INCH-POUND

MIL-M-38510/314C

14 July 2003

SUPERSEDING

MIL-M-38510/314B

23 May 1978

FSC 5962

#### MILITARY SPECIFICATION

# MICROCIRCUITS, DIGITAL, LOW-POWER SCHOTTKY, TTL, MONOSTABLE MULTIVIBRATORS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

#### 1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, monostable multivibrator microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
  - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
  - 1.2.1 Device types. The device types should be as follows:

| Device type | <u>Circuit</u>                                                    |
|-------------|-------------------------------------------------------------------|
| 01          | Dual monostable multivibrator, retriggerable, with clear          |
| 02          | Dual monostable multivibrator, Schmitt trigger inputs, with clear |
| 03          | Single monostable multivibrator, retriggerable, with clear        |

- 1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator | <u>Terminals</u> | Package style                |
|----------------|------------------------|------------------|------------------------------|
| Α              | GDFP5-F14 or CDFP6-F14 | 14               | Flat pack                    |
| В              | GDFP4-14               | 14               | Flat pack                    |
| С              | GDIP1-T14 or CDIP2-T14 | 14               | Dual-in-line                 |
| D              | GDFP1-F14 or CDFP2-F14 | 14               | Flat pack                    |
| E              | GDIP1-T16 or CDIP2-T16 | 16               | Dual-in-line                 |
| F              | GDFP2-F16 or CDFP3-F16 | 16               | Flat pack                    |
| 2              | CQCC1-N20              | 20               | Square leadless chip carrier |

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A

### 1.3 Absolute maximum ratings.

| Supply voltage rangeInput voltage range                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage temperature range                                     | -65° to +150°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Maximum power dissipation per flip-flop, (P <sub>D</sub> ) 1/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Device type 01                                                | 110 mW dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Device type 02                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Device type 03                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead temperature (soldering, 10 seconds)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Thermal resistance, junction to case ( $\theta_{JC}$ ):       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cases A, B, C, D, E, F, and 2                                 | (See MII -STD-1835)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Junction temperature (T <sub>J</sub> ) <u>2</u> /             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Suriction temperature (13) 2/                                 | 173 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.4 Recommended operating conditions.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Supply voltage (V <sub>CC</sub> )                             | 4.5 V dc minimum to 5.5 V dc maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Minimum high level input voltage (V <sub>IH</sub> )           | 2.0 V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Maximum low level input voltage (V <sub>IL</sub> )            | 0.7 V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Case operating temperature range (T <sub>C</sub> )            | -55° to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum pulse width                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input pulse rise/fall time, device type 02                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Schmitt, B input                                              | 1 V/s minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Logic, A input                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clear-inactive-state setup time                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Device type 02                                                | 15 ns minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| External timing resistance, Rext                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Device type 01, 03                                            | 5 kΩ minimum. 180 kΩ maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Device type 02                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| External timing capacitance, Cext                             | The state of the s |
| Device type 01, 03                                            | No restriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Device type 02                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Output duty cycle, device type 02                             | 1,000 με παχιπαπ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $R_T = 2 k\Omega$                                             | 50% duty cycle maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $T_T = 70 \text{ k}\Omega$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wiring capacitance, Rext/Cext terminal                        | 30 70 daty Cycle maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Device type 01, 03 (referenced to GND)                        | 50 pF maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Device type 01, 00 (releichted to Giv)                        | ου ρι πιαλιπιαπι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>1/</sup> Must withstand the added P<sub>D</sub> due to short-circuit test (e.g., I<sub>OS</sub>).
2/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

#### 2. APPLICABLE DOCUMENTS

#### 2.1 Government documents.

2.1.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

#### **SPECIFICATION**

#### DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

#### **STANDARDS**

#### DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

#### 3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Terminal connections and logic diagrams.</u> The terminal connections and logic diagrams shall be as specified on figure 1.
  - 3.3.2 Truth table and functional description. The truth table and functional description shall be as specified on figure 2.
- 3.3.3 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
  - 3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
  - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
  - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 10 (see MIL-PRF-38535, appendix A).

#### 4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with, MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
  - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
  - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
  - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
  - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
  - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 4, 5, and 6 shall be omitted.

TABLE I. <u>Electrical performance characteristics</u>.

| Test                                       | Symbol            | Conditions                                                      | Device | Lin  | nits | Unit |
|--------------------------------------------|-------------------|-----------------------------------------------------------------|--------|------|------|------|
|                                            |                   | -55°C ≤ T <sub>C</sub> ≤ +125°C                                 | types  | Min  | Max  |      |
|                                            |                   | unless otherwise specified                                      |        |      |      |      |
| High level output voltage                  | V <sub>OH</sub>   | $V_{CC} = 4.5 \text{ V}, V_{IL} = 0.7 \text{ V},$               | All    | 2.5  |      | V    |
|                                            |                   | $V_{IH} = 2.0 \text{ V}, I_{OH} = -400 \mu\text{A}$             |        |      |      |      |
| Low level output voltage                   | V <sub>OL</sub>   | $V_{CC} = 4.5 \text{ V}, V_{IL} = 0.7 \text{ V},$               | All    |      | 0.4  | V    |
|                                            |                   | $V_{IH} = 2.0 \text{ V}, I_{OL} = 4 \text{ mA}$                 |        |      |      |      |
| Input clamp voltage                        | V <sub>IC</sub>   | $V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$              | All    |      | -1.5 | V    |
|                                            |                   | $T_C = +25^{\circ}C$                                            |        |      |      |      |
| Low level input current                    | I <sub>IL1</sub>  | $V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$                | 01, 03 | -160 | -400 | μΑ   |
| Low level input current                    | I <sub>IL2</sub>  |                                                                 | 02     | -30  | -680 |      |
| at clear input                             |                   |                                                                 |        |      |      |      |
| Low level input current at A <sub>IN</sub> |                   |                                                                 | 02     | -30  | -400 |      |
| Low level input current B <sub>IN</sub>    |                   |                                                                 | 02     | -30  | -580 |      |
| High level input current                   | I <sub>IH1</sub>  | V <sub>CC</sub> = 5.5 V, V <sub>IN</sub> = 2.7 V                | All    |      | 20   | μΑ   |
| High level input current                   | I <sub>IH2</sub>  | V <sub>CC</sub> = 5.5 V, V <sub>IN</sub> = 5.5 V                | All    |      | 100  |      |
| Short circuit output current               | I <sub>OS</sub>   | V <sub>CC</sub> = 5.5 V, V <sub>IH</sub> = 5.5 V,               | All    | -15  | -130 | mA   |
| Supply current (quiescent)                 | I <sub>CC1</sub>  | $V_{IL} = GND$ $V_{CC} = 5.5 \text{ V}$                         | 02     |      | 11   | mA   |
|                                            |                   |                                                                 |        |      |      |      |
| Supply current (quiescent or               | I <sub>CC2</sub>  |                                                                 | 01     |      | 20   |      |
| triggered)                                 |                   |                                                                 | 03     |      | 11   |      |
| Supply current (triggered)                 | I <sub>CC3</sub>  |                                                                 | 02     |      | 27   |      |
| Propagation delay time low to              | t <sub>PLH1</sub> | V <sub>CC</sub> = 5.0 V                                         | 01, 03 | 5    | 57   | ns   |
| high level from input A                    |                   | $C_L = 50 \text{ pF } \pm 5\%, R_L = 2 \text{ k}\Omega \pm 5\%$ | 02     | 5    | 113  |      |
| Propagation delay time low to              | t <sub>PLH2</sub> | Cext = <u>1</u> /                                               | 01, 03 | 5    | 74   |      |
| high level from input B                    |                   | Rext = <u>1</u> /                                               | 02     | 5    | 90   |      |
| Propagation delay time low to              | t <sub>PLH3</sub> |                                                                 | 01, 03 | 5    | 75   |      |
| high level from clear                      |                   |                                                                 | 02     | 5    | 105  |      |
| Propagation delay time                     | t <sub>PHL1</sub> |                                                                 | 01, 03 | 5    | 75   |      |
| high to low level from input A             |                   |                                                                 | 02     | 5    | 128  |      |

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

| Test                            | Symbol              | Conditions                                                 | Device | Lin | nits | Unit |
|---------------------------------|---------------------|------------------------------------------------------------|--------|-----|------|------|
|                                 |                     | -55°C ≤ T <sub>C</sub> ≤ +125°C unless otherwise specified | types  | Min | Max  |      |
| Propagation delay time          | t <sub>PHL2</sub>   | V <sub>CC</sub> = 5.0 V                                    | 01, 03 | 5   | 92   | ns   |
| high to low level from input B  |                     | $C_L = 50 \text{ pF} \pm 10\%$                             | 02     | 5   | 105  |      |
|                                 |                     | $R_L = 2k\Omega \pm 5\%$                                   |        |     |      |      |
| Propagation delay time          | t <sub>PHL3</sub>   | Cext = <u>1</u> /                                          | 01, 03 | 5   | 48   | ns   |
| high to low level from clear    |                     | Rext = <u>1</u> /                                          | 02     | 5   | 90   |      |
| Minimum pulse width of Q output | t <sub>P(MIN)</sub> | $V_{CC} = 5.0 \text{ V}$ $C_L = 50 \text{ pF} \pm 10\%$    | 01, 03 |     | 308  | ns   |
| Width of Q output pulse         | t <sub>P1</sub>     | $R_L = 2k\Omega \pm 5\%$                                   | 02     | 20  | 91   |      |
|                                 | t <sub>P2</sub>     | Cext = <u>2</u> / ±10%                                     | 02     | 70  | 195  |      |
|                                 | t <sub>P3</sub>     | Rext = <u>2</u> / ±10%                                     | 02     | 600 | 850  |      |
|                                 | t <sub>P4</sub>     |                                                            | 01, 03 | 3.0 | 6.25 | μs   |
|                                 | t <sub>P5</sub>     |                                                            | 02     | 5.5 | 8.5  | ms   |

<sup>1/</sup> For propagation delay tests, see table III for Cext and Rext values.

 $\underline{2}$ /  $t_{P(MIN)}$  test, Cext = open and Rext = 5 k $\Omega$ .

 $t_{P1}$  test, Cext = open and Rext = 2 k $\Omega$ .

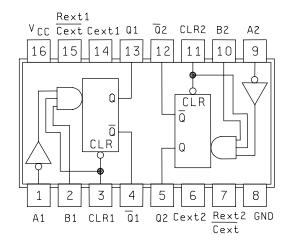
 $t_{P2}$  test, Cext = 80 pF and Rext = 2 k $\Omega$ .

 $t_{P3}$  test, Cext = 100 pF and Rext = 10  $k\Omega.$ 

 $t_{P4}$  test, Cext = 1,000 pF and Rext = 10 k $\Omega$ .

 $t_{P5}$  test, Cext =  $1\mu F$  and Rext =  $10 \text{ k}\Omega$ .

TABLE II. Electrical test requirements.


|                                                         | Subgroups                   | (see table III)     |
|---------------------------------------------------------|-----------------------------|---------------------|
| MIL-PRF-38535                                           | Class S                     | Class B             |
| test requirements                                       | devices                     | devices             |
| Interim electrical parameters                           | 1                           | 1                   |
| Final electrical test parameters                        | 1*, 2, 3, 7, 9,<br>10, 11   | 1*, 2, 3, 7, 9      |
| Group A test requirements                               | 1, 2, 3, 7, 8,<br>9, 10, 11 | 1, 2, 3, 7, 8,<br>9 |
| Group B electrical test parameters                      | 1, 2, 3                     | N/A                 |
| when using method 5005 QCI option                       | 9, 10, 11                   |                     |
| Group C end-point electrical parameters                 | 1, 2, 3,                    | 1, 2, 3             |
|                                                         | 9, 10, 11                   |                     |
| Additional electrical subgroups for group C inspections | N/A                         | 10, 11              |
| Group D end-point electrical parameters                 | 1, 2, 3                     | 1, 2, 3             |

<sup>\*</sup>PDA applies to subgroup 1.

- 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
  - a. End-point electrical parameters shall be as specified in table II herein.
  - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
  - c. Subgroups 3 and 4 shall be added to group C inspection parameters for class B devices and shall consist of the tests, conditions, and limits specified for subgroups 10 and 11 of group A.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
  - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

DEVICE TYPE 01

CASES E AND F



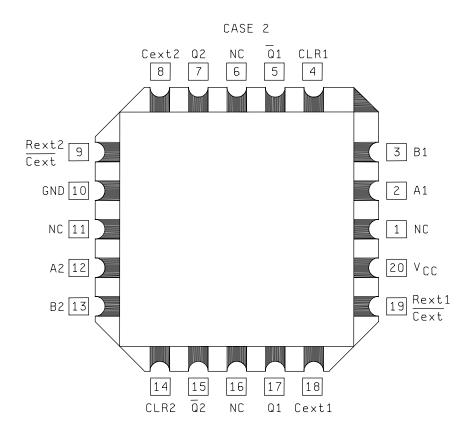
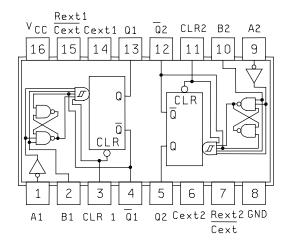




FIGURE 1. Terminal connections.

