 0.1		5011).				r			
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test L	imits.	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	CLK	A _{IN}	B _{IN}	CIN	V _{CC}	D _{IN}	E _{IN}	Enable	Serial	QE	QD	GND	QC	QB	QA	CLR		Min	Max	1
10 Tc = 25°C	f _{max} See E	(Fig. 7)	107																		17		MHz
	t _{PLH1}	3003 (Fig, 7)	108 to 112	Same te	sts and	terminal	conditio	ns as for	subgrou	p 9.											5	68	ns
	t _{PLH2}		113 to 122																		"	60	"
	t _{PHL1}		123 to 127																		"	68	"
	t _{PHL2}		128 to 132																		"	90	"
11	Same te	sts, terminal	conditions, ar	nd limits a	as subgr	oup 10, 0	except 7	c = -55°0	C.														

TABLE III. <u>Group A inspection for device type 04</u> - Continued Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

Notes:

A. $V_{IN} = 2.5 V.$

B. $V_{IN} = 0.4$ V.

C. Tests numbers 53 through 80 shall be run in sequence.

77

- D. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- E. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial data shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.

1/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В
I _{IL3}	CLK	16/40	16/40
	A _{IN} , B _{IN} , C _{IN}	16/40	12/36
	D _{IN} , E _{IN} , CLR		
	Serial	10/34	10/34
I _{IL5}	Enable	8/-2.0	6/-1.8

F. 3.0 V minimum/5.0 V maximum.

			-				naitions (_		
		MIL-STD-	Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Te	est	
		883	A,B,C,D															<u> </u>			
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured	Lin		Unit
			Test no.	A _{IN}	B _{IN}	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V	2.0 V	4 mA				GND	J <u>1</u> /	2.0 V					4.5 V	QA	2.5		V
Tc = 25°C			2	"	"		4 mA			-	" <u>2</u> /	"					"	QB	-		"
			3	"	"			4 mA		-	" <u>3</u> /	"					"	QC	-		"
			4	"	"				4 mA	"	" <u>4</u> /	"					"	QD	"		"
			5	"	"					"	" <u>5</u> /	"	4 mA				"	QE	"		"
			6	"	"					=	" <u>6</u> /	"		4 mA			"	QF	-		"
			7	"	"					"	" <u>7</u> /	"			4 mA		"	QG	"		"
			8	"	"					"	" <u>8</u> /	"				4 mA	"	QH	"		"
	V _{OL}	3007	9			4 mA				-		0.7 V					"	QA		0.4	"
			10				4 mA			-		"					"	QB			"
			11					4 mA		=								QC		"	"
			12						4 mA	=		"					"	QD		"	"
			13							=		"	4 mA				"	QE		"	"
			14							=		"		4 mA			"	QF		"	"
			15							=		"			4 mA		"	QG		"	"
			16							=		"				4 mA	"	QH		"	"
	VIC		17	-18 mA						-							"	A _{IN}		-1.5	"
			18		-18 mA					-							"	B _{IN}			"
			19							=	-18 mA						"	CLK		"	"
			20							=		-18 mA						CLR		"	"
	I _{IH1}	3010	21	2.7 V	GND												5.5 V	A _{IN}		20	μΑ
			22	GND	2.7 V					"							-	BIN		"	"
			23								2.7 V						-	CLK		"	"
			24									2.7 V					"	CLR		"	"
	I _{IH2}		25	5.5 V	GND					"							"	A _{IN}		100	"
			26	GND	5.5 V					"							"	B _{IN}		"	"
			27							=	5.5 V						"	CLK		"	"
			28							=		5.5 V					"	CLR		"	"
	I_{IL1}	3009	29	0.4 V	4.5 V					=							"	A _{IN}	10/	10/	mA
			30	4.5 V	0.4 V												"	B _{IN}	"	"	"
			31							=	0.4 V						"	CLK	"	"	"
			32							"		0.4 V					"	CLR	"	"	"

TABLE III. <u>Group A inspection for device type 05</u>. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device type 05.

													≤ 0.7 V or								
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test I	imits	Un
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	A _{IN}	BIN	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	V _{CC}		Min	Max	
1	los	3011	33 <u>9</u> /	4.5 V	4.5 V	GND					A 1/	4.5 V	1				5.5 V	QA	-15	-100	
c = 25°C	00		34 "			-	GND			"	" 2/							QB			
0-200			35 "	-			0.10	GND		"	" 3/						"	QC			1
			36 "					OND	GND		<u> </u>		1					QD			
			37 "							"	" 5/		GND				"	QE			
			38 "		"						" 6/			GND			"	QF			
			39 "	-							" 7/				GND		"	QG			
			40 "							-	" <u>8</u> /					GND	-	QH	-		
	I _{CC}	3005	41	GND	GND						5.5 V	J						V _{cc}		27	
2	Same test	ts, terminal cor	ditions and limit	s as subgro	oup 1, excep	ot T _C = 125°	C and V _{IC} te	ests are omi	tted.				•		•						
3			ditions and limit	-			-			-			_		-			-			
7	Truth	3014	42	B	В	L	L	L	L	GND	С	C	L	L	L	L	5.0 V	All			
Г _С = 25°С	table		43								В	C						outputs	ł	1	1
	test		44								C "	С				"			4	1	1
			45									B									
			46 47	C B	C B																
			47		В	н					В							"			
			48			"					C							"			
			50				н				В					"		"			
			51	-		"				"	C					"	"	"	See	B,C,D a	and
			52			"	"	н			B	"				"		"		1	1
			53	-		"	"			"	Ċ	"	"		"	"	"	"			
			54		"	"			Н		В		"			"	"	"	1		
			55			"	"				С	"	"			"	"	"			
			56	=		"	"			-	В	"	Н			"	"	"			
			57	-				"		-	С		"			-		"			
			58	-		"	"				В		"	Н		"	"	"			
			59	-		"	"				С		"			"	"	"			
			60		"	"					В		"		Н	"	"	"			
			61								С							"			
			62								B C					Н					
			63 64	С							C								-		
			65	"		L					B							"			
			66			"					C							"			
			67				1				B					"		"			
			68			"	"				C	"				"	"	"			
			69		С	"					C	"				"	"	"			
			70			"		L			В		"			"	"	"	1		
			71		"	"					С		"			"	"	"	1		
			72						L		В				"	"	"	"			
			73	=		"	"			"	С	"	"		"	"	"	"			
			74	В		"					С					"		"	J	1	1
			75			"		"			В		L			"	"	"]		1
			76			"					С					"		"	l	1	1
			77		"	"		"			В			L		"	"	"		1	1
			78		"	"		"		"	С	"		"		"	"	"		1	1
											В				L			"	1	1	1
			79																		
			79 80 81		"	"	"	"	"	"	C B	"	"	"	L	"	"	"			

TABLE III. <u>Group A inspection for device type 05</u> - Continued Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

See footnotes at end of device type 05.

