INCH-POUND MIL-M-38510/307D 12 March 2003 SUPERSEDING MIL-M-38510/307C 5 November 1987

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, DECODERS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, decoder microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part number. The part number shall be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 Device types. The device types shall be as follows:

Device type	<u>Circuit</u>
01	Single 3 to 8 line decoder
02	Dual 2 to 4 line decoder
03	BCD-to-decimal decoder
04	BCD-to-seven segment decoder/driver
	(15-volt, open collector output)

1.2.2 Device class. The device class shall be the product assurance level as defined in MIL-PRF-38535.

1.2.3 Case outlines. The case outlines shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
Х	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip of

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

FSC 5962

1.3 Absolute maximum ratings.

Supply voltage range Input voltage range	-0.5 V dc to 7.0 V dc -1.5 V dc at -18 mA to 5.5 V dc			
Storage temperature range	-65° to +150°C			
Maximum power dissipation (P_D) <u>1</u> /				
Device type 01	55 mW dc			
Device type 02	60.5 mW dc			
Device type 03 and 04	71.5 mW dc			
Output voltage (off state) (device type 04)	15 V dc			
Output current (device type 04)	12 mA dc			
Lead temperature (soldering, 10 seconds)	300°C			
Thermal resistance, junction to case (θ_{JC}) :				
Cases E, F, X, and 2	(See MIL-STD-1835)			
Junction temperature (T _J) <u>2</u> /	175°C			

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V dc minimum to 5.5 V dc
	maximum
Minimum high level input voltage (V _{IH})	2.0 V dc
Maximum low level input voltage (VIL)	0.7 V dc
Case operating temperature range (T _c)	-55° to +125°C

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

 $[\]underline{1}$ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.

3.3.2 Truth tables. The truth tables shall be as specified on figure 2.

3.3.3 <u>Schematic circuits.</u> The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

Test	Symbol	Con	Device	Lin	nits	Unit	
	- ,	-55°C ≤ T	≤ +125°C	types	Min	Max	
		unless other	wise specified				
High level output voltage	V _{OH1}	V _{IL} = 0.7 V V _{CC} = 4.5 V	I _{OH} = -50 µA	04	2.4		V
High level output voltage	V _{OH2}	V _{IH} = 2.0 V	I _{OH} = -400 μA	01, 02, 03	2.5		V
Low level output voltage at BI/RBO	V _{OL1}		I _{OL} = 1.6 mA	04		0.40	V
Low level output voltage	V _{OL2}		$I_{OL} = 1/2$	01, 02, 03, 04		0.40	V
Input clamp voltage	V _{IC}		l _{IN} = -18 mA, T _C = +25°C	All		-1.5	V
Maximum collector cut-off current	I _{CEX}		V _{OH} = 15 V	04		250	μΑ
Low level input current	I_{IL1}	$V_{CC} = 5.5 V$		01	001	38	mA
at A, B, C, D, G		$V_{IN} = 0.4 V$		02, 03	03	40	
				04	10	34	
Low level input current at LT and RBI	I _{IL2}			04	11	36	mA
Low level input current at BI/RBO	I _{IL3}			04	36	-1.37	mA
High level input current	I _{IH1}		V _{IN} = 2.7 V	All		20	μA
	I _{IH2}		V _{IN} = 7.0 V	All		100	μA
Short circuit output	los		$V_{IH} = 5.5 V 2/$	01.03	-6	-130	mA
current	.00		$V_{\parallel} = GND$	02	-15	-100	
Supply current	Icc			01		10	mA
				02		11	
				03, 04		13	
Propagation delay time, low to high level	t _{PLH1}	$V_{CC} = 5.0 V$ $C_{L} = 50 \text{ pF} \pm 10\%$	$R_{L} = 665\Omega \pm 10\%$	04	5	158	ns
Propagation delay time, low to high level through 2 levels of logic (binary select to output)	t _{PLH2}		$R_L = 2.0 \text{ k}\Omega \pm 10\%$	01, 02	5	38	ns
Propagation delay time, low to high level through 2 levels of logic (A, B, C, or D to output)	t _{PLH2}			03	5	45	ns
Propagation delay time, low to high level	t _{PLH3}			01	5	35	ns
through 2 levels of logic (enable to output)				02	5	44	

TABLE I. Electrical performance characteristics.

See footnotes at end of table.

Test	Symbol	Conditions		Device	Lir	nits	Unit
	,	-55°C ≤ T	c ≤ +125°C	types	Min	Max	
		unless other					
Propagation delay time,	t _{PLH4}	$V_{CC} = 5.0 V$	R _L = 2.0 kΩ ±10%	01	5	48	ns
low to high level		$C_1 = 50 \text{ pF} \pm 10\%$					
through 3 levels of logic				02	5	51	
(binary select to output)				-	-	-	
Propagation delay time,	t _{PI H4}			03	5	53	ns
low to high level							
through 3 levels of logic							
(A, B, C, or D to output)							
Propagation delay time,	t _{PLH5}			01	5	47	ns
low to high level							
through 3 levels of logic							
(enable to output)							
Propagation delay time,	t _{PHL1}		$R_{L} = 665\Omega \pm 10\%$	04	5	158	ns
high to low level							
Propagation delay time,	t _{PHL2}		$R_L = 2.0 \text{ k}\Omega \pm 10\%$	01	5	69	ns
high to low level							
through 2 levels of logic				02	5	57	
(binary select to output)							
Propagation delay time,	t _{PHL2}			03	5	45	ns
high to low level							
through 2 levels of logic							
(A, B, C, or D to output)							
Propagation delay time,	t _{PHL3}			01, 02	5	56	ns
high to low level							
through 2 levels of logic							
(enable to output)							
Propagation delay time,	t _{PHL4}			01	5	81	ns
high to low level							
through 3 levels of logic				02	5	65	
(binary select to output)							
Propagation delay time,	t _{PHL4}			03	5	53	ns
high to low level							
through 3 levels of logic							
(A, B, C, or D to output)							
Propagation delay time,	t _{PHL5}			01	5	65	ns
high to low level							
through 3 levels of logic							
(enable to output)							

TABLE I. Electrical performance characteristics - Continued.

 $\underline{1}$ / I_{OL} = 4 mA for device types 01, 02, and 03; I_{OL} = 12 mA for device type 04.