DEVICE TYPE 02

CASES E AND F



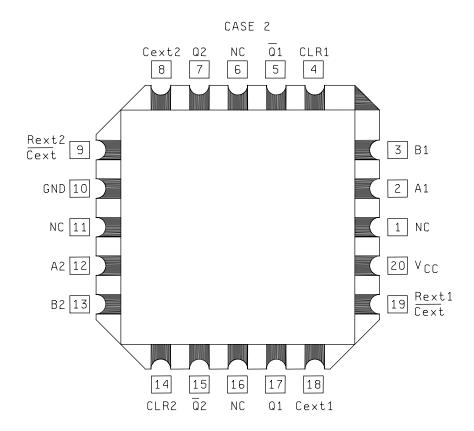
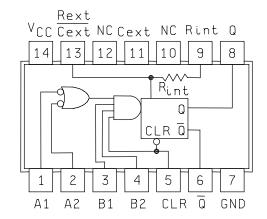




FIGURE 1. <u>Terminal connections</u> - Continued.

# DEVICE TYPE 03 CASES A,B,C,AND D



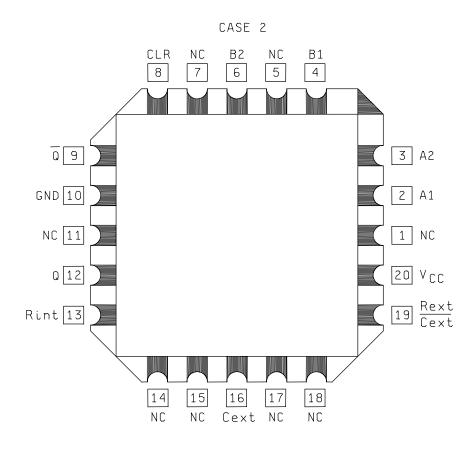


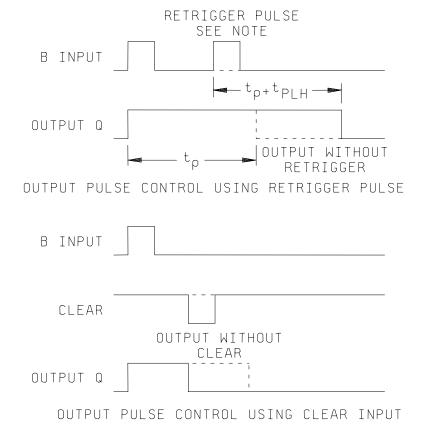

FIGURE 1. Terminal connections - Continued.

#### Device type 01 and 02

| l l   | NPUTS        |          | OUTPUTS |                |  |  |  |  |
|-------|--------------|----------|---------|----------------|--|--|--|--|
| CLEAR | Α            | В        | Q       | $\overline{Q}$ |  |  |  |  |
| L     | Х            | Χ        | L       | Н              |  |  |  |  |
| Х     | Н            | Χ        | L       | Н              |  |  |  |  |
| Х     | Х            | L        | L       | Н              |  |  |  |  |
| Н     | L            | <b>↑</b> | П       | Ц              |  |  |  |  |
| Н     | $\downarrow$ | Н        | П       |                |  |  |  |  |
| 1     | L            | Н        | П       |                |  |  |  |  |

#### Device type 03

|            |              | INPUTS        |            |          | OUT | PUTS           |
|------------|--------------|---------------|------------|----------|-----|----------------|
| CLEAR      | A1           | A2            | B1         | B2       | Q   | $\overline{Q}$ |
| L          | Χ            | Χ             | Х          | Χ        | L   | Н              |
| Х          | Н            | Н             | Χ          | X        | L   | Н              |
| X          | Х            | Х             | L          | Х        | L   | Н              |
| X          | Х            | Х             | Χ          | L        | L   | Н              |
| Н          | L            | X             | $\uparrow$ | Н        | Г   |                |
| Н          | L            | Х             | Н          | <b>↑</b> |     |                |
| Н          | X            | L             | 1          | Н        |     |                |
| Н          | Х            | L             | Н          | <b>↑</b> | Г   | П              |
| Н          | Η            | $\rightarrow$ | Η          | Η        | Г   | Э              |
| Н          | $\downarrow$ | $\downarrow$  | Н          | Н        | Г   | П              |
| Н          | $\downarrow$ | Н             | Н          | Н        | Г   |                |
| <b>↑</b>   | L            | X             | Н          | Н        | Г   | П              |
| $\uparrow$ | Χ            | L             | Н          | Н        | Γ   |                |


#### NOTES:

- 1. H = high level (steady state), L = low level (steady state),  $\uparrow = transition from low to high level,$ 
  - $\downarrow$  = transition from high to low level,  $\square$  = one high level pulse,  $\square$  = one low level pulse, X = irrelevant (any input, including transitions).
- 2. To use the internal timing resistor of device type 03 connect Rint to  $V_{\text{CC}}$ .
- 3. An external timing capacitor may be connected between Cext and Rext/Cext (positive).
- 4. For accurate repeatable pulse widths, connect an external resistor between Rext/Cext and V<sub>CC</sub> with Rint open circuited.
- 5. To obtain variable pulse widths, connect external variable resistance between Rint or Rext/Cext and Vcc.

FIGURE 2. Truth table and functional description.

#### Device types 01 and 03

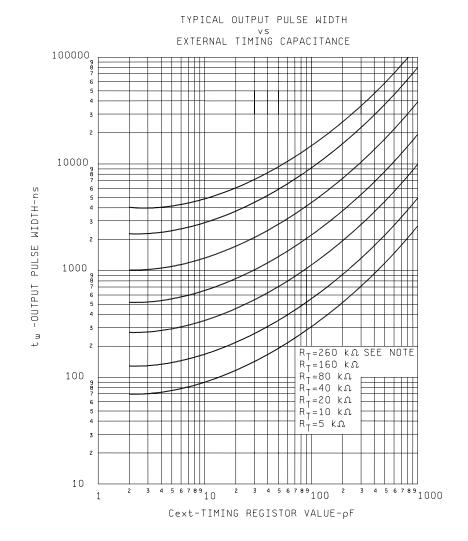
This multivibrator features d-c triggering from gated low level active (A inputs), and high level active (B inputs). Output pulse width is a function of external capacitor and resistor values. Retriggering of input before output terminates, extends output pulse width. Overriding clear feature permits termination of output pulse width at a predetermined time independent of R and C timing components.



#### NOTE:

Retrigger pulse must not start before 0.22 Cext (in picofarads) nanoseconds after previous trigger pulse.

FIGURE 2. Truth table and functional description - Continued.


#### Device type 01 and 03 (Continued)

The output pulse width (tp) is a function of the external capacitor and resistor values.

For output pulse widths when Cext > 1,000 pF, tp is defined as :

tp  $\approx 0.4~R_T~Cext~$  Where  $R_T$  is in  $k\Omega,~Cext$  is in pF, and tp is in ns.

For output pulse widths when Cext < 1,000 pF, tp is defined as:



#### NOTE:

This value of resistance exceeds the maximum recommended for use over the full temperature range

FIGURE 2. <u>Truth table and functional description</u> - Continued.

#### Device type 02

This multivibrator features a negative transition triggered input and a positive transition triggered input, either of which can be used as an inhibit input. Pulse triggering occurs at a particular voltage level, not directly related to transition time of input pulse. Once fired, the outputs are independent of further transitions of A and B inputs, and are a function of the timing components. Output pulses can be terminated by the overriding clear, independent of R and C timing components.

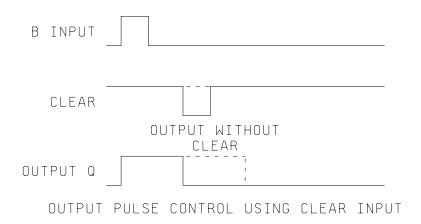



FIGURE 2. <u>Truth table and functional description</u> - Continued.

### Device type 02 (Continued)

The output pulse width (tp) is a function of the external capacitor and resistor values.

The output pulse width is defined as :

tp  $\approx 0.7~R_T$  Cext Where  $R_T$  is in  $k\Omega$ , Cext is in pF, and tp is in ns.

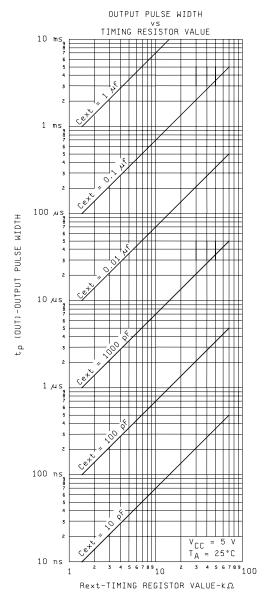
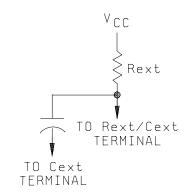




FIGURE 2. <u>Truth table and functional description</u> - Continued.

## DEVICE TYPES 01,02 AND 03



#### TIMING COMPONENT CONNECTIONS

FIGURE 2. <u>Truth table and functional description</u> - Continued.

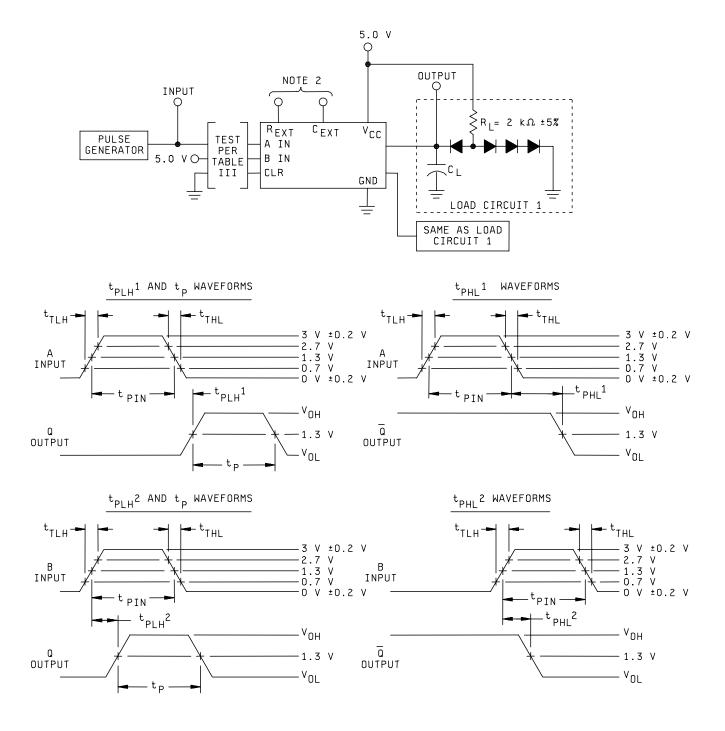
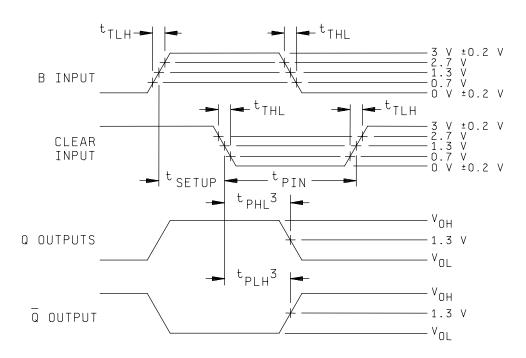




FIGURE 3. Switching test circuit and waveforms for device types 01 and 03.

$$\mathrm{t_{PLH}^{3}}$$
 and  $\mathrm{t_{PHL}^{3}}$  waveforms



#### NOTES:

- 1. Pulse generator has the following characteristics: PRR  $\leq$  1.0 MHz,  $t_{PIN} \geq$  40 ns,  $t_{TLH} \leq$  6 ns,  $t_{TLH} \leq$  15 ns, and  $Z_{OUT} = 50\Omega$ .
- 2. See table III notes for Rext, Cext values.
- 3.  $C_L = 50 \text{ pF} \pm 10\%$  including scope probe, wiring and stray capacitance, without package in test fixture.
- 4. All diodes are 1N3064, or 1N916 or equivalent.
- 5. Load circuit on a given output is only required where the specified test in table III indicates "OUT" on that output.
- 6.  $t_{SETUP}$  (max) shall be  $\leq 50\%$  of the typical output pulse width for the actual Cext used (see figure 2).

FIGURE 3. Switching test circuit and waveforms for device types 01 and 03 - Continued.