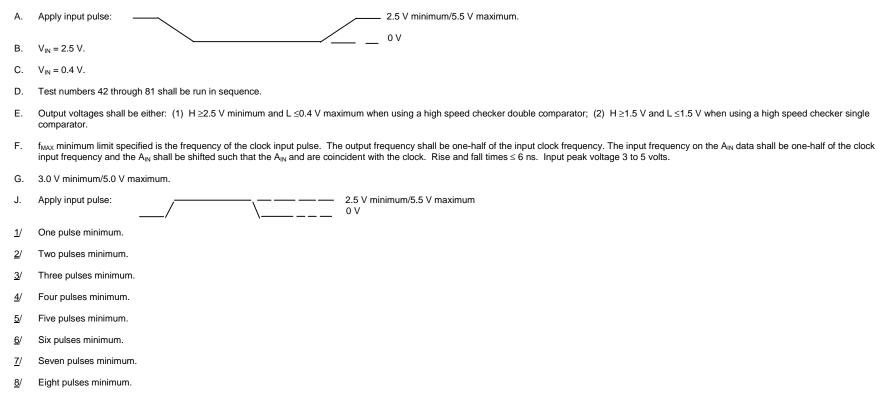

Subplice Symple Mail <std: Mathematical Base A.B.C.D Cases Z.X Z 3 4 6 9 10 12 13 14 16 18 19 20 B Base Coll Coll Coll Coll OF OG OH Vice Main Max B Same lests.teminal conditions and limits as subgroup 7 except Tc = 125°C and -55°C. Same Same</std: 			1	Cases	1	2	3	10115 (pii 4	5	6	7	Je nign ≥ 8	≥ 2.0 V; c 9	$10W \leq 0$	11 <u>11</u>	12	13	14	Measured	Lir	nits	Unit
N method Testno. A _N B _N O.A O.B O.C O.D GND CLR O.E O.F O.G O.H V.cc Min Max 8 Same tests, terminal conditions, and limits as subgroup 7 except T _C = 125°C and -55°C. GND IN G I I 50°V OA 2 Interview 50°V OA 2 Interview 50°V OA 50°V CA 50°V OA 50°V 70° CLK TO QA 70°V 70°V 70°V 70°V			MIL-STD-			-	0	-	0	Ū	'	0	5	10		12	10	14			mo	Onic
8 Same tests, terminal conditions, and limits as subgroup 7 except T _c = 125°C and -55°C. 9 T _c = 25°C hax ende F R 8 IN G OUT In GND N G In Soft QA 22 Hax Ende F Soft R2 IN G OUT In G In	Subgroup	Symbol	883		2	3	4	6	8	9	10	12	13	14	16	18	19	20				
8 Same tests, terminal conditions, and limits as subgroup 7 except T _C = 125°C and -55°C. 9 T _C = 25°C Max https:// https:// https:// https:// tr_c = 125°C R2 IN 6 OUT In G		-	method	Test no.	A _{IN}	BIN	QA	QB	QC	QD	GND	CLK	CLR	QE	QF	QG	QH	Vcc		Min	Max	
9 T _C = 2°C Koo Set By t _H (Fig. 8) By t _H 82 (Fig. 8) By t _H IN Set By t _H G Set By t _H OUT Set By t _H D Set By t _H IN Set By t _H G OUT IN Set CLKTOOK IN Set CLKTOCH	8	Same te	ests, terminal c	onditions, and	limits as	subgrou	up 7 excer	ot $T_{\rm C} = 12$	25°C and	-55°C.			•									
See hult See hult	9		-	-			•	Ű			GND	IN	G					50V	QA	22		MHz
Interf 3003 (Fig.8) 33 IN 6 OUT - CLKTOQA 5 32 Bes See See See OUT - - - - - - CLKTOQA 5 32 Bes - - - - - - - - - - CLKTOQA 5 32 Bes -		See	(1.1g. 0)	01		Ū					0.15		0					0.0 1	<u> </u>			
Image: base of the second se			3003	83	IN	G	OUT				"	=	"					"		5	32	ns
Bec * * * OUT * <td></td> <td></td> <td>(Fig. 8)</td> <td>84</td> <td></td> <td></td> <td></td> <td>OUT</td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td>			(Fig. 8)	84				OUT					"							"	"	"
Image: branch of the second					-	-			OUT				-					"			-	"
88 *										OUT		"	"					"	CLK TO QD	"	"	"
Image: base base base base base base base base											"	-	"	OUT				"		"	"	"
Image: book of the second se											"	"	"		OUT			"		"	"	"
Image: brack figure 91 * * 0UT *					"	"					"	"	"			OUT		"		"	"	"
Image: Second second											"						OUT				"	
Image: base of the second se		t _{PHL1}					OUT	OUT													37	ns
Image: second								001														
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>001</td> <td>OUT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									001	OUT												
96 " " " " " OUT " " CLK TO QF " " " OUT " CLK TO QF " " " " OUT " CLK TO QF " <					"					001		"	"	OUT								"
Image: base of the second se											"	"	"	001	OUT					"		"
Image: book for the second s					"	"					"	"	"		001	OUT						"
						"					"		"			001	OUT	"			"	"
Image: here I		toul 2			G	G	OUT				"	"	IN				001	"			41	"
Image: here I		-11102				"		OUT			"		"					"		"	"	"
Inc Inc <td></td> <td></td> <td></td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td> <td>OUT</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td>					"	"			OUT		"	"	"					"		"	"	"
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				102	"	"				OUT	"	"	"					"		"	"	"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				103	=	"					"	=	"	OUT				"		"	"	
10 T _C = 125°C f _{MAX} See F (Fig. 8) 107 " CLK TO QH " " 10 T _C = 125°C f _{MAX} See F (Fig. 8) 107 20 20 10 t _{PLL1} 3003 (Fig. 8) 108 to 115 (Fig. 8) 106 to 123 (Fig. 8) 5 48 10 t _{PHL2} 3003 (Fig. 8) 116 to 123 (Fig. 8) 5 66					"	"					"	"	"		OUT			"	CLK TO QF	"	"	"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					"						"	"	-			OUT		"		"		"
T_C = 125°C See F Contract of the second secon				106	-	"					"		"				OUT	"	CLK TO QH	"	"	"
Item (Fig. 8) t _{PHL1} 3003 (Fig. 8) t _{PHL2} 3003 (Fig. 8) t _{PHL2} 3003 (Fig. 8)		f _{MAX} See F	(Fig. 8)	107																20		MHz
(Fig. 8)		t _{PLH1}		108 to 115																5	48	ns
(Fig. 8)		t _{PHL1}		116 to 123																5	66	ns
11 Same tests terminal conditions and limits as subgroup 10, except $T_{e,r} = 55^{\circ}$		t _{PHL2}		124 to 131																5	62	ns
\sim Same lesis, leminal conditions, and limits as subgroup to, except $T_c = -55$ C.	11	Same te	ests, terminal c	onditions, and	limits as	subgrou	up 10, exc	ept T _c =	-55°C.													

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device type 05.

FOOTNOTES:

8

9/ At the manufacturer's option, I_{OS} tests 33 through 40, the following alternate procedure may be used; apply 2.75 volts @; test 33, QA, test 34, QB, test 35, QC, test 36, QD, test 37, QE, test 38, QF, test 39, QG, test 40, QH, and min/max limits of -7.5/-50 mA.

<u>10</u>/ I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D	E	F	G
I _{IL1}	A _{IN} , B _{IN}	0/34	10/34	16/40	16/40	135/370	12/36	16/40
	CLK	0/4	16/4	12/36	20/44	n	H	H
	CLR	0/4	16/4	12/36	16/40	11	II	"

		MIL-STD-	<u> </u>												or open).	40					
		883	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14		LII	nits	
Subgroup	Symbol	method	Cases 2,X	2	3	4	5	8	9	10	12	13	14	16	18	19	20	Measured			Unit
			Test no.	Serial	A _{IN}	BIN	CIN	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V					0.7 V	GND	4.5 V	А				-1.0 mA	4.5 V	QA	2.4		V
Tc = 25°C			2		2.0 V				2.0 V	-	"	"				-1.0 mA	"	QA			"
			3			2.0 V			"	"	"	"			-1.0 mA		"	QB	"		"
			4				2.0 V		"	"	"	"		-1.0 mA			"	QC	"		"
			5					2.0 V	"	"	"	"	-1.0 mA				"	QD	"		"
	Vol	3007	6	0.7 V					0.7 V	"	"	"				12 mA	"	QA		0.4	"
	-		7		0.7 V				2.0 V	"	"	"				12 mA	"	QA		"	"
			8			0.7 V			"	"	"	"			12 mA		"	QB		"	"
			9				0.7 V		"	"	"	"		12 mA			"	QC		"	"
			10					0.7 V	"	"	"	"	12 mA				"	QD		"	"
	VIC		11	-18 mA						"							"	Serial		-1.5	"
	-		12		-18 mA					"							"	A _{IN}		"	"
			13			-18 mA				"							"	B _{IN}		"	"
			14				-18 mA			"							"	CIN		"	"
			15					-18 mA		"							"	D _{IN}		"	"
			16						-18 mA	"							"	Mode		"	"
			17							"	-18 mA						"	CONT		"	"
			18							"		-18 mA					"	CLK		"	"
	I _{IH1}	3010	19	2.7 V					4.5 V	"							5.5 V	Serial		20	μΑ
			20		2.7 V				GND	"							"	A _{IN}		"	"
			21			2.7 V			"	"							"	B _{IN}		"	"
			22				2.7 V		"	"							"	C _{IN}		"	"
			23					2.7 V	"	"							"	D _{IN}		"	"
			24						2.7 V	"							"	Mode		"	"
			25							"	2.7 V						"	CONT		"	"
			26							"		2.7 V					"	CLK		"	"
	I _{IH2}		27	5.5 V					4.5 V	"							"	Serial		100	"
			28		5.5 V				GND	"							"	A _{IN}		"	"
			29			5.5 V			"	"							"	B _{IN}		"	"
			30				5.5 V		"	"							"	C _{IN}		"	"
			31					5.5 V	"	"							"	D _{IN}		"	"
			32						5.5 V	"							"	Mode		"	"
			33							"	5.5 V						"	CONT		"	"
			34							"		5.5 V					"	CLK		"	"
	I _{OZH}	l	35	1	0.7 V	l		l	4.5 V	"	0.7 V	A	1			2.7 V	"	QA	l	20	"
			35 36	1		0.7 V			"	"	"	"	1	İ	2.7 V	l	"	QB		"	"
			37	İ			0.7 V		"	"	"		Ì	2.7 V		l	"	QC		"	"
			38	1			-	0.7 V	"	"	"	"	2.7 V				"	QD		"	"
	I _{OZL}		39	İ	2.0 V				"	"	"		Ì	1		0.4 V	"	QA		-20	"
	02L		40	1	-	2.0 V			"	"	"				0.4 V		"	QB		"	"
			41	1			2.0 V		"	"	"			0.4 V			"	QC		"	"
			42	1				2.0 V	"	"	"	"	0.4 V			1	"	QD		"	"

TABLE III. <u>Group A inspection for device type 06</u>. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 06.