 $\underline{2}$ / Not more than one output should be shorted at one time.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9,	1*, 2, 3, 7, 9,
	10, 11	10, 11
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
	9, 10, 11	9, 10, 11
Group C end-point electrical parameters	1, 2, 3, 7, 8	1, 2, 3
	9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 <u>Group A inspection</u>. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified and as follows:

4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Pin r	number	Pin number Pin number		Pin number			
	Device	e type 01	Device	e type 02	Device type 03		Device	type 04
				Ca	ises			
Pin number	X, 2	E, F	X, 2	E, F	X, 2	E, F	X, 2	E, F
1	NC	А	NC	1G	NC	0	NC	В
2	А	В	1G	1A	0	1	В	С
3	В	С	1A	1B	1	2	С	LT
4	С	G2A	1B	1Y0	2	3	LT	BI/RBO
5	G2A	G2B	1Y0	1Y1	3	4	BI/RBO	RBI
6	NC	G1	NC	1Y2	NC	5	NC	D
7	G2B	Y7	1Y1	1Y3	4	6	RBI	А
8	G1	GND	1Y2	GND	5	GND	D	GND
9	Y7	Y6	1Y3	2Y3	6	7	А	е
10	GND	Y5	GND	2Y2	GND	8	GND	d
11	NC	Y4	NC	2Y1	NC	9	NC	С
12	Y6	Y3	2Y3	2Y0	7	D	е	b
13	Y5	Y2	2Y2	2B	8	С	d	а
14	Y4	Y1	2Y1	2A	9	В	С	g
15	Y3	Y0	2Y0	2G	D	А	b	f
16	NC	V _{CC}	NC	V _{CC}	NC	V _{cc}	NC	V _{cc}
17	Y2		2B		С		а	
18	Y1		2A		В		g	
19	Y0		2G		А		f	
20	V _{CC}		V _{cc}		V _{CC}		V _{CC}	

FIGURE 1. Terminal connections.

	INPUTS							OUTI	PUTS			
ENA	ABLE		SELECT	Γ								
G1	G2*	С	В	А	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	н	н	н	н	н	н	н	н	L

*G2 = G2A + G2B

H = high level, L = low level, X = irrelevant.

DEVICE TYPE 02

IN	PUTS			OUT	PUTS	
ENABLE	SEL	ECT				
G	В	А	Y0	Y1	Y2	Y3
Н	Х	Х	Н	Н	н	Н
L	L	L	L	Н	Н	Н
L	L	Н	H	L	Н	Н
L	Н	L	H	Н	L	Н
L	Н	Н	H	Н	Н	L

H = high level, L = low level, X = irrelevant.

FIGURE 2. Truth tables.

DEVICE TYPE 03

	INF	UTS						OU	TPUTS	5			
D	С	В	Α	0	1	2	3	4	5	6	7	8	9
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	Н	L	Н	H	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	Н	н	L	Н	Н	Н	Н	Н
L	Н	L	Н	Н	Н	Н	н	Н	L	Н	Н	Н	Н
L	Н	Н	L	Н	Н	Н	н	Н	Н	L	Н	Н	Н
L	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	L	Н	Н
Н	L	L	L	Н	Н	Н	н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	L
Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

FIGURE 2. Truth tables - Continued.

DEVICE TYPE 04

DECIMAL OR			11	NPUT	S							OUTP	UTS			
FUNCTION	LT	RBI	D	С	В	А	BI/RB0 a b c d e f g NOTE									
0	Н	Н	L	L	L	L	Н		L	L	L	L	L	L	Н	1
1	Н	Х	L	L	L	Н	Н		Н	L	L	Н	Н	Н	Н	1
2	Н	Х	L	L	Н	L	Н		L	L	Н	L	L	Н	L	
3	Н	Х	L	L	Н	Н	Н		L	L	L	L	Н	Н	L	
4	Н	Х	L	Н	L	L	Н		Н	L	L	Н	Н	L	L	
5	Н	Х	L	Н	L	Н	Н		L	Н	L	L	Н	L	L	
6	Н	Х	L	Н	Н	L	Н		Н	Н	L	L	L	L	L	
7	Н	Х	L	Н	Н	Н	Н		L	L	L	Н	Н	Н	Н	
8	Н	Х	Н	L	L	L	Н		L	L	L	L	L	L	L	
9	Н	Х	Н	L	L	Н	Н		L	L	L	Н	Н	L	L	
10	Н	Х	Н	L	Н	L	Н		Н	Н	Н	L	L	Н	L	
11	Н	Х	Н	L	Н	Н	Н		Н	Н	L	L	Н	Н	L	
12	Н	Х	Н	Н	L	L	Н		Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	Н	Н		L	Н	Н	L	Н	L	L	
14	Н	Х	Н	Н	Н	L	Н		Н	Н	Н	L	L	L	L	
15	Н	Х	Н	Н	Н	Н	Н		Н	Н	Н	Н	Н	Н	Н	
BI	Х	Х	Х	Х	Х	Х	L		Н	Н	Н	Н	Н	Н	Н	2
RBI	Н	L	L	L	L	L	L		Н	Н	Н	Н	Н	Н	Н	3
LT	L	Х	Х	Х	Х	Х	Н		L	L	L	L	L	L	L	4

NOTES:

1. BI/RBO is wire-OR logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking input must be open or held at a high logic level when output functions 0 through 15 are desired and ripple-blanking input (RBI) must be held open or at a high logic level during the decimal 0 input, X = input may be high or low.

2. When a low logic level is applied to the blanking input (forced condition) all segment outputs go to a high logic level regardless of the state of any other input condition.

3. When ripple-blanking input (RBI) is at a low logic level, lamp test input is at high logic level and A = B = C = D = low logic level, all segment outputs go to a high logic level and the ripple-blanking output goes to a low logic level (response condition).

4. When blanking input/ripple-blanking output is open or held at a high logic level, and a low logic level is applied to lamp-test input, all segment outputs go to a low logic level.

FIGURE 2. Truth tables - Continued.

NOTES:

- 1. The pulse generator has the following characteristics: $t_1 \le 15$ ns, $t_0 \le 6$ ns, PRR ≤ 1 MHz.
- 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 2).
- 4. All diodes are 1N3064, or equivalent.

FIGURE 3. Switching times for device types 01, 02, and 03.

NOTES:

- 1. Pulse generator characteristics: PRR \leq 1.0 MHz, t₁ \leq 15 ns, t₀ \leq 6 ns, and Z_{out} \approx 50 Ω .
- 2. C_L includes probe and jig capacitance.
- 3. Input output waveform combination in accordance with the truth tables (see figure 2).

FIGURE 4. Switching test circuit and waveforms for device type 04.