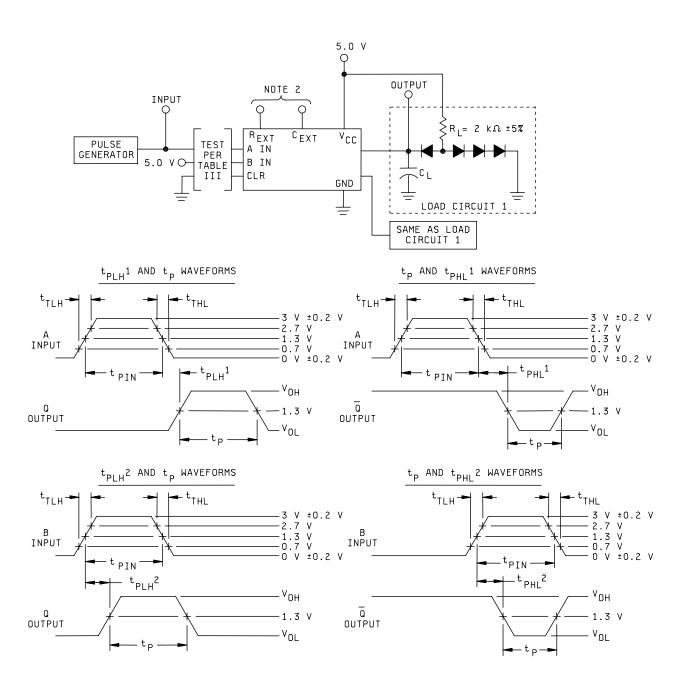
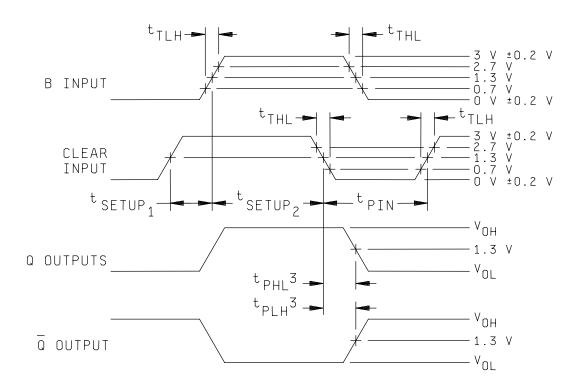




FIGURE 4. Switching test circuit and waveforms for device type 02.



#### NOTES:

- 1. Pulse generator has the following characteristics: PRR  $\leq$  1.0 MHz,  $t_{PIN} \geq$  40 ns,  $t_{TLH} \leq$  6 ns,  $t_{TLH} \leq$  15 ns,  $t_{SETUP1}$  (CLEAR INACTIVE) = 15 ns and  $Z_{OUT} = 50\Omega$ .
- 2. See table III notes for Rext, Cext values.
- 3. C<sub>L</sub> = 50 pF ±10% including scope probe, wiring and stray capacitance, without package in test fixture.
- 4. All diodes are 1N3064, or 1N916 or equivalent.
- 5. Load circuit on a given output is only required where the specified test in table III indicates "OUT" on that output.
- 6.  $t_{SETUP}$  (max) shall be  $\leq 50\%$  of the typical output pulse width for the actual Cext used (see figure 2).

FIGURE 4. Switching test circuit and waveforms for device type 02 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high  $\geq$  2.0 V, low  $\leq$  0.7 V, or open).

|        |                  | MIL-                | Cases<br>E, F  | 1          | 2              | 3              | 4        | 5    | 6     | 7     | 8   | 9      | 10             | 11             | 12      | 13       | 14    | 15    | 16              |                      |      |      |      |
|--------|------------------|---------------------|----------------|------------|----------------|----------------|----------|------|-------|-------|-----|--------|----------------|----------------|---------|----------|-------|-------|-----------------|----------------------|------|------|------|
| bgroup | Symbol           | STD-883<br>method - | Case<br>2      | 2          | 3              | 4              | 5        | 7    | 8     | 9     | 10  | 12     | 13             | 14             | 15      | 17       | 18    | 19    | 20              | Measured<br>terminal | Lim  | nits | Unit |
|        |                  |                     | Test no.       | A1         | B1             | CLR1           | _<br>Q1  | Q2   | Cext2 | Rext2 | GND | A2     | B2             | CLR2           | _<br>Q2 | Q1       | Cext1 | Rext1 | V <sub>CC</sub> |                      | Min  | Max  |      |
| 1      | V <sub>OH</sub>  | 3006                | 1              | 2.0 V      | 0.7 V          | 2.0 V          | 4 mA     |      |       |       | GND |        |                |                |         |          |       |       | 4.5 V           | _<br>Q1              | 2.5  |      | V    |
| = 25°C |                  | "                   | 2              | С          | 2.0 V          | 2.0 V          |          |      |       |       | "   |        |                |                |         | 4 mA     |       | GND   | "               | Q1                   | "    |      | "    |
|        |                  | "                   | 3              |            |                |                |          |      |       |       | "   | 2.0 V  | 0.7 V          | 2.0 V          | 4 mA    |          |       |       |                 | _<br>Q2              | "    |      |      |
|        |                  | "                   | 4              |            |                |                |          | 4 mA |       | GND   | "   | С      | 2.0 V          | 2.0 V          |         |          |       |       | "               | Q2                   | "    |      | "    |
|        | $V_{OL}$         | 3007                | <u>5</u>       | 2.0 V<br>C | 0.7 V<br>2.0 V | 2.0 V<br>2.0 V | 4 mA     |      |       |       | "   |        |                |                |         | 4 mA     |       | GND   | - "             | Q1<br>-              |      | 0.4  | -    |
|        |                  |                     |                | C          | 2.0 V          | 2.0 V          | 4 IIIA   |      |       |       |     |        |                |                |         |          |       | GND   |                 | Q1                   |      |      |      |
|        |                  | "                   | 7<br>8         |            |                |                |          | 4 mA |       | GND   | "   | 2.0 V  | 0.7 V<br>2.0 V | 2.0 V<br>2.0 V | 4 mA    |          |       |       | "               | Q2                   |      | "    | - "  |
|        |                  |                     |                |            |                |                |          |      |       | GND   |     | C      | 2.0 V          | 2.0 V          | 4 mA    |          |       |       |                 | _<br>Q2              |      |      |      |
|        | VIC              |                     | 9              | -18 mA     | 10 1           |                |          |      |       |       | "   |        |                |                |         |          |       |       | -               | A1<br>B1             |      | -1.5 | -    |
|        |                  |                     | 10<br>11       |            | -18 mA         | -18 mA         | -        |      |       |       | "   |        |                |                |         | -        |       |       |                 | CLR1                 |      | "    | -    |
|        |                  |                     | 12             |            |                |                |          |      |       |       | "   | -18 mA |                |                |         |          |       |       | "               | A2                   |      | "    | "    |
|        |                  |                     | 13             |            |                |                |          |      |       |       | "   |        | -18 mA         | 40 4           |         |          |       |       | "               | B2<br>CLR2           |      | -    | -    |
|        | I <sub>IL1</sub> | 3009                | 14<br>15       | 0.4 V      |                |                |          |      |       |       | "   |        |                | -18 mA         |         |          |       |       | 5.5 V           | A1                   | -160 | -400 | μА   |
|        | See              | "                   | 16             |            | 0.4 V          |                |          |      |       |       |     |        |                |                |         |          |       |       | "               | B1                   |      | "    | "    |
|        | note K           |                     | 17             |            |                | 0.4 V          |          |      |       |       | "   | 0.41/  |                |                |         |          |       |       | "               | CLR1                 |      | "    |      |
|        |                  | "                   | 18<br>19       |            |                |                |          |      |       |       |     | 0.4 V  | 0.4 V          |                |         |          |       |       | "               | A2<br>B2             | -    | "    | -    |
|        |                  | "                   | 20             |            |                |                |          |      |       |       | "   |        | 0.4 1          | 0.4 V          |         |          |       |       | "               | CLR2                 | "    | "    |      |
|        | I <sub>IH1</sub> | 3010                | 21             | 2.7 V      |                |                |          |      |       |       |     |        |                |                |         |          |       |       | "               | A1                   |      | 20   | "    |
|        |                  | "                   | 22<br>23       |            | 2.7 V          | 2.7 V          |          |      |       |       |     |        |                |                |         |          |       |       | "               | B1<br>CLR1           |      | "    | - "  |
|        |                  | "                   | 24             |            |                | ,              |          |      |       |       | "   | 2.7 V  |                |                |         |          |       |       | "               | A2                   |      | "    |      |
|        |                  | "                   | 25             |            |                |                |          |      |       |       | -   |        | 2.7 V          | 0.7.1/         |         |          |       |       | "               | B2                   |      |      | -    |
|        | I <sub>IH2</sub> | "                   | 26<br>27       | 5.5 V      |                |                |          |      |       |       | "   |        |                | 2.7 V          |         |          |       |       |                 | CLR2<br>A1           |      | 100  | "    |
|        | ·IHZ             | "                   | 28             | 0.0 1      | 5.5 V          |                |          |      |       |       |     |        |                |                |         |          |       |       | "               | B1                   |      | "    |      |
|        |                  |                     | 29             |            |                | 5.5 V          |          |      |       |       |     | 5.5.1/ |                |                |         |          |       |       | "               | CLR1                 |      | "    |      |
|        |                  | "                   | 30<br>31       |            |                |                |          |      |       |       |     | 5.5 V  | 5.5 V          |                |         |          |       |       | "               | A2<br>B2             |      |      |      |
|        |                  | "                   | 32             |            |                |                |          |      |       |       | "   |        |                | 5.5 V          |         |          |       |       | "               | CLR2                 |      | "    | "    |
|        | Ios              | 3011                | 33 CKT<br>A, D | GND        | GND            | GND            | GND      |      |       |       | "   |        |                |                |         |          |       |       | "               | Q1                   | -15  | -100 | m/   |
|        |                  | "                   | 33 CKT<br>C    | GND        | GND            | GND            | GND      |      |       |       | "   |        |                |                |         |          |       |       | "               | _<br>Q1              | -30  | -130 |      |
|        |                  | "                   | 34 CKT         | С          | 4.5 V          | 4.5 V          |          |      |       |       | "   |        |                |                |         | GND      |       | GND   | "               | Q1                   | -15  | -100 | "    |
|        |                  | "                   | A, D<br>34 CKT | С          | 4.5 V          | 4.5 V          |          |      |       |       | "   |        |                |                |         | GND      |       | GND   | "               | Q1                   | -30  | -130 | "    |
|        |                  |                     | C<br>35 CKT    |            |                |                |          |      |       |       | "   | GND    | GND            | GND            | GND     |          |       |       |                 | _<br>Q2              | -15  | -100 |      |
|        |                  | "                   | A, D<br>35 CKT |            |                |                | <u> </u> |      |       |       | "   | GND    | GND            | GND            | GND     | <u> </u> |       |       |                 | Q2<br>-<br>Q2        | -30  | -130 |      |
|        |                  | "                   | C<br>36 CKT    |            |                |                |          | GND  |       | GND   |     | С      | 4.5 V          | 4.5 V          |         |          |       |       |                 | Q2<br>Q2             | -15  | -100 | ļ.,  |
|        |                  | ,,                  | A, D           |            |                |                |          |      |       |       |     |        |                |                |         |          |       |       |                 |                      |      |      |      |
|        |                  |                     | 36 CKT<br>C    |            |                |                |          | GND  |       | GND   |     | С      | 4.5 V          | 4.5 V          |         |          |       |       |                 | Q2                   | -30  | -130 | ·    |