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Test	Limits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	1
1	I _{IL1}	3009	43	0.4 V					GND	=							5.5 V	Serial	<u>1</u> /	1/	mA
Tc = 25°C			44		0.4 V				4.5 V								-	A _{IN}	"	"	"
			45			0.4 V				"								B _{IN}	"	"	-
			46				0.4 V			"								CIN	"	"	"
			47					0.4 V		"								D _{IN}	"	"	"
			48						0.4 V	=							"	Mode	"	"	"
			49							=	0.4 V						-	CONT	"	"	"
			50							-		0.4 V					-	CLK	"	"	"
	I _{0S}	3011	51		4.5 V				4.5 V	-	4.5 V	Α				GND	-	QA	2/	2/	"
			52			4.5 V				"	-				GND			QB	"	"	"
			53				4.5 V		"		"			GND				QC	"	"	"
			54					4.5 V	-	=	-	=	GND				"	QD	"	"	"
	I _{CC}	3005	55	5.5 V	GND	GND	GND	GND	5.5 V	=	5.5 V	=					-	V _{cc}		27	"
	Icc	3005	56	5.5 V	GND	GND	GND	GND	5.5 V	=	GND	GND					-	V _{cc}		29	"
2	Same tes	sts, terminal c	onditions and	limits as s	ubgroup	1 except 7	r _c = 125°C	and V _{IC} t	ests are o	mitted.											
3	Same te	ests, terminal o	conditions and	limits as s	subgroup	1 except	T _C = -55°C	C and V _{IC} t	ests are o	mitted.											

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be high \ge 2.0; or low \le 0.7 V; or open).

 $\overset{\infty}{\omega}$ See footnotes at end of device type 06.

			-										≤0.7 V; o								
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	BIN	CIN	DIN	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{CC}		Min	Max	
7	Truth	3014	57	В	В	В	В	В	В	GND	В	В	Х	Х	Х	Х	5.0 V	All			
Γc = 25°C	table		58	"	В	В	В	В	"	"	"	С	Н	Н	Н	Н	"	outputs			
	tests		59	"	В	В	В	В	"	"	"	В	Н	Н	Н	Н	"				
			60	"	С	С	С	С	"	"	"	В	Н	Н	Н	Н		"			
			61	"	"	"	"	"	"	"	"	C	L	L	L	L	"	"			
			62	"	"	"	"	"	"	"	"	B	"		"	L		"			
			63	"	"	"	"	"	С	"	"	B	"	1	"	L		"	See I	B,C,D,	and F
			64	"	"	"	"	"	"	"	"	C	"		"	H		"	000	I,0,2,1	1
			65	"	"	"	"	"	"	"	"	B	"	"	"	"		"			
			66	"	"	"	"	"		"	"	C	"		Н	"		"			
			67	"	"			"		"	"	B	"		"			"			
			68	"	"			"	"	"	"	C		Н	"			"			
			69	"	"			"			"	В	"	"	"			"			
			70	"	"			"			"	C	Н		"			"			
			70	"	"	"	"	"	"	"	"	В			"			"			
			71	С	В	В	В	В			"	B	"		"			"			
			72	U "				<u>Р</u> "		"	"	C			"			"			
			73	"	"					"	"	-				L		"			
				"								B	"								
			75	"								С	"		L						
			76									B									
			77									С		L							
			78 79									B C	Ľ	L							
8 9 T _C = 25°C	f _{MAX}	(Fig. 9)	onditions, and 80	IN	Jubgroup				GND	GND	G	IN				OUT	5.0 V	QA	20		MHz
.0 _0 0	note F																				
	t _{PLH1}	3003																			
		(81		IN				G	"	"	"				OUT	"	CLK to QA	6	35	ns
		(⊢ig. 9)	82		IN	IN			G "	"	"	"			OUT	OUT	"	CLK to QB	6	35 "	ns "
		(Fig. 9)			IN	IN	IN			"	"	"		OUT	OUT	OUT	"	CLK to QB CLK to QC	6 "	35 "	ns "
		(Fig. 9)	82		IN	IN	IN	IN		" " "	"	11 11 11	OUT	OUT	OUT	OUT		CLK to QB CLK to QC CLK to QD	6 " "	35 " "	ns " "
		(Fig. 9)	82 83	IN	IN	IN	IN	IN	"	11 11 11 11	11 11 11 11	11 11 11	OUT	OUT		OUT	"	CLK to QB CLK to QC CLK to QD CLK to QA		"	ns " "
		(Fig. 9)	82 83 84 85 86	IN See fig. 9	IN	IN	IN	IN	" " GND "	n	11 11 11 11	11 11 11 11	OUT		OUT		" "	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB	6 " "	" " "	ns " " '
		(Fig. 9)	82 83 84 85 86 87	See			IN	IN	"	11 11 11 11 11 11 11	N N N N N	11 11 11 11 11 11 11		OUT			"	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC	6 " " "		ns " " " "
		(Fig. 9)	82 83 84 85 86 87 88	See fig. 9 See			IN	IN	" GND "	11	"	11 11 11 11 11 11 11 11 11 11 11 11 11	OUT			OUT	" "	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD	6 " " " "	11 11 11 11	ns " " " " "
	t _{PHL1}	(Fig. 9)	82 83 84 85 86 87 88 88 88	See fig. 9 See fig. 9 See			IN	IN	" " GND "	"	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11			OUT		11 11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA	6 " " " " " " " " " " " " " " " " " " "	" " "	ns " " " "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88	See fig. 9 See fig. 9 See		IN			" GND "	11	"	11 11 11 11 11 11 11 11 11 11 11 11 11		OUT		OUT	11 11 11 11	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QA	6 " " " " " " " " " " " " " " " " " " "	11 11 11 11	ns " " " " " "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88 88 88	See fig. 9 See fig. 9 See					" GND "	11 11 11	"	11 11 11 11 11			OUT	OUT	11 11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QB CLK to QC	6 " " " " " " " " " " " " " " " " " " "	" " " " " 40	ns " " " " " " "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88 88 89 90	See fig. 9 See fig. 9 See				IN	" " " " " " G	11 11 11	"	11 11 11 11 11 11		OUT	OUT	OUT	11 11 11 11	CLK to QB CLK to QC CLK to QA CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QA	6 "" "" "" "" "" "" ""	" " " " " " " " 40	ns " " " " " " " "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88 88 89 90 91	See fig. 9 See fig. 9 See					" " GND " " " "	11 11 11	"	11 17 17 17 17 17 17 17 17 17 17 17 17 1	OUT	OUT	OUT	OUT	11 11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QB CLK to QC	6 "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " "	NS "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88 88 90 90 91 92	See fig. 9 See fig. 9 See fig. 9 IN See					" GND " GND " G	11 11 11 11 11 11	11 11 11 11	11 17 17 17 17 17 17 17 17 17 17 17 17 1	OUT	OUT	OUT	OUT	11 11 11 11 11 11 11 11 11 11 11 11 11	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QC CLK to QD CLK to QA CLK to QB CLK to QD CLK to QD	6 " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	ns " " " " " " " " " " " " "
	t _{PHL1}	(FIG. 9)	82 83 84 85 86 87 88 88 90 91 91 92 93	See fig. 9 See fig. 9 See fig. 9					" GND " GND " G	11 11 11 11 11 11 11 11 11	11 11 11 11 11	11 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	OUT	OUT	OUT	OUT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CLK to QB CLK to QC CLK to QD CLK to QA CLK to QC CLK to QC CLK to QD CLK to QA CLK to QA CLK to QD CLK to QD CLK to QD	6 " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " "	ns " " " " " " " " " " " " " " " " " " "

TABLE III. <u>Group A inspection for device type 06</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