TABLE III.	Group A inspection for device type 01.	1/
		-

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	its	Unit
			Test no	Δ	в	C	G2A	G2B	G1	Y7	GND	Y6	Y5	Y4	Y3	¥2	¥1	YO	Vaa		Min	Max	
1	Vous	3006	1	~			02/1	020	0.7 V		GND	10	10	14	10	12		4 mA	4.5 V	Y0	2.5	Max	V
Tc = 25°C	• 0H2	"	2						"		"						4 mA		"	Y1	"		
			3						"							- 4 mA				Y2			
			4						"						- 4 mA					Y3			
			5						"		"			4 mA						Y4			
			6						"		"		4 mA							Y5			
			7						"		"	4 mA								Y6			
			8						"	4 mA	"									Y7			
	V _{OL2}	3007	9	0.7 V	0.7 V	0.7 V	0.7 V	0.7 V	2.0 V									4 mA	"	Y0		0.4	"
	011		10	2.0 V	0.7 V				"								4 mA		"	Y1		"	"
		"	11	0.7 V	2.0 V		"									4 mA			"	Y2		"	"
			12	2.0 V	2.0 V		"		-						4 mA				"	Y3		"	"
			13	0.7 V	0.7 V	2.0 V	"		-					4 mA					"	Y4		"	"
		"	14	2.0 V	0.7 V		-	-	-		-		4 mA						"	Y5		"	"
		"	15	0.7 V	2.0 V	-	-		=			4 mA							"	Y6		"	"
			16	2.0 V	2.0 V	-		-	-	4 mA										Y7		"	"
	VIC		17	-18 mA							"									A		-1.5	
			18		-18 mA						"									В			
			19			-18 mA					"									С			
			20				-18 mA				"									G2A			"
			21					-18 mA												G2B			
			22						-18 mA											G1			
	I _{IL1}	3009	23	0.4 V	0.414														5.5 V	A	2/	2/	2/
			24		0.4 V	0.414														В			
			25			0.4 V	0.4.1/													C			
			20				0.4 V	0.4.1/												GZA		"	
			27					0.4 V	0.4.1/											G2B		"	
		2010	20	271/					0.4 V											GI		20	
	UH1	3010	29	2.7 V	271/															A		20	μA
			30		2.7 V	271/														ь С			
			32			2.7 V	271/				"									G2A			
			33			-	2.1 V	271/												G2B			
			34			1		2.1 V	27V		"									G1			
		3010	35	7.0 V					2.7 V		"									A		100	
	1112	"	36		7.0 V	1					"									В		"	"
			37			7.0 V					"									С			
			38				7.0 V				"									G2A			
		"	39					7.0 V			"								"	G2B		"	
			40						7.0 V		"									G1			
	los	3011	41				5.5 V	5.5 V										GND	"	Y0	-15	-100	mA
			42				"				"						GND			Y1		"	
			43				"	"			"					GND			"	Y2	"		"
			44				"	"			"				GND					Y3			
			45				"	"			"			GND						Y4			
		"	46				"	"			"		GND							Y5			
			47				"	"			"	GND								Y6			"
		"	48				"	"		GND	"									Y7			"
	Icc	3005	49				GND	GND	5.5 V		"									V _{CC}		10.0	"
2	Same te	sts, termina	al conditions	and limits	s as subgr	oup 1, exc	ept T _C = +	125°C and	VIC tests	omitted.													
3	Same te	sts, termina	al conditions	and limits	s as subgr	oup 1, exc	ept T _C = -5	5°C and V	IC tests on	nitted.													

See footnotes at end of device type 01.

13

TABLE III. Group A inspection for device type 01 Continued. 1/

					<u>^</u>					-			10		4.0	4.0		45	10				
			Cases	1	2	3	4	5	6		8	9	10	11	12	13	14	15	16				
		MIL-STD-	E, F																				
Subgroup	Symbol	883	Cases 1/	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured	Lim	nits	Unit
. .	· ·	method	2, X																	terminal			
			Tost no	٨	R	C	C2A	C2B	G1	V7	GND	V6	VE	V4	V2	V2	V1	VO	V	-	Min	Max	
7.0/	Truth	2014	Test no.	A	D		GZA	GZD	GI	17	CND	10	15	14	13	12	11	10	V _{CC}		IVIIII	IVIdX	
- 1 <u>3</u> /	table	3014	50	A	A	A	A .	A	A "	 	GND					-			5.0 V				
$IC = 25^{\circ}C$	table		51	в	A																		
	tests		52		В																		
		"	53		"	В	"	"	"	"					-			-			<u>3</u> /		
		"	54	"	"	"	В	A	"	"	"					-	"		"				
		"	55	"	"	"	A	В	"	"	"			"		-			"				
		"	56	"	"	"	A	В	В	"	"			"									
		"	57	"	-	"	В	A	"	"	"			"	-	-		-					
		"	58	-	"	"	"	В	"	"	"			"			"		"				
		"	59		"	"	"	"	A	"	"			"				L	"				
			60	А	"		"	"	"	"	"			"			L	Н					
		"	61	В	A	"	"	"	"	"	"	"		"		L	Н		"				
		"	62	Α	А	"	"	"	"	"	"			"	L	Н	"	-	"				
		"	63	В	В	Α	"	"	"	"	"	"		L	Н		"		"				
			64	Α	В	"	"	"	"	"	"		L	Н									
			65	В	A	"	"	"	"	"	"	L	H	"		-							
			66	Α	А	"	"	"	"	L	"	Н	Н	"		-							
8 3/	Truth	3014	67																				
<u> </u>	table	0011	thru	Same tes	ts as subr	nroun 7 ex	(cent To -	+125°C															
	test		83	Cume teo	10 00 0005	group 1, on		1120 0															
	Truth	3014	84																				
	table	0014	thru	Same tes	te ae subr		(cent To -	-55°C															
	tost		100	Came tes	13 23 3000	group 7, ex	copt 10 -	-55 0															
9	t	3003	101 & 102	IN	GND	GND	GND	GND	50V		GND							OUT	50V	A to V0	5	25/46	ne
Tc - 25°C	tpune	Fig 3	103 & 102	"	50V	GND	"	"	"		"					OUT		001	"	A to Y2	"	"	"
10 - 25 0	PHL2	1 ig. 5 "	105 & 104	"		E O V		"	"		"			OUT		001				A to V4			
			103 & 100		GND E O V	5.0 V					"	OUT		001						A to Y6			
			107 & 108	CND	5.0 V	5.0 V						001						OUT		R to Y0			
			109 & 110	GND	"	CND		"	"		"						OUT	001		B to Y1			
			111 & 112	5.0 V	"	GND								OUT			001			B to Y1			
			113 & 114	GND		5.0 V							0.UT	001						B to Y4			
			115 & 116	5.0 V		5.0 V							001					OUT		B to Y5			
			117 & 118	GND	GND	IN											OUT	001					
			119 & 120	5.0 V	GND												001			C to Y1			
			121 & 122	GND	5.0 V											001				C to Y2			
1			123 & 124	5.0 V	5.0 V			- <u> </u>		L					001			0.117		C to Y3			
1	t _{PLH3}	3003	125 & 126	GND	GND	GND	IN			ļ				L			01.1	001		G2A to Y0		23/37	
1	t _{PHL3}	Fig. 3	127 & 128	5.0 V	GND					L							OUT			G2A to Y1			
			129 & 130	GND	5.0 V		"	"	"		"					OUT				G2A to Y2		"	
		"	131 & 132	5.0 V	5.0 V				"		"				OUT					G2A to Y3		"	"
		"	133 & 134	GND	GND	5.0 V	"		"					OUT					"	G2A to Y4		"	"
1		"	135 & 136	5.0 V	GND	"	"	"	"		"		OUT						"	G2A to Y5		"	
1		"	137 & 138	GND	5.0 V		"	"	"		"	OUT							"	G2A to Y6		"	
1		"	139 & 140	5.0 V	5.0 V				"	OUT	"								"	G2A to Y7		"	"
1		"	141 & 142	GND	GND	GND	GND	IN			"							OUT	"	G2B to Y0	"	"	"
1		"	143 & 144	5.0 V	GND		"	"	"		"						OUT		"	G2B to Y1		"	
1		"	145 & 146	GND	5.0 V		"	"	"		"					OUT			"	G2B to Y2		"	
1		"	147 & 148	5.0 V	5.0 V				"		"				OUT				"	G2B to Y3		"	"
1		"	149 & 150	GND	GND	5.0 V			"		"			OUT					"	G2B to Y4		"	"
		"	151 & 152	5.0 V	GND		"	"	"		"		OUT						"	G2B to Y5		"	"
1		"	153 & 154	GND	5.0 V	"	"	"	"		"	OUT							"	G2B to Y6		"	"
1		"	155 & 156	5 0 V	5 0 V				"	OUT	"									G2B to Y7		"	"

See footnotes at end of device types 01.