MIL-M-38510/314C

See footnotes at end of this table.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high  $\ge 2.0 \text{ V}$ , low  $\le 0.7 \text{ V}$ , or open). 1/

|           |                     |                     |                                       |            |            | ren         | minai co   | naitions     | s (pins r               | iot aesig | gnated i |       | high ≥ 2 | .U V, IOV | $V \leq U.7 V$ | , or ope | n). <u>1</u> / |       |                 |                   |          |           |      |
|-----------|---------------------|---------------------|---------------------------------------|------------|------------|-------------|------------|--------------|-------------------------|-----------|----------|-------|----------|-----------|----------------|----------|----------------|-------|-----------------|-------------------|----------|-----------|------|
|           |                     | MIL-                | Cases<br>E, F                         | 1          | 2          | 3           | 4          | 5            | 6                       | 7         | 8        | 9     | 10       | 11        | 12             | 13       | 14             | 15    | 16              |                   |          |           |      |
| Subgroup  | Symbol              | STD-883<br>method - | Case<br>2                             | 2          | 3          | 4           | 5          | 7            | 8                       | 9         | 10       | 12    | 13       | 14        | 15             | 17       | 18             | 19    | 20              | Measured terminal | Lin      | nits      | Unit |
|           |                     |                     | Test no.                              | A1         | B1         | CLR1        | Q1         | Q2           | Cext2                   | Rext2     | GND      | A2    | B2       | CLR2      | _<br>Q2        | Q1       | Cext1          | Rext1 | V <sub>CC</sub> |                   | Min      | Max       |      |
| 1         | I <sub>CC2</sub>    | 3005                | 37                                    | 5.5 V      | 5.5 V      | 5.5 V       |            |              |                         |           | GND      | 5.5 V | 5.5 V    | 5.5 V     |                |          |                |       | 5.5 V           | V <sub>cc</sub>   |          | 20        | mA   |
| Tc = 25°C |                     | 3005                | 38                                    | С          | 5.5 V      | 5.5 V       |            |              |                         |           | GND      | С     | 5.5 V    | 5.5 V     |                |          |                |       | 5.5 V           | V <sub>cc</sub>   |          | 20        | mA   |
| 2         | Same te             | sts. termina        | l conditions                          | and limits | as for sub | paroup 1. e | except To: | = +125°C     | and V <sub>IC</sub> tes | ts are om | itted.   |       |          |           | •              |          |                | •     |                 |                   |          |           |      |
|           |                     |                     | I conditions                          |            |            |             |            |              |                         |           |          |       |          |           |                |          |                |       |                 |                   |          |           |      |
| 7         | Truth               | 3014                | 39                                    | Α          | Α          | В           | Н          | L            | F                       | F         | GND      | Α     | Α        | В         | Н              | L        | F              | F     | 5.0 V           | All               |          | See note: | S    |
| Tc = 25°C | table               |                     | 40                                    | Α          | В          |             |            | "            |                         | "         | "        | Α     | В        | "         |                |          |                |       |                 | outputs           |          | A, B, D,  |      |
|           | tests               |                     | 41                                    | В          | Α          | "           | "          | "            |                         |           |          | В     | Α        | "         |                |          |                |       |                 | "                 |          | E and F   |      |
|           | 100.0               | "                   | 42                                    | "          | "          | Α           | 1          | Н            |                         | "         | "        | "     |          | Α         | 1              | Н        |                | "     |                 | "                 |          | "         |      |
|           |                     | "                   | 43                                    | "          | "          | В           | H          | L L          |                         | "         | "        |       |          | В         | H              | Ë        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 44                                    | "          | В          | В           | "          | -            | "                       | "         | "        |       | В        | В         |                | -        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 45                                    | "          | В          | A           | "          | "            | "                       | "         | "        |       | В        | A         |                |          |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 46                                    | "          | Ā          | A           |            | Н            |                         | "         | "        |       | A        | A         | 1              | Н        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 47                                    | "          | "          | В           | H          | i i          |                         | "         | "        |       | "        | В         | H              | i i      |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 48                                    | Α          | "          | В           | "          | -            | "                       | "         | "        | Α     |          | В         |                | -        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 49                                    | A          | "          | A           | "          | "            | "                       | "         | "        | A     |          | A         |                |          |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 50                                    | В          | "          | A           | 1          | Н            |                         | "         | "        | В     |          | A         |                | Н        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 51                                    | В          | В          | В           | H          | <del>'</del> |                         |           |          | В     | В        | В         | H              | i        |                |       | "               | "                 |          | "         |      |
|           |                     | "                   | 52                                    | A          | В          | A           |            | -            | "                       | "         | "        | A     | В        | A         | - ::           | -        |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 53                                    | "          | A          | "           | "          | "            | "                       | "         | "        | "     | A        | "         |                |          |                |       |                 | "                 |          |           |      |
|           |                     |                     | 54                                    |            | В          | "           | "          | "            |                         | "         |          |       | В        | "         |                |          |                |       |                 | "                 |          |           |      |
|           |                     | "                   | 55                                    | В          | В          | "           | "          | "            | "                       | "         | "        | В     | В        | "         |                |          |                |       |                 | "                 |          |           |      |
| 8         | Popost              | subgroup 7          | at T <sub>C</sub> = +12               |            |            | l           | l          | l            |                         |           |          |       |          | L         |                | L        |                |       | 1               | l l               |          |           |      |
| 9         |                     | 3003                | 56                                    | IN         | 5.0 V      | 5.0 V       | 1          | 1            |                         |           | GND      |       |          |           |                | OUT      | F              | F     | 5.0 V           | A1 to Q1          | 5        | 38        | ns   |
| Tc = 25°C | t <sub>PLH1</sub>   | Fig. 3              | 57                                    | IIN        | J.0 V      | J.0 V       |            | OUT          | F                       | F         | UND "    | IN    | 5.0 V    | 5.0 V     |                | 001      | '              | -     | J.U V           | A2 to Q2          | <u> </u> | 38        | 113  |
| 1C = 25 C |                     | ı ıg. s             | 58                                    |            |            |             |            | OUT          | F                       | F         |          | GND   | IN       | 5.0 V     | -              |          |                |       |                 | B2 to Q2          | -        | 49        | "    |
|           | t <sub>PLH2</sub>   | "                   | 59                                    | GND        | IN         | 5.0 V       |            | 001          | F                       | Г         |          | GIND  | IIN      | 3.0 V     |                | OUT      | _              | F     | -               | B2 t0 Q2          |          | 49        | - "  |
|           |                     |                     | 60                                    | GND        | IN         | IN          | OUT        |              |                         |           |          |       |          |           |                | 001      | -              | F     |                 | ם ווטעו           |          | 50        |      |
|           | t <sub>PLH3</sub>   |                     | 60                                    | GND        | IIN        | IIN         | 001        |              |                         |           |          |       |          |           |                |          | L              | L     |                 | CLR1 to Q1        |          | 50        | 1    |
|           |                     | "                   | 61                                    |            |            |             |            |              | L                       | L         | "        | GND   | IN       | IN        | OUT            |          |                |       | "               | CLR2 to Q2        | "        | "         | "    |
|           | t <sub>PHL1</sub>   | "                   | 62                                    |            |            |             |            |              | F                       | F         | "        | IN    | 5.0 V    | 5.0 V     | OUT            |          |                |       | "               | A2 to Q2          | "        | "         | "    |
|           |                     | "                   | 63                                    | IN         | 5.0 V      | 5.0 V       | OUT        |              |                         |           |          |       |          |           |                |          | F              | F     | "               | A1 to Q1          | "        | "         | "    |
|           | t <sub>PHL2</sub>   | "                   | 64                                    | GND        | IN         | 5.0 V       | OUT        |              |                         |           | "        |       |          |           |                |          | F              | F     | "               | B1 to Q1          | "        | 61        | "    |
|           |                     | "                   | 65                                    |            |            |             |            |              | F                       | F         | "        | GND   | IN       | 5.0 V     | OUT            |          |                |       | "               | B2 to Q2          | "        | 61        | "    |
|           | t <sub>PHL3</sub>   | "                   | 66                                    |            |            |             |            | OUT          | L                       | L         | "        | GND   | IN       | IN        |                | 1        |                |       | "               | CLR2 to Q2        |          | 32        | "    |
|           | *FILS               | "                   | 67                                    | GND        | IN         | IN          |            |              |                         |           | "        | 55    |          |           |                | OUT      | L              | L     | "               | CLR1 to Q1        |          | 32        | "    |
|           | t <sub>P(MIN)</sub> | "                   | 68                                    | IN         | 5.0 V      | 5.0 V       |            |              |                         |           | "        | 1     |          | 1         |                | OUT      | Open           | G     | "               | Q1                |          | 205       | "    |
|           | *P(MIN)             | "                   | 69                                    | GND        | IN         | 5.0 V       |            |              |                         |           | "        | 1     |          | 1         |                | OUT      | Open           | G     | "               | Q1                |          | "         | "    |
|           |                     | "                   | 70                                    | 0.10       |            | 0.0 1       |            | OUT          | OPEN                    | G         |          | IN    | 5.0 V    | 5.0 V     |                |          | Орол           | J     | "               | Q2                |          | "         | "    |
|           |                     | "                   | 71                                    | l          | l          |             | l          | OUT          | OPEN                    | G         | "        | GND   | IN       | 5.0 V     | 1              | <b>†</b> |                |       | "               | Q2                |          | -         |      |
|           |                     |                     | · · · · · · · · · · · · · · · · · · · | ı          |            |             |            |              | <u> </u>                |           |          |       |          | <u> </u>  |                |          |                | ·     |                 |                   |          |           |      |

See footnotes at end of this table.

#### TABLE III. Group A inspection for device type 01.

| Terminal conditions | (pins not designa | ated may be h | $nigh \ge 2.0 \text{ V. low} \le$ | 0.7 V. or open). 1/ |
|---------------------|-------------------|---------------|-----------------------------------|---------------------|

|           |                 | MIL-                | Cases<br>E, F | 1   | 2     | 3     | 4  | 5   | 6     | 7     | 8   | 9   | 10    | 11    | 12      | 13  | 14    | 15    | 16              |                      |     |     |      |
|-----------|-----------------|---------------------|---------------|-----|-------|-------|----|-----|-------|-------|-----|-----|-------|-------|---------|-----|-------|-------|-----------------|----------------------|-----|-----|------|
| Subgroup  | Symbol          | STD-883<br>method - | Case<br>2     | 2   | 3     | 4     | 5  | 7   | 8     | 9     | 10  | 12  | 13    | 14    | 15      | 17  | 18    | 19    | 20              | Measured<br>terminal | Lim | its | Unit |
|           |                 |                     | Test no.      | A1  | B1    | CLR1  | Q1 | Q2  | Cext2 | Rext2 | GND | A2  | B2    | CLR2  | _<br>Q2 | Q1  | Cext1 | Rext1 | V <sub>CC</sub> |                      | Min | Max |      |
| 9         | t <sub>P4</sub> | 3003                | 72            |     |       |       |    | OUT | ı     | ı     | GND | GND | IN    | 5.0 V |         |     |       |       | 5.0 V           | Q2                   | 3.5 | 6.0 | μs   |
| Tc = 25°C |                 | Fig. 3              | 73            |     |       |       |    | OUT |       | - 1   | "   | IN  | 5.0 V | 5.0 V |         |     |       |       | "               | Q2                   |     | =   | "    |
|           |                 | "                   | 74            | IN  | 5.0 V | 5.0 V |    |     |       |       |     |     |       |       |         | OUT |       |       | "               | Q1                   |     | "   | "    |
|           |                 | "                   | 75            | GND | IN    | 5.0 V |    |     |       |       |     |     |       |       |         | OUT |       |       | "               | Q1                   | -   |     |      |

Same tests and terminal conditions as subgroup 9, except  $T_C = +125^{\circ}C$  and limits are as follows:  $t_{PLH1}$  is 5 to 57 ns;  $t_{PLH2}$  is 5 to 74 ns;  $t_{PLH3}$  is 5 to 75 ns;  $t_{PLH2}$  is 5 to 92 ns;  $t_{PHL3}$  is 5 to 48 ns;  $t_{P(MN)}$  is 308 ns; and  $t_{P4}$  is 3.0 to 6.25  $\mu$ s.

Same tests and terminal conditions as for subgroup 10, except T<sub>C</sub> = -55°C

#### NOTES:

23

A.  $V_{IN} = 3.0 \text{ V minimum}$ .

B.  $V_{IN} = 0.0 \text{ V or GND}$ .

C. Apply input pulse

- 2.5 V min/5.5 V max.

- D. Test numbers 39 through 55 shall be run in sequence.
- E. Output voltages shall be either:

$$H > 1.5 V$$
;  $L < 1.5 V$ 

- F. Rext =  $5 \text{ k}\Omega$  minimum to  $180 \text{ k}\Omega$  maximum, connected to  $V_{CC}$ ; Cext  $\leq 1,000 \mu\text{F}$ , connected to Rext terminal.
- G. Rext =  $5 \text{ k}\Omega \pm 10\%$ , connected to  $V_{CC}$ .
- I. Rext = 10 k $\Omega$  ±10%, connect to V<sub>CC</sub>; Cext  $\leq$  1,000  $\mu$ F ±10%, connected to Rext terminal.
- J. During subgroups 9, 10, 11 testing, Rext and Cext may remain applied on the side of the device not under test if desired.
- K. For circuit D, I<sub>IL1</sub> limits are 120 mA to 360 mA.
- L. Rext = 10 k $\Omega$  ±10%, connect to V<sub>CC</sub>; Cext  $\geq$  45 pF connected to Rext terminal.