					Termin	al condit	tions (pin				be high ≥				open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Measured terminal	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	8	9	10	12	13	14	16	18	19	20				
		method	Test no.	Serial	A _{IN}	B _{IN}	C _N	D _{IN}	Mode	GND	CONT	CLK	QD	QC	QB	QA	V _{cc}	1	Min	Max	l
9	t _{ZL}	(Fig. 9)	97		GND				G	GND	IN	IN				OUT	5.0 V	CONT to QA	5	35	ns
$T_{C} = 25^{\circ}C$			98			GND			"	"	"	-			OUT		"	CONT TO QB	=	"	"
			99				GND		"	"	"	"		OUT				CONT TO QC	"	"	"
			100					GND	"	"	"	-	OUT				"	CONT TO QD	"	"	"
	t _{ZH}		101		G				"		"					OUT	"	CLK TO QA	"	30	"
			102			G			"						OUT		"	CLK TO QB	"	"	
			103				G	-						OUT				CLK TO QC		"	
			104					G					OUT					CLK TO QD			
	t _{LZ}		105 106		GND	GND									OUT	OUT		CLK TO QA CLK TO QB		55 "	
			106			GND	GND							OUT	001			CLK TO QB		"	"
			107				GND	GND	"	"			OUT	001				CLK TO QC		"	
	t _{HZ}		108		G			GND	"	"	"	"	001			OUT		CLK TO QD	"	65	
	чнz		110		0	G			"	"	"	"			OUT	001		CLK TO QR	"	"	
			111				G		"	"	"	"		OUT			"	CLK TO QC	"	"	"
			112				-	G	"	"	"	"	OUT				"	CLK TO QD	"	"	"
10 T _C =125°C	f _{MAX} See F		113																18		MHz
	t _{PLH1}	3003 (Fig. 9)	114 to 121																5	46	ns
	t _{PHL1}		122 to 129																"	52	"
	t _{ZL}		130 to 133	Same	test and	terminal o	conditions	as subgr	oup 9.										"	45	"
	t _{ZH}		134 to 137																"	39	"
	t _{LZ}		138 to 141																"	71	"
	t _{HZ}		142 to 145																"	84	"
11	Same te	sts, termina	l conditions, a	nd limits	as for su	ubgroup 1	0, except	T _C = -55	°C.												

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (bins not designated may be birds $\geq 2.0.1$ or low $\leq 0.7.1$); or low $\leq 0.7.1$; or low \leq

See footnotes at end of device type 06.

FOOTNOTES:

98

- A. Apply input pulse: _____ _ 2.5 V minimum/5.5 V maximum 0 V
- B. $V_{IN} = 2.4 V.$
- C. $V_{IN} = 0.4 V.$
- D. Test numbers 57 through 79 shall be run in sequence.
- E. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator; (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- F. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- G. 3.0 V minimum/5.0 V maximum.
- 1/ IIL limits (mA) min/max values for circuits shown:

Parameter	Terminal	A	В	С	D	E
I _{IL1}	Serial	075/250	16/40	16/40	105/345	12/36
	A _{IN} , B _{IN} ,	12/36	16/40	16/40	105/345	12/36
	C _{IN} , D _{IN}					
	Mode	16/40	15/38	03/3	12/36	12/36
	CONT	16/40	16/40	03/3	12/36	12/36
	CLK	16/40	20/44	03/3	12/36	12/36

<u>2</u>/ I_{os} limits (mA) min/max values for circuit A: -30/-130. for circuits B, C, D, E: -15/-100.

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	<u>2.0 v</u> , 10	11	0.7 V; c	13	14	15	16		Test L	imite	
ubaroup	Cumhal		Cases 2,X							9	10	9 12	10	14	12	13	14	15	20	Maggurad	Test		1.1.00
ubgroup	Symbol	method		2	3	4	5	7	8											Measured			Uni
			Test no.	CLR	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V _{CC}	terminal	Min	Max	
1	V _{OH}	3006	1	2.0 V		2.0 V	2.0 V	2.0 V	2.0 V	2.0 V	GND	0.7 V	A					1 mA	4.5 V	QA	2.4	\square	V
c = 25°C			2							"							1 mA			QB			
			3	"		"	"	"	"	-	-	"	"			1 mA			"	QC	-		
			4	"		"	"	"	"	"	"	"	"		1 mA				"	QD	"		"
			5	"		"	"	"	"			"	"	4 mA					"	QD'	2.5		"
	Vol	3007	6	"		0.7 V	0.7 V	0.7 V	0.7 V	"	-		"					12 mA		QA		0.4	"
			7	"		"	"	"		-	=		"				12 mA			QB		"	"
			8	"		"	"	"	"	=	=	"	"			12 mA			"	QC		"	"
			9	-		"	"	"	"	-	-	"	"		12 mA				"	QD		"	"
			10	"		"	"	"	"	"	"	"	"	4 mA					"	QD'		"	"
	VIC		11	-18 mA															-	CLR		-1.5	"
			12		-18 mA						-								"	Serial		"	"
			13			-18 mA					"								"	A _{IN}		"	"
			14				-18 mA				"								"	B _{IN}		"	
			15				-	-18 mA			"								"	CIN		"	
			16						-18 mA		"								"	D _{IN}		"	
			17		1					-18 mA	"				1				"	Load		"	'
			18							1011	"	-18 mA								CONT			'
			19								"	10 11/1	-18 mA							CLK			
	I _{IH1}	3010	20	2.7 V							"		10 11/1		1				5.5 V	CLR		20	μ
	'IH'	0010	20	2.7 0	2.7 V					4.5 V	"								"	Serial		- 20	μ.
			21		2.1 V	2.7 V				GND										A _{IN}		"	
			22			2.7 V	2.7 V			GND "										B _{IN}		"	
			23				2.1 V	2.7 V		"										C _{IN}		"	- ·
			24					2.7 V	2.7 V	"										D _{IN}		"	<u> </u>
			25						2.7 V	2.7 V										Load			H
										GND		071/											
			27									2.7 V	0714							CONT			 .
			28	\						GND			2.7 V							CLK			 .
	I _{IH2}		29	5.5 V																CLR		100	<u> </u>
			30		5.5 V					4.5 V	"									Serial			<u> </u>
			31			5.5 V				GND "	"									A _{IN}		"	\vdash
			32				5.5 V													B _{IN}			
			33					5.5 V												CIN			<u> </u>
			34						5.5 V		-								"	D _{IN}		"	'
			35							5.5 V	'								"	Load		"	<u> </u>
			36							GND	-	5.5 V							"	CONT		"	'
			37							GND			5.5 V						"	CLK			<u> </u>
	I _{OZH}		38	2.0 V		0.7 V	0.7 V	0.7 V	0.7 V	2.0 V		2.0 V	A					2.7 V	"	QA		20	
			39	"		"	"	"	"	-	=	"	"				2.7 V		"	QB		"	
			40	-			-	-	-	=	=	-	"			2.7 V			"	QC		"	
			41	"		"	"	"	"	"	"	"	"		2.7 V				"	QD		"	
	I _{OZL}		42	"		2.0 V	2.0 V	2.0 V	2.0 V	"	"	"	"					0.4 V	"	QA		-20	
			43	"		"	"	"	"	"	"	"	"				0.4 V		"	QB		"	
			44	"	İ	"	"	"	"	"	"	"	"		İ	0.4 V	1		"	QC		"	'
			45	"		"	"	"	"	"	"	"	"		0.4 V		1		"	QD		"	

TABLE III. <u>Group A inspection for device type 07</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 07.