14

TABLE III. Group A inspection for device type 01 - Continued. 1/

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	А	В	С	G2A	G2B	G1	Y7	GND	Y6	Y5	Y4	Y3	Y2	Y1	Y0	V _{CC}		Min	Max	
9	t _{PLH4}	3003	157 &158	IN	GND	GND	GND	GND	5.0 V		GND						OUT		5.0 V	A to Y1	5	32/54	ns
Tc = 25°C	t _{PHL4}	Fig. 3	159 & 160	"	5.0 V	GND		"	"						OUT				"	A to Y3	"		
			161 & 162	"	GND	5.0 V			"		"		OUT						"	A to Y5			
			163 & 164	"	5.0 V	5.0 V				OUT	"								"	A to Y7		"	
			165 & 166	GND	IN	GND										OUT			"	B to Y2	"		
			167 & 168	5.0 V	"	GND	-	"	"		=				OUT				"	B to Y3	=		-
			169 & 170	GND	-	5.0 V			=		=	OUT								B to Y6	=	-	-
			171 & 172	5.0 V	-	5.0 V			=	OUT	=									B to Y7	=	"	-
			173 & 174	GND	GND	IN			-		=			OUT					"	C to Y4	=		-
			175 & 176	5.0 V	GND				"		-		OUT							C to Y5	-		-
			177 & 178	GND	5.0 V				"			OUT								C to Y6			-
			179 & 180	5.0 V	5.0 V					OUT										C to Y7		"	
	t _{PLH5}	3003	181 & 182	GND	GND	GND			IN									OUT		G1 to Y0		31/43	
	t _{PHL5}	Fig. 3	183 & 184	5.0 V	GND		"	"	"		-						OUT		"	G1 to Y1	-	"	
		"	185 & 186	GND	5.0 V		"	"	"		-					OUT			"	G1 to Y2	-	"	
			187 & 188	5.0 V	5.0 V		"	"	"						OUT				"	G1 to Y3	-		-
			189 & 190	GND	GND	5.0 V								OUT					"	G1 to Y4	"	"	
			191 & 192	5.0 V	GND		"	"	"				OUT						"	G1 to Y5	-	"	-
		"	193 & 194	GND	5.0 V		"	"	"		-	OUT							"	G1 to Y6	-	"	
		"	195 & 196	5.0 V	5.0 V		"	"	"	OUT	"								"	G1 to Y7			
10	Same te t _{PI H5} = 5	ests and terr 5 to 47 ns; t	minal conditio	ns as for ns.	subgroup	9, except	T _C = +125	°C and for	following I	imits: t _{PLH2}	= 5 to 38	ns; t _{PHL2} =	= 5 to 69 ns	; t _{PLH3} = 5 1	to 35 ns; t _{PF}	_{IL3} = 5 to 5	6 ns; t _{PLH4}	= 5 to 48 ns	s; t _{PHL4} = 5	5 to 81 ns;			
11	Same te	ests, termina	al conditions a	and limits	as for sub	group 10,	except T _C	= -55°C.															

1/ Pins not designated are high \ge 2.0 V; low \le 0.7 V; or open. Case X and 2 pins not referenced are NC. 2/ I_{IL1} limits are as follows:

		Min/Ma	x limits (mA) for	circuits	
I _{IL1}	A	В	C, E, F	D	G
	001/150	030/300	12/36	10/34	15/38
	except				
	11/35				
	for tests				
	26. 27. 28				

 $\underline{3}/~$ A = 2.5 V and B = 0.4 V; H \geq 1.5 V; L \leq 1.5 V.

TABLE III.	Group A inspection for device type 02.	1/

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	iits	Unit
			Test no.	1G	1A	1B	1Y0	1Y1	1Y2	1Y3	GND	2Y3	2Y2	2Y1	2Y0	2B	2A	2G	Vcc		Min	Max	1
1	Vous	3006	1	2.0 V						4 mA	GND								4.5 V	1Y3	2.5		V
$T_{C} = 25^{\circ}C$	- 0H2	"	2	"					4 mA		"								"	1Y2	"		
			3					- 4 mA												1Y1			
			4				- 4 mA													1Y0			
			5								"	4 mA						2.0 V		2Y3			
			6								"		4 mA							2Y2			
			7								"			- 4 mA						2Y1	"		
			8								"				- 4 mA					2Y0	"		
	Vola	3007	9	0.7 V	2.0 V	2.0 V				4 mA	"									1Y3		0.4	
	012	"	10	"	0.7 V	2.0 V			4 mA										"	1Y2		"	
			11	"	2.0 V	0.7 V		4 mA											"	1Y1		"	
		"	12	"	0.7 V	0.7 V	4 mA												"	1Y0		"	
		"	13								"	4 mA				2.0 V	2.0 V	0.7 V	"	2Y3		"	
		"	14								"		4 mA			2.0 V	0.7 V		"	2Y2		"	
		"	15								"			4 mA		0.7 V	2.0 V		"	2Y1		"	
		"	16								"				4 mA	0.7 V	0.7 V		"	2Y0		"	
	VIC		17	-18 mA							"									1G		-1.5	
			18		-18 mA						"								"	1A			
			19			-18 mA					"								"	1B			
			20								"					-18 mA			"	2B		"	
			21								"						-18 mA		"	2A		"	
			22								"							-18 mA	"	2G			
		3009	23	0.4 V															5.5 V	1G	2/	2/	mA
		"	24		0.4 V															1A			
		"	25			0.4 V														1B			
			26								"					0.4 V				2B			
			27								"						0.4 V			2A			
		"	28								"							0.4 V		2G		"	"
	I _{IH1}	3010	29	2.7 V							"									1G		20	μΑ
		"	30		2.7 V														-	1A		-	
		"	31			2.7 V													-	1B		-	
			32								"					2.7 V				2B			
			33								"						2.7 V			2A			
			34								"							2.7 V	"	2G		"	"
	I _{IH2}	3010	35	7.0 V							"									1G		100	"
		"	36		7.0 V						"									1A			
		"	37			7.0 V					"									1B			
			38													7.0 V				2B		"	
			39														7.0 V			2A			
			40								"							7.0 V	"	2G		"	
	los	3011	41	5.5 V			GND												"	1Y0	-15	-100	mA
			42					GND	0.115											1Y1			
			43			L			GND	0.115				L						1Y2			
			44		L					GND		ONE		L				= = \/		1Y3			
			45									GND	01/2	L				5.5 V		2Y3			
			46										GND							212			
			4/											GND						211			
	\vdash	" 34																					
	Icc	3005	49	GND	5.5 V	5.5 V								I		5.5 V	5.5 V	GND		V _{CC}		11.0	
2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																						
3	Same te	ests, termina	al conditions	s and limits	s as subgro	oup 1, exc	ept I _C = -5	י5°C and ∿	IC tests on	nitted.													