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high  $\geq$  2.0 V, low  $\leq$  0.7 V, or open).

|           |                  | •                   |                    |                |          |                                                  |         |                                                  |                |                |     |                | e nign ≥     |              |         |                                                  |                |                | ,               |                      |              |              |      |
|-----------|------------------|---------------------|--------------------|----------------|----------|--------------------------------------------------|---------|--------------------------------------------------|----------------|----------------|-----|----------------|--------------|--------------|---------|--------------------------------------------------|----------------|----------------|-----------------|----------------------|--------------|--------------|------|
|           |                  | MIL-                | Cases<br>E, F      | 1              | 2        | 3                                                | 4       | 5                                                | 6              | 7              | 8   | 9              | 10           | 11           | 12      | 13                                               | 14             | 15             | 16              |                      |              |              |      |
| Subgroup  | Symbol           | STD-883<br>method - | Case<br>2          | 2              | 3        | 4                                                | 5       | 7                                                | 8              | 9              | 10  | 12             | 13           | 14           | 15      | 17                                               | 18             | 19             | 20              | Measured<br>terminal | Lin          | nits         | Unit |
|           |                  |                     | Test no.           | A1             | B1       | CLR1                                             | _<br>Q1 | Q2                                               | Cext2<br>See L | Rext2<br>See L | GND | A2             | B2           | CLR2         | _<br>Q2 | Q1                                               | Cext1<br>See L | Rext1<br>See L | V <sub>CC</sub> |                      | Min          | Max          |      |
| 1         | V <sub>OH</sub>  | 3006                | 1                  | 2.0 V          | 0.7 V    | 2.0 V                                            | 4 mA    |                                                  |                |                | GND |                |              |              |         |                                                  |                |                | 4.5 V           | _<br>Q1              | 2.5          |              | V    |
| Tc = 25°C |                  | "                   | 2                  | С              | 2.0 V    | 2.0 V                                            |         |                                                  |                |                | "   |                |              |              |         | 4 mA                                             | GND            | GND            | "               | Q1                   | "            |              | "    |
|           |                  | "                   | 3                  |                |          |                                                  |         |                                                  |                |                | "   | 2.0 V          | 0.7 V        | 2.0 V        | 4 mA    |                                                  |                |                | "               | _<br>Q2              | "            |              |      |
|           |                  | "                   | 4                  |                |          |                                                  |         | 4 mA                                             | GND            | GND            | "   | С              | 2.0 V        | 2.0 V        |         |                                                  |                |                | "               | Q2                   | "            |              | "    |
|           | V <sub>OL</sub>  | 3007                | 5                  | 2.0 V          | 0.7 V    | 2.0 V                                            | 4 Δ     |                                                  |                |                | "   |                |              |              |         | 4 mA                                             | OND            | OND            |                 | Q1                   |              | 0.4          |      |
|           |                  | "                   | 6                  | С              | 2.0 V    | 2.0 V                                            | 4 mA    |                                                  |                |                | "   |                |              |              |         |                                                  | GND            | GND            |                 | Q1                   |              |              |      |
|           |                  | "                   | 7                  |                |          |                                                  |         | 4 mA                                             | OND            | OND            | "   | 2.0 V          | 0.7 V        | 2.0 V        | 4 4     |                                                  |                |                | "               | Q2                   |              | "            |      |
|           |                  |                     | 8                  |                |          |                                                  |         |                                                  | GND            | GND            |     | С              | 2.0 V        | 2.0 V        | 4 mA    |                                                  |                |                |                 | Q2                   |              |              | -    |
|           | V <sub>IC</sub>  |                     | 9                  | -18 mA         | 40. 4    |                                                  |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                |                 | A1                   |              | -1.5         |      |
|           |                  |                     | 10<br>11           |                | -18 mA   | -18 mA                                           |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                |                 | B1<br>CLR1           |              | "            |      |
|           |                  |                     | 12                 |                |          | 1011111                                          |         |                                                  |                |                | "   | -18 mA         |              |              |         |                                                  |                |                | "               | A2                   |              | "            | "    |
|           |                  |                     | 13                 |                |          |                                                  |         |                                                  |                |                | "   |                | -18 mA       | 40. 4        |         |                                                  |                |                |                 | B2                   |              |              |      |
|           | I <sub>IL2</sub> | 3009                | 14<br>15 CKT       | 0.4 V          | 4.5 V    | 4.5 V                                            |         | -                                                |                |                | "   |                |              | -18 mA       |         |                                                  |                |                | 5.5 V           | CLR2<br>A1           | -100         | -340         | μA   |
|           | IIL2             |                     | A, C, D            | 0.4 V          | 4.5 V    |                                                  |         |                                                  |                |                |     |                |              |              |         |                                                  |                |                |                 |                      |              |              | μА   |
|           |                  | "                   | 15 CKT B           | "              | "        | "                                                |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                |                 | A1                   | -30          | -300         |      |
|           |                  | ,,                  | 15 CKT E<br>16 CKT | GND            | 0.4 V    |                                                  |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                |                 | A1<br>B1             | -160<br>-160 | -400<br>-580 | ,    |
|           |                  |                     | A, C               |                |          |                                                  |         |                                                  |                |                |     |                |              |              |         |                                                  |                |                |                 |                      |              |              |      |
|           |                  | "                   | 16 CKT B<br>16CKT  | "              | "        | "                                                |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                | - "             | B1<br>B1             | -30<br>-200  | -300<br>-440 | - "  |
|           |                  |                     | E, D               |                |          |                                                  |         |                                                  |                |                |     |                |              |              |         |                                                  |                |                |                 | ы                    | -200         | -440         |      |
|           |                  | "                   | 17 CKT<br>A,C,D,E  | "              | 4.5 V    | GND                                              |         |                                                  |                |                | "   |                |              |              |         |                                                  | GND            | GND            | "               | CLR1                 | -200         | -680         | "    |
|           |                  |                     | 17 CKT B           | "              | 4.5 V    | GND                                              |         |                                                  |                |                | "   |                |              |              |         |                                                  | GND            | GND            | "               | CLR1                 | -30          | -300         | "    |
|           |                  |                     | 18 CKT<br>A, C, D  |                |          |                                                  |         |                                                  |                |                |     | 0.4 V          | 4.5 V        | 4.5 V        |         |                                                  |                |                |                 | A2                   | -100         | -340         |      |
|           |                  |                     | 18 CKT B           |                |          |                                                  |         |                                                  |                |                | "   | -              | - "          | "            |         |                                                  |                |                |                 | A2<br>A2             | -30<br>-160  | -300<br>-400 | -    |
|           |                  |                     | 19 CKT             |                |          |                                                  |         |                                                  |                |                | "   | GND            | 0.4 V        | "            |         |                                                  |                |                | -               | B2                   | -160         | -580         | "    |
|           |                  | ,,                  | A, C               |                |          |                                                  |         |                                                  |                |                |     |                | -            | ,            |         |                                                  |                |                |                 | DO.                  | 20           | 200          |      |
|           |                  | "                   | 19 CKT B<br>19 CKT |                |          |                                                  |         |                                                  |                |                | "   |                |              | "            |         | <u> </u>                                         |                |                |                 | B2<br>B2             | -30<br>-200  | -300<br>-440 |      |
|           |                  |                     | E, D<br>20 CKT     |                |          |                                                  |         |                                                  | GND            | GND            |     |                | 4.5 V        | GND          |         |                                                  |                |                |                 | CLR2                 | -200         | -680         | "    |
|           |                  |                     | A,C,D,E            |                |          |                                                  |         |                                                  | GND            | GND            |     |                | 4.5 V        | GND          |         |                                                  |                |                |                 | ULKZ                 | -200         | -000         |      |
|           |                  | "                   | 20 CKT B           |                |          |                                                  |         |                                                  | GND            | GND            | "   | "              | 4.5 V        | GND          |         |                                                  |                |                | "               | CLR2                 | -30          | -300         | "    |
|           | I <sub>IH1</sub> | 3010                | 21<br>22           | 2.7 V<br>4.5 V | 2.7 V    | GND                                              |         | -                                                |                |                | - " |                |              |              |         | -                                                |                |                | - "             | A1<br>B1             |              | 20           | - "  |
|           |                  | "                   | 23                 | 4.5 V          | GND      | 2.7 V                                            |         | -                                                |                |                |     |                |              |              |         | -                                                |                |                | -               | CLR1                 |              | "            | "    |
|           |                  | "                   | 24                 |                |          |                                                  |         |                                                  |                |                | "   | 2.7 V          |              |              |         |                                                  |                |                | "               | A2                   |              | "            | "    |
|           |                  | "                   | 25<br>26           |                |          | -                                                |         | -                                                |                |                | "   | 4.5 V<br>4.5 V | 2.7 V<br>GND | GND<br>2.7 V |         | -                                                |                |                | "               | B2<br>CLR2           |              | "            | - "  |
|           | I <sub>IH2</sub> | "                   | 26                 | 5.5 V          | 1        | <del>                                     </del> |         | <del>                                     </del> |                |                | "   | 4.0 V          | GND          | Z./ V        |         | <del>                                     </del> |                |                |                 | A1                   |              | 100          | "    |
|           | .112             | "                   | 28                 | 4.5 V          | 5.5 V    | GND                                              |         |                                                  |                |                | "   |                |              |              |         |                                                  |                |                | "               | B1                   |              | "            | "    |
|           |                  | "                   | 29<br>30           | 4.5 V          | GND      | 5.5 V                                            |         |                                                  |                |                | "   | E E V          |              |              |         |                                                  |                |                | - "             | CLR1                 |              | "            | "    |
|           |                  |                     | 31                 |                | <b> </b> | -                                                |         | <b>-</b>                                         |                |                | "   | 5.5 V<br>4.5 V | 5.5 V        | GND          |         | <b>-</b>                                         |                |                | -               | A2<br>B2             |              | "            | "    |
|           |                  | "                   | 32                 |                |          |                                                  |         |                                                  |                |                | "   | 4.5 V          | GND          | 5.5 V        |         |                                                  |                |                | "               | CLR2                 |              | "            | "    |

MIL-M-38510/314C

See footnotes at end of this table.

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high  $\geq 2.0$  V, low  $\leq 0.7$  V, or open).

|           |                 | MIL-                | Cases<br>E, F        | 1   | 2     | 3     | 4   | 5   | 6              | 7              | 8   | 9   | 10    | 11    | 12      | 13  | 14             | 15             | 16              |                      |     |      |      |
|-----------|-----------------|---------------------|----------------------|-----|-------|-------|-----|-----|----------------|----------------|-----|-----|-------|-------|---------|-----|----------------|----------------|-----------------|----------------------|-----|------|------|
| Subgroup  | Symbol          | STD-883<br>method - | Case<br>2            | 2   | 3     | 4     | 5   | 7   | 8              | 9              | 10  | 12  | 13    | 14    | 15      | 17  | 18             | 19             | 20              | Measured<br>terminal | Lim | iits | Unit |
|           |                 |                     | Test no.             | A1  | B1    | CLR1  | Q1  | Q2  | Cext2<br>See L | Rext2<br>See L | GND | A2  | B2    | CLR2  | _<br>Q2 | Q1  | Cext1<br>See L | Rext1<br>See L | V <sub>CC</sub> |                      | Min | Max  |      |
| 1         | I <sub>os</sub> | 3011                | 33 CKT<br>A, B, D, E | С   | 4.5 V | 4.5 V |     |     |                |                | GND |     |       |       |         | GND | GND            | GND            | 5.5 V           | Q1                   | -15 | -100 | mA   |
| Tc = 25°C |                 | "                   | 33 CKT C             | С   | 4.5 V | 4.5 V |     |     |                |                | "   |     |       |       |         | GND | GND            | GND            | "               | Q1                   | -30 | -130 | "    |
|           |                 | "                   | 34 CKT<br>A, B, D, E |     |       |       |     |     |                |                | "   | GND | GND   | GND   | GND     |     |                |                | "               | _<br>Q2              | -15 | -100 | "    |
|           |                 | "                   | 34 CKT C             |     |       |       |     |     |                |                | "   | GND | GND   | GND   | GND     |     |                |                | "               | _<br>Q2              | -30 | -130 |      |
|           |                 | "                   | 35 CKT<br>A, B, D, E |     |       |       |     | GND | GND            | GND            | "   | С   | 4.5 V | 4.5 V |         |     |                |                | "               | Q2                   | -15 | -100 | "    |
|           |                 | "                   | 35 CKT<br>C          |     |       |       |     | GND | GND            | GND            | "   | С   | 4.5 V | 4.5 V |         |     |                |                | "               | Q2                   | -30 | -130 | "    |
|           |                 | "                   | 36 CKT               | GND | GND   | GND   | GND |     |                |                | "   |     |       |       |         |     |                |                | "               | -01                  | -15 | -100 | "    |