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	5110w ≤ 0	12	13	14	15	16		Test I	imits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
	- ,	method	Test no.	CLR	Serial	A _{IN}	BIN	CIN	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V _{CC}	terminal	Min	Max	-
1	I_{IL1}	3009	46	0.4 V				- 114			GND		-						5.5 V	CLR	1/	1/	mA
Tc = 25°C			47	В	0.4 V					GND	"		Α						"	Serial	"	"	"
			48			0.4 V				4.5 V	"								"	A _{IN}	"	"	"
			49				0.4 V			"	"								"	B _{IN}	"	"	"
			50					0.4 V		"	"								"	CIN	"	"	"
			51						0.4 V	"	"								"	D _{IN}	"	"	"
			52							0.4 V	-								-	Load	-	=	"
			53							4.5 V	"		0.4 V							CONT	"	"	"
			54							"	"			0.4 V						CLK		-	"
	los	3011	55	4.5 V	GND	4.5 V	4.5 V	4.5 V	4.5 V	"	"	GND	Α					GND		Q _A	<u>2</u> /	<u>2</u> /	"
			56	"	"	-	"	"	"	"	"	"	-				GND		"	Q _B	"		"
			57	"	"	-	"	"	"	"	"	"	"			GND			"	Q _C	"		"
			58	"	"	"	"	"	"	"	"	"	"		GND				"	Q _D	"		"
			59	"	"	"	"		"	"	"	"	"	GND					"	Q _{D'}	"	"	"
	lcc	3005	60	5.5 V	5.5 V	GND	GND	GND	GND	5.5 V		5.5 V	"							V _{cc}		34	
	I _{CC}	3005	61	GND	5.5 V	GND	GND	GND	GND	5.5 V	"	GND	GND							V _{cc}		31	"
2	Same te	ests, termina	al conditions	and limit	s as subę	group 1,	except To	c = 125°C	and V_{IC}	tests are	omitted.												
3	Same te	ests, termina	al conditions	and limit	s as subę	group 1,	except To	c = -55°C	and V _{IC} 1	tests are c	mitted.												
7	Truth	3014	62	D	С	С	С	С	С	С	GND	D	С	L	L	L	L	L	5.0v	All	See	C,D,E,	and F
T _C = 25° C	table		63	D	D	D	D	D	D	D	"	"	D	"	"	"	"	"	"	outputs			
	test		64	D	С	С	С	С	С	С	"	"	С	"	"	"	-	"	"	"			
			65	С	"	"	"		"	"	"	"	С	"	"	"	"	"	"	"			
			66	С	"	"	"		"	"	"	"	D	Н	Н	Н	Н	Н	"	"			
			67	С	"		"	"	"	"	"	"	С	Н	Н	Н	Н	Н	"	"	1		

TABLE III. <u>Group A inspection for device type 07</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 ; or low ≤ 0.7 V; or open).

See footnotes at end of device types 07.

ß

All			
utputs			
-			
"			
"			
	See C	,D,E,	and F
=			
"			
"			
"			
"			
"			
"			
"			
"			
"			
"			
"			
			-
QA	22		MHz
K to QA	5	37	ns
K to QB	-	-	=
K to QC		-	-
K to OD	"	-	-

....

.....

....

.....

"

"

...

...

"

"

"

CLK to QD'

"

...

TABLE III. Group A inspection for device type 07 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).

8

10

9

12

10

13

11

14

OUT

12 13

17

15

14

18

15

19

16

20

Measured

terminal

Limits

Min Max

Unit

7

9

Oubgroup	Oymbol	000	00303 2, 7	~	0	-	5	'	U	5	10	12	10	17	10		10	15	20	torrininai	1
		method	Test no.	CLK	Serial	A _{IN}	B _{IN}	CIN	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V _{CC}	1	ſ
7	Truth	3014	68	С	С	D	D	D	D	С	GND	D	С	Н	Н	Н	Н	Н	5.0 V	All	Г
Tc = 25°C	table		69			"	-	-	-	С	-	-	D	L	L	L	L	L	-	outputs	t
	tests	1	70	"	"		"	"	"	С	"	"	С	"	"	"	"	L	"	"	l.
			71	"	"		"	"	"	D	"	"	С	"	"	"	"	L	"	"	l.
			72			"	-	-	-		-	-	D	"		-	-	Н	-	"	l.
			73			"	-	-	-		-	-	С	"		-	-	"	-	"	l.
			74			"	-	-	С		-	-	D	"		-	Н	"	-	"	l.
			75			"	-	-	-		-	-	С	"		-	-	"	-	"	l.
			76		"	=	-	-	-	=	-	-	D	"		Н	-	-	-	"	l
			77	"	"	=	"	"	"	=	"	"	С	"	"	"	"	-	"	"	l
			78	"	-	-	"	"	"	-	"	"	D	Н	Н	"	"	"	"	"	l
			79			"	-	-	-		-		С	"		-	-	"	-	"	l.
			80		D	С	С	С	С		-		С	"		-	-	"	-	"	l.
			81	"		"	"	-	"	"	-	"	D	"				L	"	"	l.
			82		"	=	-	-	-	=	-	-	С	"		-	-	-	-	"	l
			83	"	"	=	"	"	-	=	"	"	D	"	"	"	L	-	"	"	l
			84	"	"	=	"	"	"	=	"	"	С	"	"	"	"	-	"	"	J
			85	"	"	=	"	"	"	=	"	"	D	"	"	L	"	-	"	"	J
			86	"	"	=	-	-	-	=	-	-	С	"		L	-	-	-	"	l
			87	"	"	=	"			-	-	"	D	L	L	L	"	-	"	"	
8	Same tes	sts, terminal	conditions, a	s subgro	up 7 exce	pt T _C = 12	25°C and	-55°C.													
9 T _C = 25°C	f _{MAX} See G	(Fig. 10)	88	J	IN					GND	GND	GND	IN					OUT	5.0 V	QA	
-	t _{PLH1}	3003	89	"		IN				J	"	"	-		1			OUT	"	CLK to QA	Г
		(Fig. 10)	90	"			IN			"	"	"	"				OUT		"	CLK to QB	ſ
			91	"				IN		"	"	"	"			OUT			"	CLK to QC	ſ
		1	92	"					IN	"	"	"	"		OUT				"	CLK to QD	ſ
			93	"					IN	"	"	"	"	OUT					"	CLK to QD'	ſ
			94	"	IN					GND	"	"	"					OUT	"	CLK to QA	ſ
			95	"	See fig. 10					"	"		"				OUT			CLK to QB	I
			96	"	"					"	"	"	"			OUT			"	CLK to QC	ſ
			97	"	"					=	"		-		OUT				"	CLK to QD	Г
			98	"	"					=	"	"	-	OUT	1				"	CLK to QD'	Г
	t _{PHL1}		99	"		IN				J	"	"	-		1			OUT		CLK to QA	Г
			100	"			IN			=	"	"	-		1		OUT		"	CLK to QB	Г
			101	"				IN		=	"		-		1	OUT			"	CLK to QC	Г
			102	"					IN	"	"	"	"		OUT				"	CLK to QD	Г
			103	"					IN	"	"	"	"	OUT					"	CLK to QD'	Г
		1	104	"	IN					GND	"	"	"		1			OUT	"	CLK to QA	Г
				"			1	1				"		1	1	1	OUT		"	CLK to QB	Г
			105		See												001				٩
			105														001				
					See (fig. 10) "					"	"	"	"			OUT	001		"		Ļ
			105 <u>106</u> 107							"		"	"		OUT	OUT			"	CLK to QB CLK to QC CLK to QD	_

See footnotes at end of device type 07.

108

MIL-STD-

883

Subgroup Symbol

Cases E, F

Cases 2, X

1

2

2

3

3

4

4

5

5

7

6

		MIL-STD-	Cases E, F	1	2	3	4	ns (pins 5	6	7	8	9	10	11	12	13	14	15	14	Measured	Lir	nits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			ł
		method	Test no.	CLK	Serial	A _{IN}	B _N	CIN	D _{IN}	Load	GND	CONT	CLK	QD'	QD	QC	QB	QA	V _{cc}	ĺ	Min	Max	l
9	t _{PHL2}	3003	109	IN		J				J	GND	GND	IN					OUT	5.0 V	CLR to QA	5	37	ns
$T_C = 25^{\circ}C$		(Fig. 10)	110	"			J			-	-	"	"				OUT		"	CLR to QB	"	=	"
			111	"				J		-	-	"	=			OUT			=	CLR to QC	"	-	"
			112	"					J	"		"			OUT				"	CLR to QD	=		"
			113	"					J	"	"	"	-	OUT					-	CLR to QD'	"	-	"
	t _{ZL}		114	"							"	IN						OUT	-	CONT to QA	"	35	
			115	"							"	"					OUT		-	CONT TO QB	"		
			116	"							"	"				OUT				CONT TO QC	"	"	
			117	"							"	"			OUT				"	CONT TO QD	"	"	
	t _{ZH}		118	J		J				J		"	IN					OUT		CONT TO QA	"		<u> </u>
			119	"			J					"	"				OUT			CONT TO QB	"	-	<u> </u>
			120	"				J				"	"			OUT				CONT TO QC	"		<u> </u>
			121	"					J	"		"	"		OUT				"	CONT TO QD	"		<u> </u>
	t _{LZ}		122	GND "														OUT		CONT TO QA	"		<u> </u>
			123	"								"				0.17	OUT			CONT TO QB	"		<u> </u>
			124												0.UT	OUT				CONT TO QC			<u> </u>
			125			<u> </u>									OUT			0.117		CONT TO QD			<u> </u>
	t _{HZ}		126 127	J "		J				J			IN				OUT	OUT		CONT TO QA			
			127				J			"		"	"			OUT	001			CONT TO QB CONT TO QC			
			128	"				J	J	"		"	"		OUT	001				CONT TO QC	"		
									J						001					CONTINUE			<u> </u>
10 T _C = 125°C	f _{MAX} See G	(Fig. 10)	130																		20		MHz
	t _{PLH1}	3003 (Fig. 10)	131 to 140																		5	56	ns
	t _{PHL1}		141 to 150																		-	56	"
	t _{PHL2}		151 to 155	Same te	ests and	termina	I conditio	ons as for	subgro	up 9.											=	56	"
	t _{ZL}		156 to 159																		=	53	"
	t _{zH}		160 to 163																		=	=	"
	t _{LZ}		164 to 167																		"	"	"
	t _{HZ}		168 to 171																		"	"	"
11	Same te	ests, terminal	conditions, ar	nd limits	as subg	roup 10	, except	T _C = -55°	С														

TABLE III. <u>Group A inspection for device type 07</u> - Continued. ninal conditions (rins not designated may be high > 2.0.V; or low < 0.7.V; or open).