See footnotes at end of device type 02.

TABLE III.	Group A inspection for device type 02 - Continued.	1/
		_

			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
		MIL-STD-	E, F																				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	1G	1A	1B	1Y0	1Y1	1Y2	1Y3	GND	2Y3	3Y2	2Y1	2Y0	2B	2A	2G	Vcc		Min	Max	
7 3/	Truth	3014	50	A	Α	Α	Н	н	н	Н	GND	Н	Н	н	Н	А	Α	A	5.0 V				
$Tc = 25^{\circ}C$	table		51		В	Α			"	"	"	"		"		Α	В		"				
	tests		52		Α	В			"					"	"	В	Α		"				
			53	"	В	"	"	"	"	"	"			"	"		В				3/		
			54	В	В	"	L	"	"	"	"	"		"	L	"	В	В	"		-		
			55	"	Α	"	Н	L	"	"	"	"		L	Н	"	Α		"				
			56	"	В	Α	-	Н	L	"	"	"	L	Н		Α	В	-	"				
			57	"	Α	Α	-	Н	Н	L	"	L	Н	Н		Α	Α	-	"				
8 <u>3</u> /	Truth	3014	58																				
_	table		thru	Same tes	sts as subo	group 7, ex	cept T _C =	+125°C															
	test		65																				
	Truth	3014	66																				
	table		thru	Same tes	sts as subo	group 7, ex	cept T _c =	-55°C															
	test	India OFA OFA OFA OFA OFA Same tests as subjour 7, except T _c = -55°C test 73 Same tests as subjour 7, except T _c = -55°C Same tests as subjour 7, except T _c = -55°C tPLL3 70 74 & 75 IN GND OUT GND GND Same tests as subjour 7, except T _c = -55°C tPLL3 76 & 77 " 5.0 V GND OUT " GND Same tests as subjour 7, except T _c = -55°C tPLL3 76 & 77 " 5.0 V GND OUT " " " 78 & 79 " GND S.0 V OUT " " " " 8 & 8.81 " 5.0 V S.0 V OUT " OUT " " " tPLH2 " 82 & 83 GND IN GND OUT " OUT " I Same tests as subjourness as subjournes as subjourness as subjourness as subjournes as sub																					
9	t _{PLH3}	ble Ist thru 73 Same tests as subgroup 7, except T _c = -55°C Ist 74 & 75 IN GND OUT GND 5.0 V 1G to 1Y0 5 29/37 ns IH3 Fig. 3 76 & 77 S.0 V GND OUT " 1G to 1Y1 " " " H3 78 & 79 " GND S.0 V OUT " 0 " 1G to 1Y1 " " * 80 & 81 " 5.0 V S.0 V OUT " 0 " 1G to 1Y2 " " * 80 & 81 " 5.0 V S.0 V OUT " 0 " 1G to 1Y2 " "																					
Tc = 25°C	t _{PHL3}	Fig. 3	76 & 77	"	5.0 V	GND		OUT			"								"	1G to 1Y1		"	"
			78 & 79	"	GND	5.0 V			OUT		"								"	1G to 1Y2		"	"
			80 & 81	"	5.0 V	5.0 V				OUT	"								"	1G to 1Y3		"	"
	t _{PLH2}	"	82 & 83	GND	IN	GND	OUT				"								"	1A to 1Y0	-	25/38	"
	t _{PHL2}	"	84 & 85	-	IN	5.0 V			OUT		"								"	1A to 1Y2	-	"	
		Total Total <th< td=""></th<>																					
	" 80 & 81 " 5.0 V 5.0 V OUT " Image: Constraint of the state of the sta																						
	Image: Problem T8 & 79 " GND 5.0 V OUT " Image: Problem " 1G to 1Y2 " " " " Image: Problem 80 & 81 " 5.0 V 5.0 V OUT " Image: Problem " 1G to 1Y2 "																						
	t _{PHL3}		92 & 93								"			OUT		GND	5.0 V			2G to 2Y1			
			94 & 95								"		OUT			5.0 V	GND		"	2G to 2Y2		"	
		"	96 & 97								"	OUT				5.0 V	5.0 V		"	2G to 2Y3		"	"
	t _{PLH3}	"	98 & 99								"				OUT	GND	IN	GND	"	2A to 2Y0		25/38	
	t _{PHL3}		100 & 101								"		OUT			5.0 V	IN			2A to 2Y2		-	
		"	102 & 103								"				OUT	IN	GND	-	"	2B to 2Y0			
		"	104 & 105								"			OUT		IN	5.0 V	-	"	2B to 2Y1			
	t _{PLH4}		106 & 107	GND	IN	GND		OUT						ļ		ļ				1A to 1Y1		34/43	
	t _{PHL4}		108 & 109		IN	5.0 V				OUT				ļ		ļ				1A to 1Y3		<u>↓ "</u>	
			110 & 111	"	GND	IN			OUT											1B to 1Y2		+	
			112 & 113	"	5.0 V	IN				OUT				0.UT		0115		0115		1B to 1Y3		+	
1			114 & 115											OUT		GND	IN	GND		2A to 2Y1			
			116 & 117									OUT				5.0 V	IN			2A to 2Y3		+	
			118 & 119										OUT			IN	GND			2B to 2Y2		+	
- 10	-	"	120 & 121		I					L	"	OUT			L	IN	5.0 V	"		2B to 2Y3			"
10	Same te	ests and ter	minal conditi	ions as for	r subgroup	9, except	$T_{c} = +125$	°C and for	r following	limits: t _{PLH}	₂ = 5 to 38	ns; t _{PHL2}	= 5 to 57 ns	s; t _{PLH3} = 5	to 44 ns; t _P	_{HL3} = 5 to \$	56 ns; t _{PLH4}	= 5 to 51 n	s; t _{PHL4} = :	5 to 65 ns.			
11	Same te	ests, termin	al conditions	and limits	s as for sub	baroup 10.	except T _c	- = -55°C															

 $\underline{1}/$ Pins not designated are high \geq 2.0 V; low \leq 0.7 V; or open. Case X and 2 pins not referenced are NC. $\underline{2}/$ I_{IL1} limits are as follows:

		Min/Max limits	s (mA) for circuit	S
I _{IL1}	A, C, E, F	В	D	G
	012/36	03/300	10/34	15/38