|           | I <sub>CC1</sub> | 3005         | 3/                   | 5.5 V        | GND                   | 5.5 V       |                         |            |                          |            |         | 5.5 V | GND   | 5.5 V |   |   |   |   |       | V <sub>CC</sub> | 11 "              |
|-----------|------------------|--------------|----------------------|--------------|-----------------------|-------------|-------------------------|------------|--------------------------|------------|---------|-------|-------|-------|---|---|---|---|-------|-----------------|-------------------|
|           | I <sub>CC3</sub> | 3005         | 38                   | С            | 5.5 V                 | 5.5 V       |                         |            |                          |            | "       | С     | 5.5 V | 5.5 V |   |   |   |   | "     | V <sub>CC</sub> | 27 "              |
| 2         | Same te          | sts, termina | I conditions         | , and limits | s as for sul          | ogroup 1, e | except T <sub>C</sub> : | = +125°C   | and V <sub>IC</sub> tes  | sts are om | nitted. |       |       |       |   |   |   |   |       |                 |                   |
| 3         | Same te          | sts, termina | I conditions         | , and limits | s as for sul          | ogroup 1, e | except T <sub>C</sub> : | = -55°C ar | nd V <sub>IC</sub> tests | s are omit | ted.    |       |       |       |   |   |   |   |       |                 |                   |
| 7         | Truth            | 3014         | 39                   | Α            | Α                     | В           | Н                       | L          | F                        | F          | GND     | Α     | Α     | В     | Н | L | F | F | 5.0 V | All             |                   |
| Tc = 25°C | table            |              | 40                   | Α            | В                     | "           | "                       |            | "                        | "          | "       | Α     | В     | "     | " | " | " | " |       | outputs         | See notes         |
|           | tests            |              | 41                   | В            | Α                     | "           | "                       |            | "                        |            |         | В     | Α     | "     | " |   | " | " | "     | "               | A, B, D, E, and F |
|           |                  | "            | 42                   | "            | "                     | Α           | L                       | Н          | "                        | "          | "       | "     |       | Α     | L | Н | " | " | "     | "               |                   |
|           |                  | "            | 43                   | "            | "                     | В           | Н                       | L          | "                        | "          | "       | "     | -     | В     | Н | L | " | " | -     | "               |                   |
|           |                  | "            | 44                   | "            | В                     | В           | "                       | =          | "                        | "          | -       |       | В     | В     |   | - | " |   | -     | "               |                   |
|           |                  | "            | 45                   | "            | В                     | Α           |                         | =          |                          | "          | "       |       | В     | Α     |   |   | " |   |       | "               |                   |
|           |                  | "            | 46                   | "            | Α                     | Α           | L                       | Н          | "                        | "          | "       | "     | Α     | Α     | L | Н | " |   | "     | "               |                   |
|           |                  | "            | 47                   | "            | "                     | В           | Н                       | L          | "                        | "          | "       | "     |       | В     | Н | L | " |   | "     | "               |                   |
|           |                  | "            | 48                   | Α            | "                     | В           | "                       | "          | "                        | "          | "       | Α     |       | "     |   | " | " |   | "     | "               |                   |
|           |                  | "            | 49                   | Α            | "                     | Α           | "                       | "          | "                        | "          | "       | "     | "     | "     | " | " | " | " | "     | "               |                   |
|           |                  | "            | 50                   | В            | "                     | Α           | L                       | "          | "                        | "          | "       | "     | "     | "     | " | Н | " | " | "     | "               |                   |
|           |                  | "            | 51                   | "            | "                     | В           | Н                       | "          | "                        | "          | "       | "     | "     | "     | " | L | " | " | "     | "               |                   |
|           |                  | "            | 52                   | "            | "                     | "           | "                       | "          | "                        | "          | "       | "     |       | Α     | " |   | " | " |       | "               |                   |
|           |                  | "            | 53                   | "            | "                     | "           | "                       | Н          | "                        | "          | "       | В     |       | Α     | L |   | " | " |       | "               |                   |
|           |                  |              | 54                   |              | В                     | "           | -                       | L          | - "                      | "          | "       | В     | В     | В     | Н | " |   | - | -:-   | "               |                   |
|           |                  |              | 55                   | Α            | В                     | Α           | "                       | "          | **                       | "          | "       | Α     | В     | Α     |   |   |   |   |       |                 |                   |
|           |                  | "            | 56                   | -            | Α                     | "           | "                       | "          | "                        |            | "       | "     | A     | "     |   |   |   |   |       | "               |                   |
|           |                  |              | 57                   |              | В                     | "           | "                       | - "        | "                        |            |         | -     | В     | - "   |   |   |   |   | -:-   | "               |                   |
|           |                  | . "          | 58                   | В            | В                     | "           | "                       | "          | "                        | . "        | . "     | В     | В     | "     | " | " | " |   |       | "               |                   |
| 8         | Repeat           | subgroup 7 a | at $T_{\rm C} = +12$ | 5°C and T    | <sub>C</sub> = -55°C. |             |                         |            |                          |            |         |       |       |       |   |   |   |   |       |                 |                   |

See footnotes at end of this table.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high  $\geq 2.0 \text{ V}$ , low  $\leq 0.7 \text{ V}$ , or open).

|                    |                   |                     |               |            |          | 16          | erminal ( |     | ns (pins |       |     |     | e high ≥ |       |         |     | en).   |        |                 |                      |     |          |      |
|--------------------|-------------------|---------------------|---------------|------------|----------|-------------|-----------|-----|----------|-------|-----|-----|----------|-------|---------|-----|--------|--------|-----------------|----------------------|-----|----------|------|
|                    |                   | MIL-                | Cases<br>E, F | 1          | 2        | 3           | 4         | 5   | 6        | 7     | 8   | 9   | 10       | 11    | 12      | 13  | 14     | 15     | 16              |                      |     |          |      |
| Subgroup           | Symbol            | STD-883<br>method - | Case<br>2     | 2          | 3        | 4           | 5         | 7   | 8        | 9     | 10  | 12  | 13       | 14    | 15      | 17  | 18     | 19     | 20              | Measured<br>terminal | Lin | nits     | Unit |
|                    |                   |                     | Test no.      | A1         | B1       | CLR1        | _<br>Q1   | Q2  | Cext2    | Rext2 | GND | A2  | B2       | CLR2  | _<br>Q2 | Q1  | Cext1  | Rext1  | V <sub>CC</sub> |                      | Min | Max      |      |
| 9                  | t <sub>PLH1</sub> | 3003                | 59            | IN         | 5.0 V    | 5.0 V       |           |     |          |       | GND |     |          |       |         | OUT | F      | F      | 5.0 V           | A1 to Q1             | 5   | 75       | ns   |
| $Tc = 25^{\circ}C$ |                   | Fig. 4              | 60            |            |          |             |           | OUT | F        | F     | "   | IN  | 5.0 V    | 5.0 V |         |     |        |        | "               | A2 to Q2             | "   | 75       | "    |
|                    | t <sub>PLH2</sub> |                     | 61            | ONE        |          | 501/        |           | OUT | F        | F     |     | GND | IN       | 5.0 V |         | OUT | _      | _      | - "             | B2 to Q2             |     | 60       | - "  |
|                    |                   | "                   | 62<br>63      | GND<br>GND | IN<br>IN | 5.0 V<br>IN | OUT       |     |          |       | "   |     |          |       |         | OUT | F<br>N | F<br>N | - "             | B1 to Q1             |     | 60<br>70 | "    |
|                    | t <sub>PLH3</sub> |                     | 64            | GND        | IIN      | IIN         | 001       |     | N        | N     | "   | GND | IN       | IN    | OUT     |     | IN     | IN     |                 | CLR1 to Q1           |     | 70       | "    |
|                    |                   |                     |               |            |          |             |           |     |          |       |     |     |          |       |         |     |        |        |                 | CLR2 to Q2           |     |          |      |
|                    | t <sub>PHL1</sub> | "                   | 65            |            |          |             |           |     | F        | F     |     | IN  | 5.0 V    | 5.0 V | OUT     |     | _      |        |                 | A2 to Q2             |     | 85       |      |
|                    |                   |                     | 66            | IN         | 5.0 V    | 5.0 V       | OUT       |     |          |       |     |     |          |       |         |     | F      | F      |                 | A1 to Q1             |     | 85       |      |
|                    | t <sub>PHL2</sub> | "                   | 67            | GND        | IN       | 5.0 V       | OUT       |     |          |       | "   |     |          |       |         |     | F      | F      | "               | B1 to Q1             | "   | 70       | "    |
| l                  |                   | "                   | 68            |            |          |             |           |     | F        | F     | "   | GND | IN       | 5.0 V | OUT     |     |        |        | "               | B2 to Q2             | "   | 70       |      |
|                    | t <sub>PHL3</sub> | "                   | 69            |            |          |             |           | OUT | N        | N     | "   | GND | IN       | IN    |         |     |        |        | "               | CLR2 to Q2           | "   | 60       | "    |
|                    |                   | "                   | 70            | GND        | IN       | IN          |           |     |          |       | "   |     |          |       |         | OUT | N      | N      | "               | CLR1 to Q1           | "   | 60       |      |
|                    | t <sub>P1</sub>   | "                   | 71            | IN         | 5.0 V    | 5.0 V       |           |     |          |       | "   |     |          |       |         | OUT | OPEN   | K      | "               | Q1                   | 20  | 75       | "    |
|                    |                   | "                   | 72            | IN         | 5.0 V    |             | OUT       |     |          |       |     |     |          |       |         |     | "      |        | . "             | _<br>Q1              |     | "        |      |
|                    |                   | "                   | 73            | GND        | IN       |             | OUT       |     |          |       | "   |     |          |       |         |     | "      | "      | "               | _<br>Q1              | "   | "        |      |
|                    |                   | "                   | 74            | GND        | IN       |             |           |     |          |       |     |     |          |       |         | OUT | -      |        |                 | Q1                   |     | -        |      |
|                    |                   | "                   | 75            |            |          |             |           | OUT | OPEN     | K     | "   | IN  | 5.0 V    | 5.0 V |         |     |        |        | "               | Q2                   | "   | "        | "    |
|                    |                   | "                   | 76            |            |          |             |           |     |          | "     |     | IN  | 5.0 V    | . "   | OUT     |     |        |        |                 | _<br>Q2              |     |          |      |
|                    |                   | "                   | 77            |            |          |             |           |     | "        | "     | "   | GND | IN       | "     | OUT     |     |        |        | "               | _<br>Q2              | "   |          | "    |
|                    |                   | "                   | 78            |            |          |             |           | OUT | "        | "     | "   | -   | -        | "     |         |     |        |        | "               | Q2                   | "   | "        | "    |
|                    | t <sub>P2</sub>   | "                   | 79            |            |          |             |           | OUT | G        | G     |     | "   |          | "     |         |     |        |        | "               | Q2                   | 70  | 160      | "    |
|                    |                   | "                   | 80            |            |          |             |           |     | "        | "     | "   | "   |          | "     | OUT     |     |        |        | "               | _<br>Q2              | "   | "        | "    |
|                    |                   | "                   | 81            |            |          |             |           |     | "        | "     | "   | IN  | 5.0 V    | "     | OUT     |     |        |        | "               | _<br>Q2              | "   |          |      |
|                    |                   | "                   | 82            |            |          |             |           | OUT | "        | "     | "   | IN  | 5.0 V    | "     |         |     |        |        | "               | Q2                   | "   | "        | "    |
|                    |                   | "                   | 83            | IN         | 5.0 V    | 5.0 V       |           |     |          |       | "   |     |          |       |         | OUT | G      | G      | "               | Q1                   | "   | "        | "    |
|                    |                   | "                   | 84            | IN         | 5.0 V    |             | OUT       |     |          |       |     |     |          |       |         |     | "      | "      | "               | _<br>Q1              | "   | "        |      |
|                    |                   | "                   | 85            | GND        | IN       |             | OUT       |     |          |       | "   |     |          |       |         |     | "      |        | "               | _<br>Q1              | "   |          |      |
|                    |                   | "                   | 86            | "          | "        | "           |           |     |          |       | "   |     |          |       |         | OUT | "      | "      | "               | Q1                   | "   | "        | "    |
|                    | t <sub>P3</sub>   |                     | 87            | "          | "        | "           |           |     |          |       | "   |     |          |       |         | OUT |        |        | "               | Q1                   | 600 | 775      | "    |
|                    |                   | "                   | 88            | "          | "        | "           | OUT       |     |          |       | "   |     |          |       |         |     | "      |        | "               | _<br>Q1              | "   | "        | "    |
|                    |                   | "                   | 89            | IN         | 5.0 V    | "           | OUT       |     |          |       | "   |     |          |       |         |     | "      | "      | "               | _<br>Q1              | "   | "        | "    |
|                    |                   | "                   | 90            | IN         | 5.0 V    | "           |           |     |          |       | "   |     |          |       |         | OUT | "      | "      | "               | Q1                   | "   | "        | "    |
|                    |                   | "                   | 91            |            |          |             |           | OUT | I        | ı     | "   | IN  | 5.0 V    | 5.0 V |         |     |        |        | "               | Q2                   |     | "        | "    |
|                    |                   | "                   | 92            |            |          |             |           |     | "        |       | "   | IN  | 5.0 V    |       | OUT     |     |        |        |                 | _<br>Q2              | "   |          |      |
|                    |                   | "                   | 93            |            |          |             |           |     | "        | "     | "   | GND | IN       | "     | OUT     |     |        |        | "               | _<br>Q2              | "   | "        | "    |
|                    |                   | "                   | 94            |            |          |             |           | OUT | "        | "     | "   | "   | "        | "     |         |     |        |        | "               | Q2                   | "   | "        | "    |
|                    | t <sub>P5</sub>   | "                   | 95            |            |          |             |           | OUT | J        | J     | "   | "   | "        | "     |         |     |        |        | "               | Q2                   | 5.7 | 8.0      | ms   |
|                    |                   | "                   | 96            |            |          |             |           |     | "        | "     | "   |     | "        |       | OUT     |     |        |        | "               | _<br>Q2              | "   | "        | "    |
|                    |                   | "                   | 97            |            |          |             |           |     | "        | "     | "   | IN  | 5.0 V    | "     | OUT     |     |        |        | "               | _<br>Q2              | "   | "        | "    |

See notes at end of this table.

## TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high $\geq$ 2.0 V, low $\leq$ 0.7 V, or open).

|          |                 | MIL-                | Cases<br>E, F | 1   | 2     | 3     | 4       | 5   | 6     | 7     | 8   | 9  | 10    | 11    | 12      | 13  | 14    | 15    | 16              |                      |     |      |      |
|----------|-----------------|---------------------|---------------|-----|-------|-------|---------|-----|-------|-------|-----|----|-------|-------|---------|-----|-------|-------|-----------------|----------------------|-----|------|------|
| Subgroup | Symbol          | STD-883<br>method - | Case<br>2     | 2   | 3     | 4     | 5       | 7   | 8     | 9     | 10  | 12 | 13    | 14    | 15      | 17  | 18    | 19    | 20              | Measured<br>terminal | Lim | nits | Unit |
|          |                 |                     | Test no.      | A1  | B1    | CLR1  | _<br>Q1 | Q2  | Cext2 | Rext2 | GND | A2 | B2    | CLR2  | _<br>Q2 | Q1  | Cext1 | Rext1 | V <sub>CC</sub> |                      | Min | Max  |      |
| 9        | t <sub>P5</sub> | 3003                | 98            |     |       |       |         | OUT | J     | J     | GND | IN | 5.0 V | 5.0 V |         |     |       |       | 5.0 V           | Q2                   | 5.7 | 8.0  | ms   |
| c = 25°C | -               | Fig. 4              | 99            | IN  | 5.0 V | 5.0 V |         |     |       |       | "   |    |       |       |         | OUT | J     | J     | "               | Q1                   | "   | "    | "    |
|          |                 | "                   | 100           | IN  | 5.0 V | "     | OUT     |     |       |       | "   |    |       |       |         |     | "     | "     | "               | _<br>Q1              | "   | "    | "    |
|          |                 | "                   | 101           | GND | IN    | "     | OUT     |     |       |       |     |    |       |       |         |     |       | "     | "               | Q1                   | "   |      |      |
|          |                 | "                   | 102           | GND | IN    |       |         |     |       |       |     |    |       |       |         | OUT |       |       | "               | Q1                   |     | "    | "    |

#### NOTES:

27

- A.  $V_{IN} = 3.0 \text{ V minimum}$ .
- B.  $V_{IN} = 0.0 \text{ V or GND}$ .
- C. Apply input pulse

- - - 2.5 V min/5.5 V max.

D. Test numbers 39 through 58 shall be run in sequence.

Same tests and terminal conditions as for subgroup 10, except T<sub>C</sub> = -55°C

E. Output voltages shall be either:

$$H > 1.5 V$$
;  $L < 1.5 V$ 

- F. Rext = 1.4 k $\Omega$  minimum to 70 k $\Omega$  maximum, connected to V<sub>CC</sub>; Cext  $\leq$  1,000  $\mu$ F, connected to Rext terminal.
- G. Rext = 2 k $\Omega$  ±10%, connected to V<sub>CC;</sub> Cext = 80 pF ±10%, connected to Rext terminal.
- I. Rext = 10 k $\Omega$  ±10%, connect to V<sub>CC</sub>; Cext = 100 pF ±10%, connected to Rext terminal.
- J. Rext = 10 k $\Omega$  ±10%, connect to V<sub>CC</sub>; Cext = 1.0  $\mu$ F ±10%, connected to Rext terminal.
- K. Rext =  $2 k\Omega \pm 10\%$ , connect to  $V_{CC}$ .
- L. Note F may apply during subgroups 1, 2, and 3 testing if desired.
- M. During subgroups 9, 10, 11 testing, Rext and Cext may remain applied on the side of the device not under test if desired.
- N. Rext = 10 k $\Omega$  ±10%, connect to V<sub>CC</sub>; Cext  $\geq$  45 pF connected to Rext terminal.

TABLE III. Group A inspection for device type 03.

Terminal conditions (pins not designated may be high  $\geq 2.0 \text{ V}$ , low  $\leq 0.7 \text{ V}$ , or open).

|           |                  |                 |                 |             | Tei        | minal co     | nditions      | (pins no  | t designa               | ated may | be high | ≥ 2.0 V, | $low \leq 0$ . | 7 V, or or      | pen). |                         |                 |                   |      |         |      |
|-----------|------------------|-----------------|-----------------|-------------|------------|--------------|---------------|-----------|-------------------------|----------|---------|----------|----------------|-----------------|-------|-------------------------|-----------------|-------------------|------|---------|------|
|           |                  | MIL-STD-        | Case<br>A,B,C,D | 1           | 2          | 3            | 4             | 5         | 6                       | 7        | 8       | 9        | 10             | 11              | 12    | 13                      | 14              |                   |      |         |      |
| Subgroup  | Symbol           | 883<br>method   | Case<br>2       | 2           | 3          | 4            | 6             | 8         | 9                       | 10       | 12      | 13       | 14             | 16              | 18    | 19                      | 20              | Measured terminal | Lin  | nits    | Unit |
|           |                  |                 | Test no.        | A1          | A2         | B1           | B2            | CLR       | Q                       | GND      | Q       | Rint     | NC             | Cext<br>(see I) | NC    | Rext<br>Cext<br>(see I) | V <sub>cc</sub> |                   | Min  | Max     |      |
| 1         | V <sub>OH</sub>  | 3006            | 1               | 0.7 V       |            | 2.0 V        | J             | 2.0 V     |                         | GND      | 4 mA    | GND      |                | (               |       | GND                     | 4.5 V           | Q                 | 2.5  |         | V    |
| Tc = 25°C | 011              | 3006            | 2               |             |            |              | 0.7 V         | "         | 4 mA                    | "        |         | 4.5 V    |                |                 |       |                         | "               | Q                 | 2.5  |         | "    |
|           |                  | 3007            |                 |             |            |              | 0.7 V         |           |                         |          | 4 mA    | 4.5 V    |                |                 |       |                         |                 | Q                 |      | 0.4     |      |
|           | V <sub>OL</sub>  | 3007            | 3 4             | 0.7 V       |            | 2.0 V        | J J           | "         | 4 mA                    | "        | 4 mA    | GND      |                |                 |       | GND                     |                 |                   |      | 0.4     |      |
|           |                  | 3007            | 4               | 0.7 V       |            | 2.0 V        | J             |           | 4 IIIA                  |          |         | GND      |                |                 |       | GND                     |                 | Q                 |      | 0.4     | I    |
|           | V <sub>IC</sub>  |                 | 5               | -18 mA      |            |              |               |           |                         | "        |         |          |                |                 |       |                         | "               | A1                |      | -1.5    | -    |
|           |                  |                 | 6               |             | -18 mA     |              |               |           |                         | "        |         |          |                |                 |       |                         | =               | A2                |      | -       | -    |
|           |                  |                 | 7               |             |            | -18 mA       |               |           |                         | -        |         |          |                |                 |       |                         | -               | B1                |      |         | "    |
|           |                  |                 | 8               |             |            |              | -18 mA        |           |                         | "        |         |          |                |                 |       |                         | "               | B2                |      | "       | "    |
|           |                  |                 | 9               |             |            |              |               | -18 mA    |                         | "        |         |          |                |                 |       |                         | "               | CLR               |      | "       |      |
|           | I <sub>IL1</sub> | 3009            | 10              | 0.4 V       | 4.5 V      |              |               |           |                         | "        |         |          |                |                 |       |                         | 5.5 V           | A1                | -160 | -400    | μA   |
|           | see              |                 | 11              | 4.5 V       | 0.4 V      |              |               |           |                         | "        |         |          |                |                 |       |                         | "               | A2                | "    | "       |      |
|           | note C           |                 | 12              |             |            | 0.4 V        | 4.5 V         |           |                         | "        |         |          |                |                 |       |                         | "               | B1                | "    | "       |      |
|           |                  |                 | 13              |             |            | 4.5 V        | 0.4 V         |           |                         |          |         |          |                |                 |       |                         |                 | B2                |      | "       |      |
|           |                  |                 | 14              | 0 = 1/      | 0115       |              |               | 0.4 V     |                         | - "      |         |          |                |                 |       |                         | - "             | CLR               |      | "       |      |
|           | I <sub>IH1</sub> | 3010            | 15              | 2.7 V       | GND        |              |               |           |                         | - "      |         |          |                |                 |       |                         |                 | A1                |      | 20      |      |
|           |                  |                 | 16              | GND         | 2.7 V      | 0.71/        | OND           |           |                         | - "      |         |          |                |                 |       |                         |                 | A2                |      | - "     |      |
|           |                  |                 | 17<br>18        |             |            | 2.7 V<br>GND | GND           |           |                         |          |         |          |                |                 |       |                         | - "             | B1<br>B2          |      | - "     |      |
|           |                  |                 | 18<br>19        |             |            | GND          | 2.7 V         | 0.71/     |                         |          |         |          |                |                 |       |                         | - "             | CLR               |      |         |      |
|           |                  |                 | 20              | 5.5 V       | GND        |              |               | 2.7 V     |                         |          |         |          |                |                 |       |                         |                 | A1                |      | 100     |      |
|           | I <sub>IH2</sub> |                 | 21              | GND         | 5.5 V      |              |               |           |                         |          |         |          |                |                 |       |                         |                 | A1<br>A2          |      | 100     | "    |
|           |                  |                 | 22              | GIND        | 3.5 V      | 5.5 V        | GND           |           |                         | "        |         |          |                |                 |       |                         |                 | B1                |      | "       | -    |
|           |                  | "               | 23              |             |            | GND          | 5.5 V         |           |                         | "        |         |          |                |                 |       |                         |                 | B2                |      | "       | "    |
|           |                  | "               | 24              |             |            | OIVD         | 0.0 V         | 5.5 V     |                         | "        |         |          |                |                 |       |                         |                 | CLR               |      | "       | "    |
|           | los              | 3011            | 25 CKT<br>A,D   | GND         |            | 4.5 V        | J             | 4.5 V     |                         | "        | GND     | GND      |                |                 |       | GND                     | "               | Q                 | -15  | -100    | mA   |
|           |                  |                 | 25 CKT C        | GND         |            | 4.5 V        | J             | "         |                         |          | GND     | GND      |                |                 |       | GND                     |                 | Q                 | -30  | -130    | "    |
|           |                  |                 | 26 CKT          | GIND        |            | 4.5 V        | GND           | "         | GND                     | "        | GIND    | 4.5 V    |                |                 |       | GIND                    |                 |                   | -30  | -100    | "    |
|           |                  |                 | A,D             |             |            |              | 0,40          |           | 0,10                    |          |         | 7.5 V    |                |                 |       |                         |                 | Q                 | ,,,  | 100     | 1    |
|           |                  | "               | 26 CKT C        |             |            |              | GND           | "         | GND                     | "        |         | 4.5 V    |                |                 |       |                         | "               | ā                 | -30  | -130    | "    |
|           | I <sub>CC1</sub> | 3005            | 27              | 5.5 V       | 5.5 V      | GND          | GND           | 5.5 V     |                         | "        |         | 5.5 V    |                |                 |       |                         | "               | V <sub>cc</sub>   |      | 11      | "    |
|           | I <sub>CC2</sub> | 3005            | 28              | J           | J          | 5.5 V        | 5.5 V         | 5.5 V     |                         | "        |         | 5.5 V    |                |                 |       |                         | "               | V <sub>CC</sub>   |      | 11      | "    |
| 2         |                  | sts, terminal o |                 |             |            |              |               |           |                         |          |         |          |                |                 |       |                         |                 |                   |      |         |      |
| 3         |                  | sts, terminal o |                 | nd limits a | as subgrou | ıр 1, exce   | pt $T_C = -5$ | 5°C and \ | √ <sub>IC</sub> tests a |          | d.      | -        |                |                 |       |                         |                 |                   | -    |         |      |
| 7         | Truth            | 3014            | 29              | В           | В          | В            | В             | В         | Н                       | GND      | L       |          |                | K               |       | K                       | 5.0 V           | All               |      | -       |      |
| Tc = 25°C | table            | "               | 29A             | Α           | Α          | В            | В             | В         | "                       | "        | "       |          |                | "               |       | "                       | "               | outputs           | Se   | e notes | A, B |
|           | test             | "               | 30              | Α           | Α          | Α            | Α             | Α         | "                       | "        | "       |          |                | "               |       | "                       | "               | "                 |      |         |      |
|           |                  | "               | 31              | В           | В          | "            | "             | Α         | L                       | "        | Н       |          |                | "               |       | "                       | "               | "                 |      |         |      |
|           |                  | "               | 321             |             | "          | -            | "             | В         | Н                       | "        | L       |          |                | "               |       | "                       | "               | "                 |      |         |      |
|           |                  | "               | 33              | "           | "          | -            | "             | A         | L                       | "        | Н       |          |                | "               |       | "                       | "               | "                 |      |         |      |
|           |                  | "               | 34              |             | A          | В            | - "           | В         | Н                       | - "      | L       |          |                | "               |       |                         |                 | "                 |      |         |      |
|           |                  | "               | 35              | "           | "          | В            | "             | Α         | Н                       | "        | L       |          |                | "               |       | "                       | -               | "                 |      |         |      |

See footnotes at end of this table.