т.

See footnotes at end of device type 07.

FOOTNOTES:

- A. Apply input pulse: _____ 0 V-
- B. Apply input pulse: 2.5 V minimum/5.5 V maximum.
- C. $V_{IN} = 2.4V.$
- D. $V_{IN} = 0.4 V.$

9

- E. Test numbers 62 through 87 shall be run in sequence.
- F. Output voltages shall be either: (1) H ≥2.5 V minimum and L ≤0.4 V maximum when using a high speed checker double comparator: (2) H ≥1.5 V and L ≤1.5 V when using a high speed checker single comparator.
- G. f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the parallel input shall be one-half of the clock input frequency and the parallel input shall be shifted such that the parallel input ↑ and ↓ are coincident with the clock ↑. Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- J. 3.0 V minimum/5.0 V maximum.
- $\underline{1}$ / I_{IL} limits (mA) min/max values for circuits shown:

Parameter	Terminal	А	В	С	D
I _{IL1}	Serial	075/250	16/40	105/345	12/36
	A _{IN} , B _{IN} , C _{IN}	12/36	"	105/345	12/36
	D _{IN}	16/40	"	16/40	105/345
	CLR, Load,	16/40	03/30	12/36	12/36
	CONT, CLK				

2/ I_{oS} limits for circuit A for QA through QD are -30 to -130 mA, for QD' is -20 to -100 mA, and for circuits B, C, and D are -15 to -100 mA.

				.	-					esignate				or low ≤									
			Cases E,F		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test	Limits	
Subgroup	Symbol	883	Cases 2,X		3	4	5	7	8	9	10	12	13	14	15	17	18	19		Measured			Unit
		method	Test no.	Shift Load	CLK	E	F	G	Н	Q _н	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{cc}	terminal	Min	Max	
1	V _{OH}	3006	1	0.7 V					2.0 V		GND	4 mA							4.5 V	Q _H	2.5		V
Гс = 25°С		3006	2	"					0.7 V	4 mA										Q _H	2.5		
	V _{OL}	3007	3	"					0.7 V		"	4 mA							"	Q _H		0.4	"
		3007	4	"					2.0 V	4 mA	"								"	Q _H		0.4	
	VIC		5	-18 mA							"								"	S/L		-1.5 V	"
			6		-18 mA						"								-	CLK		"	"
			7			-18 mA					"								"	E		"	"
			8				-18 mA				"								-	F		-	-
			9					-18 mA			"								-	G		"	
			10						-18 mA		"								-	Н		"	
			11								"		-18 mA						"	S/INP		"	
			12								"			-18 mA						A			
			13												-18 mA					B			
			14													-18 mA				C D			
			15 16														-18 mA	-18 mA		D CLK/INHB			"
	I _{IL1}	3009	10		0.4 V						"							10 11/1	5.5 V	CLK	1/	1/	mA
			18	GND		0.4 V					"				-					E	-		"
	I _{IL6}		19	"		0.4 V	0.4 V				"				1					F		"	
			20	"			0.1 0	0.4 V			"								"	G		"	
			21	"				0	0.4 V		"								"	Ĥ	"	"	"
			22								"		0.4 V							S/INP	"	"	"
			23	GND							"			0.4 V					"	Α	"	"	
			24								"				0.4 V				"	В	"	"	
			25								"					0.4 V			-	С	=	"	"
			26								"						0.4 V			D		"	

TABLE III. Group A inspection for device type 08 Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 08.

				1	2	3	conditio 4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Test	Limits	Unit
ubgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	Q _н	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{cc}		Min	Мах	1
1	I _{IL1}	3009	27								GND							0.4 V	5.5 V	CLK/INHB	<u>1</u> /	<u>1</u> /	mA
c = 25°C	I _{IL7}		28	0.4 V							"								"		<u>1</u> /	<u>1</u> /	mA
	I _{IH1}	3010	29		2.7 V						-								"	CLK		20	μA
			30			2.7 V					-									E		"	"
			31				2.7 V				"									F		"	"
			32					2.7 V			-								"	G		"	"
			33						2.7 V		"								"	Н		"	
			34										2.7 V							S/INP		"	
			35											2.7 V	0 - 1/					A			<u> </u>
			36 37												2.7 V	2.7 V				B			<u> </u>
			37								"					2.7 V	2.7 V			C D			
			38					-			"				-		2.7 V	2.7 V		CLK/INHB		"	
	I _{IH11}		40	2.7 V							"							2.1 V	"	S/L		60	
			41		5.5 V						"									CLK		0.1	mA
	I _{IH2}		41		5.5 V	5.5 V					"									E		0.1	mA "
			43			5.5 V	5.5 V				"								"	F			
			44				0.0 V	5.5 V			"								"	G		"	
			45					0.0 1	5.5 V		"								"	H		"	
			46								"		5.5 V						"	S/INP		"	"
			47								"			5.5 V					"	Α		"	"
			48								=				5.5 V				"	В		"	"
			49								=					5.5 V				С		"	"
			50								"						5.5 V		"	D		"	"
			51								"							5.5 V		CLK/INHB		"	"
	I _{IH12}		52	5.5 V							=								"	S/L		0.3	"
	los	3011	53	GND					5.5 V		-	GND								Q _H	-15	-100	
	los	3011	54	=					GND	GND	=									Q _H	-15	-100	"
	I _{CC}	3005	55		4.5 V	4.5 V	4.5 V	4.5 V	4.5 V		"		4.5 V	4.5 V		4.5 V		4.5 V	"	V _{CC}		36	"
	lcc	3005	56		4.5 V	GND	GND	GND	GND				GND	GND	GND	GND	GND	4.5 V		V _{cc}		36	"

TABLE III. Group A inspection for device type 08 - Continued Terminal conditions (pins not designated may be high ≥ 2.0 V or low ≤ 0.7 V or open).

See footnotes at end of device type 08.

										ated may													
			Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Li	mits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	Q _н	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{cc}		Min	Max	
7 <u>2</u> /	Truth	3014	57	В	В	В	Α	В	Α	L	GND	Н	Α	В	Α	В	Α	В	5.0 V				
	table		58	А	В	"	"	"	"	L	"	Н	Α	"	"	"	"	"	"			ĺ	
	tests		59	-	Α		=	"	"	Н		L	Α	"	"	-	-	"	"			ĺ	
			60	=	В	"	-	"	"	Н	-	L	В	"	"	-	=	"	"			ĺ	
			61	-	A		=	"	"	L	-	Н		"	"	=	=					ĺ	
			62	"	В	"	-	"	"	L	"	Н		"	"	-	-	"	"			ĺ	
			63	"	A	"	-	"	"	Н	"	L		"	"	-	-	"	"			ĺ	
			64	"	В	"		"	"	Н	"	L	"	"	"	"	"	"	"			ĺ	
			65	"	A	"		"	"	L	"	Н	"		"	"			"			ĺ	
			66		B					L		н									~	ĺ	
			67		A					н		L									<u>3</u> /	ĺ	
			68 69		B					Н		L H										ĺ	
			69 70		B					L	"	H										ĺ	
			70	"	A			"	"	H	"				"					-		ĺ	
			71	"	B	"		"	"	H	"		"	"	"	"						ĺ	
			73	"	A			"	"	L	"	H	"	"	"	"	"					ĺ	
			74	"	В		"	"	"	1	"	H	"	"	"	"	"	"	"			ĺ	
			75	"	A		"	"	"	H	"	L	"	"	"	"	"	"	"			ĺ	
			76	"	В	"		"	"	H	"	L	Α	"	"	"		Α	"			ĺ	
			77	-	Α		-	"	"	Н		L	Α	"	"	-	-	Α	"			ĺ	
8	Same te	sts, termina	l conditions, a	as subgro	oup 7 exc	ept T _C = 1	25°C and	I -55°C.															
9 T _C = 25°C	f _{MAX} <u>4</u> /		78	5.0 v	IN						GND	OUT	IN					GND	5.0 V	$CLK \text{ to } Q_H$	25		MHz
	t _{PLH5}	3003	79	IN					IN			OUT							"	S/L to Q _H	5	40	ns
	t _{PHL5}	See	80	-					"	OUT	"								"	S/L to \overline{Q}_{H}	"	"	"
	t _{PLH5}	fig. 11	81	"						OUT	"								"	S/L to $\ \overline{Q}_{H}$	"	"	"
	t _{PHL5}		82	"					"		"	OUT								S/L to \overline{Q}_{H}	"		
	t _{PLH1}		83	5.0 V	IN						"	OUT						GND	"	CLK to Q _H	"	45	'
	t _{PHL1}		84	-	"					OUT								"		CLK to \overline{Q}_{H}	"	"	"
	t _{PLH1}		85	=	"					OUT								"	"	CLK to $\;\overline{Q}_{\;H}\;$		"	"
	t _{PHL1}		86	"	"						"	OUT						-	-	CLK to \overline{Q}_{H}	"	"	"
	t _{PLH3}		87	GND					IN		=	OUT								H to Q _H	"	30	"
	t _{PHL3}		88	"					"		"	OUT								H to Q _H	"	35	"
	t _{PLH4}		89	=					"	OUT	"								•	H to \overline{Q}_{H}	"	35	"
	t _{PHL4}		90	=					"	OUT	=								"	H to \overline{Q}_{H}	"	30	"