 $\underline{3}$ / H ≥ 1.5 V; L ≤ 1.5 V; A = 2.5 V; B = 0.4 V.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	its	Unit
			Test no	0	1	2	3	4	5	6	GND	7	8	۹	D	C	В	Δ	Vaa		Min	Max	
1	Voue	3006	1	- 4 mA		-		-	Ŭ	0	GND		0		20V	20V	20V	20V	4.5 V	0	2.5	Max	V
Tc = 25°C	• 0H2	"	2		- 4 mA						"				2.0 .		"	2.0 1	"	1	"		
			3			- 4 mA														2			
			4				- 4 mA													- 3			
			5					4 mA			"									4			
			6						4 mA		"									5			
			7							4 mA	"					"				6			
			8								"	4 mA								7			
			9								"		4 mA							8			
			10								"			4 mA						9			
	Vola	3007	11	4 mA							"				07V	07V	07V	07V	"	0		04	"
	. 012		12		4 mA						"					"	0.7 V	2.0 V		1		"	
			13			4 mA					"						2.0 V	0.7 V		2			
			14				4 mA				"						2.0 V	2 0 V		- 3			
			15					4 mA								20V	0.7 V	0.7 V	"	4		"	"
			16					4 110 (4 mA		"					2.0 V	0.7 V	20V		5			
			17							4 mA	"						2 0 V	0.7 V		6			
			18									4 mA					2.0 V	2 0 V		7			
			19								"	4 110 3	4 mA		20V	07V	0.7.V	0.7.V	"	8		"	"
			20								"		4 110 (4 mA	2.0 V	0.7 V	0.7 V	20V	"	9		"	"
	Vic		20								"			-+ 110 (2.0 1	0.1 V	0.7 V	-18 mA		A		-15	
	• 10		22								"						-18 mA	101121		B		"	
			23								"					-18 mA	10 11/1			C C			
			24								"				-18 mA	10 1121				D			
	lu a	3010	25								"				10 110 1			27V	55V	A		20	ΠА
	'IH1	"	26														271/	2.7 V	"	B		"	μ <u>γ</u>
			20								"					271/	2.7 V			C			
			28								"				27V	2.1 V				D			
		3010	29								"				2.7 V			7 0 V		A		100	
	1H2	"	30								"						7 0 V	1.0 V		B		"	
			31								"					7 O V	1.0 1			C			
			32								"				7 0 V	1.0 1				D			
	lu 2/	3009	33								"							04V		A	2/	2/	mA
	•1E1 🔤	"	34														04V	0.1.1		B		-	"
			35								"					04V	0.4 V			C C	"		
			36												04V					D	"		
	los 3/	3011	37	GND											5.5 V	55V	55V	55V	"	0	-15	-100	
	. <u>03 o</u> /	"	38	0.15	GND										"	"	"	"		1	"	"	
			39		OND	GND					"					"	"			2	"		
			40				GND										"			3	"		
			41				0.10	GND									"			4			
			42					0.10	GND								"			5			
			43						0.10	GND	"									6			
			44									GND					"			7	"		
			45								"	0	GND			"				8		"	"
'			46								"		0.10	GND		"	"			9			"
	lcc	3005	47								"			0.10	GND	GND	GND	GND	"	Vcc		13	"
2	Same te	sts termin:	al conditions	and limits	as subor	oup 1 exc	ept $T_{c} = +$	125°C and	V _{io} tests (omitted					0.15	0.15	0.15	0.15		•00			
3	Same te	ests, termina	al conditions	and limits	as subar	oup 1, exc	ept $T_c = -5$	5°C and V	/ _{ic} tests on	nitted.													

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. 1/

		MIL-STD-	Cases F F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subaroup	Symbol	992		2	2	4	5	7	9	0	10	12	12	14	15	17	19	10	20	Moseurod	Lim	vite	Linit
Subgroup	Symbol	method	2, X	2	5	4	5	'	0	5	10	12	15	14	15	17	10	15	20	terminal	LIII	111.5	Offic
			Test no.	0	1	2	3	4	5	6	GND	7	8	9	D	С	В	А	V _{CC}		Min	Max	
7 4/	Truth	3014	48	L	Н	Н	Н	Н	Н	Н	GND	Н	Н	Н	В	В	В	В	5.0 V				
Tc = 25°C	table		49	Н	L	Н	"		"	-	"	"		"	-	"	В	A	"				
	tests		50		Н	L	"	"		-	"	"		"	-	"	А	В	"				
		"	51	"	"	Н	L	"	"		"			"	-	"	А	А	"		4/		
			52	"	"	"	Н	L	"	-	"			"	-	Α	В	В	"				
		"	53	"	"	"	"	Н	L	"	"	"		"		"	В	Α	"				
		"	54	"	"	"	"	"	Н	L	"	"		"	-	"	А	В	"				
		"	55	"	"	"	"	"	"	Н	"	L		"	-	"	А	А	"				
		"	56	"	"	"	"	"	"	-	"	Н	L	"	A	В	В	В	"				
		"	57	"	"	"	"	"	"	-	"	"	Н	L	-		В	A	"				
		"	58	"	"	"	"	"	"		"	"	"	Н		"	Α	В	"				
		"	59	"	"	"	"	"	"		"	"	"	"		"	A	A	"				
		"	60	"	"	"	"	"	"		"	"	"	"		A	В	В	"				
		"	61	"	"	"	"	"	"		"	"	"	"		"	В	A	"				
		"	62	"	"	"	"	"	"	"	"	"	"	"		"	Α	В	"				
		"	63	"	"	"	"	"			"		"	"			А	A					
8 <u>4</u> /	Truth	3014	64																				
	table		thru	Same tes	sts as subg	group 7, e	cept T _C =	+125°C															
	test		79																				
	Truth	3014	80																				
	table		thru	Same tes	sts as subg	group 7, e	cept T _C =	-55°C															
	test		95											-									
9	t _{PLH4}	3003	96 & 97			OUT					GND				GND	GND	IN	GND	5.0 V	B to 2	5	35	ns
Tc = 25°C	t _{PHL4}	Fig. 3	98 & 99		OUT						"					GND	GND	IN	"	A to 1		"	
		"	100 & 101								"	OUT				5.0 V	5.0 V	IN	"	A to 7		"	
	t _{PLH2}	"	102 &103		OUT						"					GND	IN	5.0 V	"	B to 1		30	
	t _{PHL2}	"	104 & 105					OUT			"					5.0 V	IN	GND	"	B to 4		"	
			106 & 107	OUT												GND	GND	IN	"	A to 0		"	
		"	108 & 109			OUT					"					IN	5.0 V	GND	"	C to 2		"	
			110 & 111				OUT										5.0 V	5.0 V	"	C to 3		"	
			112 & 113										OUT	0.117	5.0 V		GND	GND		C to 8			
			114 & 115					0.117						OUT	5.0 V			5.0 V		C to 9			
	t _{PLH4}		116 & 117	L	L			001	OUT					L	GND	<u> </u>	 -	GND		C to 4		35	
	t _{PHL4}		118 & 119	L	L			L	001	OUT							5 0 1/	5.0 V		C to 5			
			120 & 121							001		OUT					5.0 V	GND		C to 6			
			122 & 123				0.117					001						5.0 V		C to 7			
	t _{PLH2}		124 & 125	L	L		001	0.17							IN	GND		5.0 V		D to 3		30	
	t _{PHL2}		126 & 127					001	OUT					l		5.0 V	GND	GND		D to 4			
			128 & 129	L	L			L	001	OUT							GND	5.0 V		D to 5			
			130 & 131							001		OUT		l			5.0 V	GND		D to 6			
			132 & 133									001	OUT	l			5.0 V	5.0 V		D to /			
	t _{PLH4}		134 & 135	L	L			L					001			GND	GND	GND		D to 8		35	
10	CPHL4		130 & 137				L	00		l'			E 1- 4E			GND	GND	5.0 V		D to 9		35	
10	Same te	ests and ter	minal condit	ions as for	subgroup	9, except	$I_{\rm C} = +125$	orci and fo	rollowing	IIMIts: t _{PLH}	₂ = 5 to 45	ns; t _{PHL2}	= 5 t0 45 ns	s; τ _{PLH4} = 5	to 53 ns; t _P	_{HL4} = 5 to 5	os ns.						
11	Same te	ests, termin	al conditions	s and limits	s as for sub	ogroup 10	except T _c	; = -55°C															