TABLE III. Group A inspection for device type 03 – Continued.

Terminal conditions (pins not designated may be high  $\geq 2.0 \text{ V}$ , low  $\leq 0.7 \text{ V}$ , or open).

|                    |                        |                            |                          |                           |           |                        |            | W           |             |                        |            |                         |            | ,                       |              |                         |           |          |     |           |      |
|--------------------|------------------------|----------------------------|--------------------------|---------------------------|-----------|------------------------|------------|-------------|-------------|------------------------|------------|-------------------------|------------|-------------------------|--------------|-------------------------|-----------|----------|-----|-----------|------|
|                    |                        |                            | Case                     | 1                         | 2         | 3                      | 4          | 5           | 6           | 7                      | 8          | 9                       | 10         | 11                      | 12           | 13                      | 14        |          |     |           |      |
|                    |                        | MIL-STD-                   | A,B,C,D                  |                           |           |                        |            |             |             |                        |            |                         |            |                         |              |                         |           |          |     |           |      |
| Subgroup           | Symbol                 | 883                        | Case                     | 2                         | 3         | 4                      | 6          | 8           | 9           | 10                     | 12         | 13                      | 14         | 16                      | 18           | 19                      | 20        | Measured | Lim | its       | Unit |
|                    |                        | method                     | 2                        |                           |           |                        |            |             |             |                        |            |                         |            |                         |              |                         |           | terminal |     |           |      |
|                    |                        |                            |                          |                           |           |                        |            |             |             |                        |            |                         |            |                         |              | Rext                    |           |          | Min | Max       |      |
|                    |                        |                            | Test no.                 | A1                        | A2        | B1                     | B2         | CLR         | ā           | GND                    | Q          | Rint                    | NC         | Cext                    | NC           | Cext                    | $V_{CC}$  |          |     |           |      |
|                    |                        |                            |                          |                           |           |                        |            |             | 3           |                        |            |                         |            | (see I)                 |              | (see I)                 |           |          |     |           |      |
| 7                  | Truth                  | 3014                       | 36                       | В                         | Α         | Α                      | Α          | Α           | L           | GND                    | Η          |                         |            | K                       |              | K                       | 5.0 V     | All      |     |           |      |
| Tc = 25°C          | table                  | "                          | 37                       | "                         |           | "                      | В          | В           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | outputs  | See | e notes i | A, B |
|                    | test                   | "                          | 38                       | "                         | "         | "                      | В          | Α           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 39                       | "                         |           |                        | Α          | Α           | L           | "                      | Н          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 40                       | Α                         | -         | "                      | "          | В           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 41                       | Α                         | "         | "                      | "          | Α           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 42                       | В                         | "         | "                      | "          | Α           | L           | "                      | Н          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 43                       | Α                         | "         | "                      | "          | В           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 44                       | "                         | "         | "                      | "          | Α           | Н           | "                      | L          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
|                    |                        | "                          | 45                       | "                         | В         | "                      | "          | Α           | L           | "                      | Н          |                         |            | "                       |              | "                       | "         | "        |     |           |      |
| 8                  | Repeat s               | subgroup 7 at              | Tc = +125°               | C and To:                 | = -55° C. |                        |            |             |             |                        |            |                         |            |                         |              |                         |           |          |     |           |      |
| 1                  | t <sub>PHL1</sub>      | 3003                       | 46                       | IN                        | 5.0 V     | 5.0 V                  | 5.0 V      | 5.0 V       | OUT         | GND                    |            |                         |            | K                       |              | K                       | 5.0 V     |          | 5   | 50        | ns   |
|                    |                        |                            |                          |                           |           |                        |            |             |             |                        |            |                         |            |                         |              |                         |           | A1 to Q  |     |           |      |
| $Tc = 25^{\circ}C$ | t <sub>PHL2</sub>      | (Fig. 3)                   | 47                       | GND                       | GND       | IN                     | 5.0 V      | 5.0 V       | OUT         | "                      |            |                         |            | K                       |              | K                       | "         | B1 to Q  |     | 61        | "    |
|                    | t <sub>PHL3</sub>      | "                          | 48                       | GND                       | GND       | 5.0 V                  | IN         | IN          |             | "                      | OUT        |                         |            | M                       |              | M                       | "         | CLR to Q |     | 32        | "    |
|                    | t <sub>PLH1</sub>      | "                          | 49                       | IN                        | 5.0 V     | 5.0 V                  | 5.0 V      | 5.0 V       |             | "                      | OUT        |                         |            | K                       |              | K                       | "         | A1 to Q  |     | 38        | "    |
|                    | t <sub>PLH2</sub>      | "                          | 50                       | GND                       | GND       | IN                     | 5.0 V      | 5.0 V       |             | "                      | OUT        |                         |            | K                       |              | K                       | "         | B1 to Q  |     | 49        | -    |
|                    | t <sub>PLH3</sub>      | "                          | 51                       | GND                       | GND       | 5.0 V                  | IN         | IN          | OUT         | "                      |            |                         |            | М                       |              | М                       | "         | CLR to Q |     | 50        | "    |
| 1                  | t <sub>P(MIN)</sub>    | "                          | 52                       | IN                        | 5.0 V     | 5.0 V                  | 5.0 V      | 5.0 V       |             | "                      | OUT        |                         |            |                         |              | G                       | "         | Q        |     | 205       | "    |
| 1                  | t <sub>P4</sub>        | "                          | 53                       | GND                       | GND       | IN                     | 5.0 V      |             |             | "                      | OUT        |                         |            | F                       |              | N                       | "         | Q        | 3.5 | 6.0       | μs   |
| 10                 | Same tes               | sts and termin             | nal condition            | s as subg                 | roup 9 ex | cept T <sub>C</sub> =  | +125°C a   | nd limits a | re as follo | ows: t <sub>PHL1</sub> | is 50 to 7 | 5 ns; t <sub>PHL2</sub> | is 5 to 92 | 2 ns; t <sub>PHL3</sub> | s 5 to 48 ns | s; t <sub>PLH1</sub> is | 5 to 57 r | ıs;      |     |           |      |
|                    | t <sub>PLH2</sub> is 5 | to 74 ns; t <sub>PLI</sub> | <sub>+3</sub> is 5 to 75 | ns; t <sub>P(MIN)</sub> i | s 308 ns; | and t <sub>P4</sub> is | 3.0 to 6.2 | 5 μs.       |             |                        |            |                         |            |                         |              |                         |           |          |     |           |      |
| 11                 | Same tes               | sts and termin             | nal condition            | s as suba                 | roup 10 e | xcept Tc =             | = -55°C.   |             |             |                        |            |                         |            |                         |              |                         |           |          |     |           |      |
|                    |                        |                            |                          |                           |           |                        |            |             |             |                        |            |                         |            |                         |              |                         |           |          |     |           |      |

#### NOTES:

- A.  $V_{IN} = 3.0 \text{ V minimum}$ .
- B.  $V_{IN} = 0.0 \text{ V or GND}$ .
- C. For circuit D, IIL1 limits are 120 to 360 mA.
- D. Test numbers 29 through 45 shall be run in sequence.
- E. Output voltages shall be either:

- F. Cext connected to Rext/Cext through a 1,000 pF ±10% capacitor.
- G. Rext/Cext connected to  $V_{CC}$  through a 5 k $\Omega$  ±10% resistor.
- I. Note K may apply during subgroups 1, 2, and 3 testing if desired.
- J. Apply input pulse

- K. Rext/Cext connected to  $V_{CC}$  through a 5 kΩ to 180 kΩ resistor, and Cext connected to Rext/Cext through a ≤ 1,000 μF capacitor.
- M. Cext connected to Rext/Cext through A  $\geq$  45 pF capacitor, Rext/Cext connected to V<sub>CC</sub> through a 10 k $\Omega$  ±10% resistor.
- N. Rext/Cext connected to  $V_{CC}$  through a 10 k $\Omega$  ±10% resistor.

#### 5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

#### 6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
  - 6.2 Acquisition requirements. Acquisition documents should specify the following:
    - a. Title, number, and date of the specification.
    - b. Complete part number (see 1.2).
    - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
    - d. Requirements for certificate of compliance, if applicable.
    - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
    - Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
    - g. Requirements for product assurance options.
    - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
    - j. Requirements for "JAN" marking.
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

| GND             | Ground zero voltage potential          |
|-----------------|----------------------------------------|
| I <sub>IN</sub> | Current flowing into an input terminal |
| V <sub>IC</sub> | Input clamp voltage                    |
| V <sub>IN</sub> | Voltage level at an input terminal     |

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

| Military device | Generic-industry |
|-----------------|------------------|
| type            | type             |
| 01              | 54LS123, 74LS123 |
| 02              | 54LS221, 74LS221 |
| 03              | 54LS122, 74LS122 |

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits, which form a part of this specification, are designated as shown in table IV herein.

TABLE IV. Manufacturers' designation.

|        |               | Ma          | anufacturers          |          |          |
|--------|---------------|-------------|-----------------------|----------|----------|
|        | Α             | В           | С                     | D        | Е        |
| Device | Texas Instru- | Signetics   | National              | Motorola | Raytheon |
| type   | ments Inc.    | Corporation | Semiconductor<br>Corp | Inc      | Company  |
| 01     | Х             |             | X                     | X        |          |
| 02     | X             | X           | X                     | X        |          |
| 03     | X             |             | X                     | X        | X        |

6.9 <u>Changes from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians:

Army - CR Navy - EC

Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-1964)

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

## STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

#### INSTRUCTIONS

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts.

| Comments submitted on this form do not co contractual requirements.            | onstitute or imply authorization to waive any po                   | rtion of the referenced document(s) or to amend                                                                              |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| I RECOMMEND A CHANGE:                                                          | DOCUMENT NUMBER     MIL-M-38510/314C                               | 2. DOCUMENT DATE (YYYYMMDD)<br>2003-07-14                                                                                    |
| 3. DOCUMENT TITLE                                                              | •                                                                  |                                                                                                                              |
| MICROCIRCUITS, DIGITAL, LOW-P                                                  | OWER SCHOTTKY TTL, MONOSTABLE                                      | MULTIVIBRATORS, MONOLITHIC SILICON                                                                                           |
| 4. NATURE OF CHANGE (Identify paragraph                                        | h number and include proposed rewrite, if pos                      | sible. Attach extra sheets as needed.)                                                                                       |
| 5. REASON FOR RECOMMENDATION                                                   |                                                                    |                                                                                                                              |
| 6. SUBMITTER                                                                   |                                                                    |                                                                                                                              |
| a. NAME (Last, First Middle Initial)                                           | b. ORGANIZATION                                                    |                                                                                                                              |
| c. ADDRESS (Include Zip Code)                                                  | d. TELEPHONE (Inc.<br>(1) Commercial<br>(2) DSN<br>(If applicable) | ude Area Code) 7. DATE SUBMITTED (YYYYMMDD)                                                                                  |
| 8. PREPARING ACTIVITY                                                          | 1                                                                  |                                                                                                                              |
| NAME     Defense Supply Center, Columbus                                       | b. TELEPHONE (Inc.<br>(1) Commercial 614                           |                                                                                                                              |
| c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000 | Defense Standardi<br>8725 John J. Kingn<br>Fort Belvoir, Virgini   | CEIVE A REPLY WITHIN 45 DAYS, CONTACT: cation Program Office (DLSC-LM) nan Road, Suite 2533 a 22060-6221 7-6888 DSN 427-6888 |