TABLE III. Group A inspection for device type 08 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device type 08.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Measured	Lir	mits	Unit
Subgroup	Symbol	883	Cases 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	terminal			
		method	Test no.	Shift Load	CLK	E	F	G	Н	IQ н	GND	Q _H	Serial INP	A	В	С	D	CLK INHB	V _{CC}		Min	Max	
10 T _C = 125°C	f _{MAX}		91																		20		MHz
	t _{PLH5}	3003	92																		5	52	ns
	t _{PHL5}	See	93																		"	"	"
	t _{PLH5}	fig. 11	94																		"	-	"
	t _{PHL5}		95																		"	=	-
	t _{PLH1}		96	Same tes	sts and ter	minal con	ditions as	subgroup	9, excep	$T_{\rm C} = 125$	°C.										"	58	'
	t _{PHL1}		97					0 1	· ·												"	=	"
	t _{PLH1}		98																		"	=	"
	t _{PHL1}		99																		"	"	"
	t _{PLH3}		100																		"	39	"
	t _{PHL3}		101																		"	46	"
	t _{PLH4}		102																			46	"
	t _{PHL4}		103																			39	

TABLE III. <u>Group A inspection for device type 08</u> - Continued. Terminal conditions (pins not designated may be high > 2.0 V; or low < 0.7 V; or open)

 $T_{\rm C} = -55^{\circ}{\rm C}$

NOTES:

 $\frac{9}{2}$ <u>2</u>/ A = 2.5 V and B = 0.4 V.

3/ Output voltages shall be either:

- (a) H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or,
- (b) $H \ge 1.5 V$ and $L \le 1.5 V$ when using a high speed checker single comparator.
- $\frac{4}{f_{MAX}}$ minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the serial shall be one-half of the clock input frequency and the serial shall be shifted such that the serial ↑ and ↓ are coincident with the clock ↓, but may be offset sufficiently to assure adequate t_{SETUP} and t_{HOLD} . Rise and fall times ≤ 6 ns. Input peak voltage 3 to 5 volts.
- 1/ IIL limits (mA) min/max values for circuit shown:

Parameter	Terminal	А	С	F
I _{IL1}	CLK, CLK/INHIB	001/150	12/38	005/72
I _{IL6}	A,B,C,D,	120/360	12/38	12/38
	E,F,G,H			
	S/IN	100/340	12/38	12/38
I _{IL7}	S/L	001/150	36/-1.08	005/72

															≤ 0.7 V;					1			
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	ł	Test	Limits	
ubgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	н	Shift load	V _{cc}	terminal	Min	Max	
1 c = 25°C	V _{OH}	3006	1						0.7 V	<u>1</u> /	GND					4 mA	2.0 V	0.7 V	4.5 V	Q _H	2.5		V
	V _{OL}	3007	2						0.7 V	<u>1/</u>	-					4 mA	0.7 V	0.7 V	"	Q _H		0.4	"
	VIC		3	-18 mA							"								"	S/IN		-1.5	"
			4		-18 mA						-								"	Α		"	"
			5			-18 mA					"									В		-	
			6				-18 mA				"									С		-	
			7					-18 mA			"								"	D		"	-
			8						-18 mA		"									CLK INHB		-	
			9							-18 mA	"									CLK		-	"
			10								=	-18 mA							-	CLR		=	-
			11								=		-18 mA							E		"	=
			12								=			-18 mA						F		"	=
			13								=				-18 mA					G		"	-
			14								=						-18 mA			Н		"	-
			15								-							-18 mA		Shift load		-	-
	I _{IL6}	3009	16	0.4 V															5.5 V	S/IN	100	340	m
			17		0.4 V						=							GND	"	A	-		
			18			0.4 V												"	"	В	-		
			19				0.4 V											"	"	С	-		"
			20					0.4 V			"							"	"	D	"	"	"
	I _{IL1}		21						0.4 V										"	CLK INHB	001	150	"
	I _{IL1}		22							0.4 V									"	CLK	001	150	"
	I_{IL1}		23									0.4 V							"	CLR	001	150	
	I _{IL6}		24								-		0.4 V					GND	"	E	100	340	"
			25								-			0.4 V				"	"	F	-	"	
			26								-				0.4 V			"	"	G	-	"	"
			27								-						0.4 V	"	"	Н	-	"	-
	I _{IL7}		28								-							0.4 V	"	Shift load	001	150	-
	I _{IH1}	3010	29	2.7 V							=								"	S/IN		20	μA
			30		2.7 V						=									A		"	-
			31			2.7 V					=								-	В		=	-
			32				2.7 V												"	С			"
			33					2.7 V			=									D			-
			34						2.7 V										"	CLK INHB		"	"
			35							2.7 V	-									CLK		"	"
			36								-	2.7 V							"	CLR		"	
			37								"		2.7 V						"	E		"	-
			38								-			2.7 V						F		"	"
			39								-				2.7 V				"	G		"	=
			40								-						2.7 V		"	Н		"	=
			41								"							2.7 V		Shift load		"	"

TABLE III. Group A inspection for device type 09- Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