1/ Pins not designated are high \geq 2.0 V; low \leq 0.7 V; or open. Case X and 2 pins not referenced are NC. 2/ I_{IL1} limits are as follows:

19

					Min/Max limits	s (mA) for circuit	S
I _{IL1}	А	В	С	D	E	F	G
	12/36	030/300	12/36	12/36	12/36	12/36	16/40

 $\begin{array}{ll} \underline{3}' & \mbox{For circuit } C, \mbox{ limits are: -15 to -130 mA}. \\ \underline{4}' & \mbox{H} \geq 1.5 \ \mbox{V}; \ \mbox{L} \leq 1.5 \ \mbox{V}; \ \mbox{A} = 2.5 \ \mbox{V}; \ \mbox{B} = 0.4 \ \mbox{V}. \end{array}$

TABLE III. Group A inspection for device type 04. 1/

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	its	Unit
			Test no	В	С	IT	RBO	RBI	D	А	GND	e	b	c	h	а	a	f	Voo		Min	Max	1
1	Voia	3006	1	X	X	07V	1.DO	X	X	X	GND	12 mA	ŭ		5	ŭ	9		4.5 V	e	WIIIT	0.4	V
Tc = 25°C	• 0L2	"	2	"	"	"		"	"	"	"		12 mA						"	d		"	
10 - 20 0			3	"	"	"		"	"	"	"		12	12 mA						c c			
			1	"	"	"		"	"	"	"			12 11/5	12 m∆					b			
			5	"	"	"		"	"	"	"				12 11/4	12 mA				a			
			6	"	"	"		"	"	"	"					12 110 (12 mA			a			
			7	"	"	"		"	"	"	"						12 1103	12 mA		f			
	Void	3006	8	07V	07V	20V	1.6 mA	07V	07V	07V								12 1103	"	RBO		"	"
	LOFY	0000	9	"	"	2.0 V	1.0 110 ("	"	"	"	15 V								e		250	ΠΑ
	·CEX		10	"	"	"		"	"	"	"		15 V							d			"
			11	"	"	"		"	"	"	"		10 1	15 V						ů C			
			12	"	"	"		"	"	"	"			10 1	15 V					b			
			13	"	"	"		"	"	"	"				10 1	15 V				a			
			14	"	"	"		"	"	"	"						15 V			a			
			15	"	"	"		"	"	"	"							15 V		f			
	Volut	3007	16	07V	07V	20V	-50 µA	20V	07V	07V	"									RBO	24		V
	Vic	0001	17	-18 mA	0.1 1	2.0 1	00 μ/ (2.0 1	0.1 1	0.1 1	"									B		-1.5	
	• 10		18	10 110 1	-18 mA						"									C C		"	
			19			-18 mA					"									IT			
			20			101121		-18 mA			"									RBI			
			21					10 110 1	-18 mA		"									D			
			22							-18 mA	"									A			
	lu 1	3009	23	0.4 V	5.5 V	5.5 V		5.5 V	5.5 V	5.5 V	"								5.5 V	B	10	34	mA
	-121	"	24	5.5 V	0.4 V	"		"	5.5 V	"	"								"	C		"	
		"	25	"	5.5 V	"		"	0.4 V		"								"	D		"	
		"	26	"	"	"		"	5.5 V	0.4 V	"								"	А		"	
	112	3009	27	"		0.4 V		"	"	5.5 V	"								"	LT	2/	2/	
		"	28	"	"	5.5 V		0.4 V		"	"									RBI			"
	I _{II 3}	3009	29	"	"	5.5 V	0.4 V	5.5 V			"								"	RBO		"	"
	I _{IH1}	3010	30	2.7 V	GND	GND		GND	GND	GND	"								"	В		20	μA
		"	31	GND	2.7 V	GND		"			"								"	С		"	
		"	32	"	GND	2.7 V		"	"	-	"								"	LT		"	
			33	"	-	GND		2.7 V	"	-	"									RBI			
			34	"	-	"		GND	2.7 V	-	"									D			
			35	"	-	"		"	GND	2.7 V	"									A			
	I _{IH2}	3010	36	7.0 V	-	"		"	"	GND	"								"	В		100	
		"	37	GND	7.0 V			"			"									С			
			38	"	GND	7.0 V		"		-	"								"	LT			
			39	"	-	GND		7.0 V	"	-	"								"	RBI		"	
1		"	40	"	"	"		GND	7.0 V	"	"								"	D			"
1		"	41	"	"	"		GND	GND	7.0 V	"								"	A		"	"
	Icc	3005	42	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	"								"	Vcc		13	mA
2	Same te	ests, termina	al conditions	and limits	as subgro	oup 1, exc	ept T _c = +'	125°C and	VIC tests	omitted.													
3	Same te	ests, termina	al conditions	and limits	as subgro	oup 1, exc	ept T _c = -5	5°C and V	IC tests or	nitted.													

See footnotes at end of device type 04.