See footnotes at end of device types 09

		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test I	_imits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Un
		method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	н	Shift Ioad	V _{cc}	terminal	Min	Max	
1	I _{IH2}	3010	42	5.5 V							GND								5.5 V	S/IN		0.1	m
c = 25°C			43		5.5 V						"								"	Α		"	
			44			5.5 V					"								"	В		"	"
			45				5.5 V				"								"	С		"	"
			46					5.5 V			-									D		-	"
			47						5.5 V		"								"	CLK INHB		"	"
			48							5.5 V	"								"	CLK		"	"
			49								-	5.5 V								CLR		-	"
			50								-		5.5 V							E		-	"
			51								-			5.5 V						F		-	"
			52								-				5.5 V					G		-	"
			53								-						5.5 V			Н		-	"
			54								-							5.5 V	"	Shift load			"
	l _{os}	3011	55						GND	<u>1</u> /	"					GND	5.5 V	GND	"	Q _H	-15	-100	
		3005	56	4.5	GND	GND	GND	GND	GND	<u>1</u> /		GND	GND	GND	GND		GND	GND	"	V _{cc}		38	
2 3	Same tes	sts, terminal sts, terminal	conditions, ar	nd limits a	as subgro	oup 1, e	xcept T	c = -55°	C and V _I	_{IC} tests a _C tests a	e omitted	ł.											
3 7 <u>2</u> /	Same tes Same tes Truth	sts, terminal	conditions, ar conditions, ar 57	nd limits a B	-			_C = -55° B	C and V _I B	_{ic} tests a _c tests ai B		d. B	A	В	A	L	A	В	5.0 V				
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58	nd limits a B "	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B "	_{ic} tests a _c tests a B B	e omitted	ł.	=	B "	A "	L	"	В	"				
3	Same tes Same tes Truth	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59	nd limits a	as subgro	oup 1, e	xcept T	_C = -55° B	C and V _I B "	_{ic} tests a _c tests a B B A	e omitted	d. B			A "	L L H		B B					
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60	nd limits a B "	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B "	_{ic} tests a _c tests ai B B A B	e omitted	d. B	=		A "	_	"	В	"				
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B " "	_{ic} tests a _c tests an B A B A A	e omitted	d. B			A " "	_	"	B B	" "				
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B "	_{IC} tests a c tests an B A B A B A B	e omitteo	d. B	=		A " " "	_	"	B B	"		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B " " "	_{IC} tests a c tests an B A B A B A B A	e omitteo	d. B	=		A " " " "	H = =	11 11 11 11 11	B B A "	11 11 11 11 11		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V ₁ B " " " "	c tests a c tests a B A B A B A B A B B B	e omitteo	d. B	11 11 11 11 11 11 11		A " " " " " " " " " " " " " " " " " " "		"	B B	11 11 11 11 11 11 11 11 11		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B " " "	_{IC} tests a c tests a B A B A B A B A B A B A	e omitted	d. B	=		A " " " " " " " " " " " " " " " " " " "	- - - - - - - - - - - - - - - - - - -	11 11 11 11 11	B B A "	11 11 11 11 11 11 11 11 11 11 11 11		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B " " " " " " " "	C and V	_C tests a c tests an B A B A B A B A B A B A B A B A B A B A B A B A B A B B A B B B A A B B B B B B B B B B B B B	e omitted	d. B	11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	A 11 11 11 11 11 11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11	B A " " "	н н н н н н н		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 65 66 67	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B "	C and V _I B " " " " " " " "	c tests a c tests a B A B A B A B A B A B A A B A A A A A	e omitted	d. B	11 11 11 11 11 11 11 11 11 11 11 11 11		A 11 11 11 11 11 11 11 11 11 11 11 11 11	- - - - - - - - - - - - - - - - - - -	11 11 11 11 11	B B A "	11 11 11 11 11 11 11 11 11 11 11		3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 65 66 67 68	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B " " " " " " " "	C and V ₁ B " " " " " " " " " " "	c tests a c tests and B A B A B A B A B A B A B A B B A B B A B	e omitted	d. B	11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	A " " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11	B A " " "	11 11 11 11 11 11 11 11 11 11 11 11		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 65 66 67 68 69	nd limits a	as subgro	oup 1, e	xcept T	c = -55° B " " " " " " " "	C and V ₁ B n n n n n n n n n n n n n n n n n n	c tests a c tests a B A B A B A B A B A B A B A A A A A A	e omitted	d. B	11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	A " " " " " " " " " " " " " " " " " " "		11 11 11 11 11 11 11 11 11 11 11 11 11	B B A " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11		3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 65 66 67 68 69 70	nd limits a B " " " " " " " " " " " " " " "	as subgro	oup 1, e	xcept T	c = -55° B " " " " " " " "	C and V _I B " " " " " " " " " " " " "	c tests a c tests a B A B A B A B A B A B A B A B B A B B B A B	e omitted	d. B	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	A 11 11 11 11 11 11 11 11 11 1		11 11 11 11 11 11 11 11	B A " " "	11 11 11 11 11 11 11 11 11 11 11 11		<u>3</u> /		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	nd limits a B n n n n n n n n n n n n n n n n n n	as subgro	oup 1, e	xcept T	C = -55°	C and V _I B " " " " " " " " " " " " " "	c tests a c tests a B A B A B A B A B A B A B A B A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A A B A A A B A A A B A A A B A A A B A A A A B A A A A A B A A A A A B A A A A B B A A A B A A A B B A A A B A A A B A A A B B A A A B A A A B B A A A B B A A B B A A A A B B A A A A B B A A A B B A A A A B A A A B A A A B A A A A B A A A A A B A A A A A B A A A A A A B A	e omitted	d. B		н н н н н н н н н н н н н н н н н н н	A n n n n n n n n n n n n n			B B A " " " " " " " " " " " "	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	nd limits a B " " " " " " " " " " " " " " "	as subgro	oup 1, e	xcept T	c = -55° B " " " " " " " "	C and V _I B " " " " " " " " " " " " "	c tests a c tests a B A B A B A B A B A B A B A B A B A B	e omitted	d. B	11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11	A 11 11 11 11 11 11 11 11 11 1	H 	11 11 11 11 11 11 11 11 11 11 11 11 11	B B A " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11		3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 64 65 66 67 68 69 70 71 72 73	nd limits a B " " " " " " " " " " " " " " " " " "	as subgro	oup 1, e	xcept T	c = -55° B 	C and V ₁ B " " " " " " " " " " " " " " " " " "	c tests a c tests a B A B A B A B A B A B A B A B A B A A B A A B A	e omitted	d. B		н н н н н н н н н н н н н н н н н н н	A 11 11 11 11 11 11 11 11 11 1			B B A " " " " " " " " " " " "			3/		
3 7 <u>2</u> /	Same tes Same tes Truth table	sts, terminal sts, terminal	conditions, ar conditions, ar 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72	nd limits a B n n n n n n n n n n n n n n n n n n	as subgro	oup 1, e	xcept T	C = -55°	C and V _I B " " " " " " " " " " " " " "	c tests a c tests a B A B A B A B A B A B A B A B A B A B	e omitted	d. B		н н н н н н н н н н н н н н н н н н н	A	H 		B B A " " " " " " " " " " " "	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3/		

TABLE III. Group A inspection for device type 09- Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$; or low $\le 0.7 \text{ V}$; or open).

See footnotes at end of device types 09.

						1011111				abolgila	oumay	oo mgn	<u> </u>		0.1 0,0								
		MIL-STD-	Cases E,F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		Test I	_imits	
Subgroup	Symbol		Cases 2,X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured			Unit
		method	Test no.	Ser. in	A	В	С	D	CLK INHB	CLK	GND	CLR	E	F	G	Q _H	Н	Shift Ioad	V _{cc}	terminal	Min	Max	
9 <u>4</u> / Tc = 25°C	f _{MAX}	3003	76						GND	IN	GND	5.0 V				OUT	IN	GND	5.0 V	CLK to Q_H	25		MHz
	t _{PHL5}	See fig. 12	77								= =	IN								$CLR \text{ to } Q_H$	5 "	40	ns
	t _{PLH1} t _{PHL1}		78 79						GND GND	IN IN	= =	5.0 V 5.0 V				= =	IN IN	GND GND		$\begin{array}{c} \text{CLR to } Q_{H} \\ \text{CLR to } Q_{H} \end{array}$	= =	31 35	ns ns
10	f _{MAX}																				20		MHz
	t _{PHL5}		Same tests	and termi	nal as su	bgroup 9	, except	$T_{c} = 125$	5°C.												5	52	ns
	t _{PLH1} t _{PHL1}																				5 5	40 46	ns ns
11	Same tes	ts, terminal	conditions, a	nd limits a	as subgro	up 10, e	xcept T _C	= -55°C															

TABLE III. <u>Group A inspection for device type 09</u>- Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or open).

NOTES:

1/ Apply _____ --- 2.5 V minimum, 5.5 V maximum to clock input prior to test.

86

 $\underline{2}$ / A = 2.5 V and B = 0.4 V.

3/ Output voltages shall be either:

a. H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or,

b. H \geq 1.5 V and L \leq 1.5 V when using a high speed checker single comparator.

<u>4</u>/ f_{MAX} minimum limit specified is the frequency of the clock input pulse. The output frequency shall be one-half of the input clock frequency. The input frequency on the "H" shall be one-half of the clock input frequency and the "H" shall be shifted such that the "H" ↑ and ↓ are coincident with the clock ↓. Rise and fall times ≤6 ns. Input peak voltage 3 to 5 volts.

MIL-M-38510/306E

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's system Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

MIL-M-38510/306E

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-3853<u>5</u>, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IC}	
V _{IN}	Voltage level at an input terminal

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

MIL-M-38510/306E

Military				Company				Generic
device type	Texas Instruments	Signetics Corp.	Raytheon Company	Advanced Micro Devices	Fairchild Semi- conductor	Motorola, Inc.	National Semi- conductor	Industry type
01, circuit	Α	В	С	D	E	F	G	54LS194A
02, circuit	A	В	С	D	E	F	G	54LS195A
03, circuit	A	В	С		D	E		54LS95B
04, circuit	A	В						54LS96
05, circuit	A	В	G	С	E	F	D	54LS164
06, circuit	A	С	В		D	E		54LS295B
07, circuit	A	В			С	D		54LS395A
08, circuit	A				С	F		54LS165A
09, circuit	A					F		54LS166

6.6 <u>Change from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:

Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-1960)

Review activities: Army – SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99