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Limits		Unit
			Test no.	В	С	LT	RBO	RBI	D	A	GND	е	d	С	b	а	g	f	V _{CC}		Min	Max	
7	Truth	3014	43	В	В	A	A	A	В	В	GND	L	L	L	L	L	Н	L	5.0 V				
Tc = 25°C	table		44	В	"	"	"	Х		A	"	Н	H	L		Н	Н	Н					
<u>3</u> /, <u>4</u> /	tests		45	A						В		L	L	н		L	L						
			46	A						A		H	<u> </u>	L		L					<u>5</u> /		
			47	В	A					В			<u>н</u>			н		L					
			48	B						A					H								
			49 50	Δ	"	"	"	"	"	Δ	"	L H	<u> </u>	"			н	н					
			51	B	В	"	"	"	Δ	B	"	1	1	"	"	"	1						
		"	52	B	"	"	"	"	"	A	"	H	H	"	"			L					
		"	53	А	"	"	"	"	"	В	"	L	L	н	Н	Н		Н	"				
		"	54	A	"	"	"	"	"	Α	"	Н	L	L	Н			Н					
		"	55	В	А	-	"	"	"	В	-	"	Н	Н	L			L					
		"	56	В	"	-		"		А	-	"	L		Н	L		-	-				
		"	57	A	"	-	"	"	"	В	-	L	L	"	"	Н	"	-					
		"	58	A	"	"	"	"	"	A	"	Н	H	"	"		Н	Н					
			59	X	X	X	B	"	X	X	-												
			60	В	В	5.0 V	L	В	В	В													
0	Truth	2014	61	X	X	В	A	X	X	X	÷	L	L	L	L	L	L	L					
3/ 1/	table	3014	0∠ thru	Same tos	te ae cubr		cont T	±125°C															
<u>5</u> , <u>4</u>	test		80	Came tes	13 43 3455		copt 1 _C =	+125 0															
	Truth	3014	81																				
	table		thru	Same tes	ts as subc	roup 7, ex	cept T _C =	-55°C															
	test		99																				
9	t _{PLH1}	3003	100 & 101	GND	GND	5.0 V		5.0 V	GND	IN	GND					OUT			5.0 V	A to a	5	105	ns
Tc = 25°C	t _{PHL1}	Fig. 4	102 & 103	GND	5.0 V				5.0 V										"	A to a		"	"
		"	104 & 105	5.0 V	"	-		"	GND	-	-									A to a			"
			106 & 107	GND	"	"				"					OUT					A to b			"
			108 & 109	5.0 V										OUT	001					A to b			
			110 & 111	5.0 V	GND					"			OUT	001						A to c			
			112 & 113	GND	5.0 V			"	"	"	"		"							Atod			
			116 & 117	50V	5.0 V					"	"									A to d			
		"	118 & 119	GND	GND			"	"	"	"	OUT								Atoe		"	"
		"	120 & 121	5.0 V	"	"		"	"	"	"	OUT								A to e			"
		"	122 & 123	GND	"	"		"	"	"	-							OUT		A to f			"
		"	124 & 125	5.0 V	5.0 V	"		"	5.0 V									OUT		A to f		"	"
		"	126 & 127	5.0 V	5.0 V	-		"	5.0 V	-	-						OUT			A to g		"	
			128 & 129	GND	GND	"	OUT	GND	GND	"										A to RBO			"
			130 & 131	IN				5.0 V	5.0 V	GND										B to a			
			132 & 133		5 0 V				GND	5.0 V					OUT	001				Btoa			"
			134 & 135	"	5.0 V GND	"		"	5 0 V	GND					001					Btob		"	"
			138 & 139	"	50V	"		"	GND	50V									"	Btob		"	"
		"	140 & 141	"	GND	"		"	5.0 V	5.0 V					"				"	Btob		"	"
1		"	142 & 143	"	"	"		"	GND	GND	"			OUT						B to c	"		
		"	144 & 145	"	"	"		"	"	5.0 V	"		OUT			l l				B to d	"		
		"	146 & 147	"	5.0 V	"		"	"	GND	"		OUT							B to d	"		
1		"	148 & 149	"	"	"		"		GND		OUT								B to e	"		
1			150 & 151	"	"	"				5.0 V	"					ļ		OUT		B to f	"		
1			152 & 153		GND					GND				<u> </u>						B to f			
			154 & 155						5.0 V											B to f			
			159 8 15/	CND	IN				GND							OUT	001						
			160 & 161	50V	"	"		"	GND	"	"				OUT	001				Ctoh	"		
			162 & 163	GND	"	"		"	5.0 V	5.0 V				OUT	001					Ctoc	"	"	"
I				00					0.0.	0.0 .									1	0.00			

TABLE III. Group A inspection for device type 04 - Continued. 1/

See footnotes at end of device type 04.

21

TABLE III. Group A inspection for device type 04 - Continued. 1/

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Cases <u>1</u> / 2, X	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	В	С	LT	RBO	RBI	D	Α	GND	е	d	С	b	а	g	f	V _{cc}	1	Min	Max	
9	t _{PLH1}	3003	164 & 165	GND	IN	5.0 V		5.0 V	GND	GND	GND		OUT						5.0 V	C to d	5	105	ns
Tc = 25°C	t _{PHL1}	Fig. 4	166 & 167	"	"			"	GND	"	"	OUT								C to e			
			168 & 169	5.0 V	"	"		"	5.0 V	"	"							OUT		C to f			
			170 & 171	GND	GND	IN			GND	5.0 V	"							OUT	"	C to f	"	"	"
			172 &173	5.0 V	5.0 V			"	IN	5.0 V						OUT			"	D to a			"
			174 & 175	GND	5.0 V	-		"	"	GND				OUT						D to c		"	"
			176 & 177		GND	"		"	"	"	"						OUT			D to g			
			178 & 179		"	"		GND	GND	"	"					OUT				LT to a			
			180 & 181	"	"		OUT	GND	"	"	"									LT to RBO			
			182 & 183	"	=	5.0 V	IN	5.0 V	"	=	"					OUT				RBO to a	"	-	
			184 & 185		-			IN	"	-	"					OUT				RBI to a			
			186 & 187	"	"		OUT	"	"	"	"									RBI to RBO			
10	Same t	ests and ter	minal condit	ions as for	subgroup	9, except	$T_{\rm C} = +125$	°C and for	following	limits: t _{PLH}	1 = 5 to 15	8 ns; t _{PHL}	1 = 5 to 158	ns.									
11	Same t	ests, termina	al conditions	and limits	as for sul	paroup 10.	except T _c	= -55°C															

 $1\!/$ Pins not designated are high \geq 2.0 V; low \leq 0.7 V; or open. Case X and 2 pins not referenced are NC. $2\!/$ Test limits shall be as follows:

Test	Min/	Max limits (mA) fo	or circuits
	Α	E	G
I _{IL2}	12/36	11/35	12/36
I _{IL3}	36/-1.08	36/1.37	36/-1.08

 $\begin{array}{ll} \underline{3}/ \ X = \mbox{Input may be high level or low level.} \\ \underline{4}/ \ A \mbox{ pullup resistor of } 665\Omega \ to \ 2 \ k\Omega \ shall \ be \ connected \ between \ each \ output \ and \ V_{cc.} \\ \underline{5}/ \ \ H \geq 1.5 \ \ V; \ L \leq 1.5 \ \ V; \ A = 2.5 \ \ V; \ B = 0.4 \ \ V. \end{array}$

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - j. Requirements for "JAN" marking.

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential.
V _{IN}	Voltage level at an input terminal.
V _{IC}	Input clamp voltage.
RBI	Ripple blanking input.
RBO	Ripple blanking output.
BI	Blanking input.

6.6 <u>Logistic support</u>. Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming shall not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	54LS138
02	54LS139
03	54LS42
04	54LS47

6.8 <u>Manufacturers' designation</u>. Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

	А	В	С	D	E	F	G
Device	Texas Instru-	Signetics	Raytheon	Fairchild	Motorola	Advanced Micro	National
type	ments Inc.	Corporation	Company	Semiconduct	Inc	Devices	Semiconductor
				or			Corp
01	Х	Х	Х	Х	Х	Х	Х
02	Х	Х	Х	Х	Х	Х	Х
03	Х	Х		Х	Х		Х
04	X				Х		X

TABLE IV. Manufacturer's designator

6.9 <u>Changes from previous issue</u>. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Preparing activity: DLA - CC

(Project 5962-1955)

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC

Review activities: Army - HD, MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99