INCH-POUND

MIL-M-38510/320D

w/AMENDMENT 1

4 June 2008

SUPERSEDING

MIL-M-38510/320D

14 July 2003

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR LOW-POWER SCHOTTKY TTL, COUNTERS, CASCADABLE, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, binary and decade counters. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	Presettable decade counter, cascadable
02	Presettable 4 - bit binary counter, cascadable
03	Decade counter
04	4 - bit binary counter

- 1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
_			
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
В	GDFP4-F14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Χ	CQCC2-N20	20	Square leadless chip carrier
2	CQCC1-N20	20	Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

AMSC N/A FSC 5962

1.3 Absolute maximum ratings.

Supply voltage range Input voltage range Storage temperature range Maximum power dissipation, (P_D) $1/$ Device type 01 and 02 Device type 03 and 04 Lead temperature (soldering, 10 seconds) Thermal resistance, junction to case (θ_{JC}) : Cases A, B, C, D, X, and 2 Junction temperature (T_J) $2/$	-1.5 V dc at -18 mA to +5.5 V dc -65° to +150°C 148.5 mW 82.5 mW dc +300°C (See MIL-STD-1835)
1.4 Recommended operating conditions.	
Supply voltage (V_{CC}) Minimum high level input voltage (V_{IH}) Maximum low level input voltage (V_{IL}) Normalized fanout (each output) Width of input count pulse, $t_{p(IN)}$ Types 01 and 02	maximum 2.0 V dc 0.7 V dc
CP0	20 ns minimum
CPI	30 ns minimum
Types 03 and 04 Input A Input B Width of reset pulse, t _{p(reset)} Types 01 and 02 Types 03 and 04 Input clock frequency, f _{clock} Types 01 and 02	17 ns minimum 34 ns minimum 20 ns minimum 25 ns minimum
CP0	0 to 30 MHz
CP1	0 to 15 MHz
Types 03 and 04 Input A Input B Width of parallel load pulse, t _{W(PL)}	
Types 01 and 02	20 ns minimum
Setup time, t _(SETUP) Data inputs high Data inputs low Enable time from load, reset to clock t _{EN} Types 01 and 02	15 ns minimum
Hold time at data inputs, t _H Types 01 and 02	20 ns minimum
Case operating temperature range (Tc)	

Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).
 Maximum junction temperature shall not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

2. APPLICABLE DOCUMENT

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D. Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Logic diagrams. The logic diagrams shall be as specified on figure 2.
 - 3.3.3 <u>Truth tables.</u> The truth tables shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.

- 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
 - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

TABLE I. <u>Electrical performance characteristics.</u>

Test	Symbol	Conditions	Device	Li	mits	Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IL} = 0.7 \text{ V},$ $V_{IH} = 2.0 \text{ V}, I_{OH} = -400 \mu\text{A},$	All	2.5		V
Low level output voltage	V _{OL}	V _{CC} = 4.5 V, V _{IH} = 2.0 V, <u>1</u> / V _{IL} = 0.7 V, I _{OL} = 4 mA,	All		0.4	V
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18 \text{ mA},$ $T_{C} = +25^{\circ}\text{C}$	All		-1.5	V
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	03, 04		20	μΑ
at reset inputs High level input current	I _{IH2}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02 03, 04		100	μΑ
at reset inputs			01, 02		200	
High level input current at input A	I _{IH3}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	03, 04		80	μΑ
High level input current at input A	I _{IH4}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	03, 04		400	μΑ
High level input current	I _{IH5}	V _{CC} = 5.5 V, V _{IN} = 2.7 V	03		160	μΑ
at input B			04		80	
High level input current	I _{IH6}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	03		800	μΑ
at input B			04		400	
High level input current at load, data inputs	I _{IH7}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01, 02		20	μΑ
High level input current at load, data inputs	I _{IH8}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02		100	μА
High level input current at CP0	I _{IH9}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01, 02		40	μА
High level input current at CP0	I _{IH10}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02		200	μΑ
High level input current at CPI	I _{IH11}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01, 02		80	μΑ
High level input current at CPI	I _{IH12}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01, 02		400	μА
Low level input current	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	03, 04	-30	-400	μА
at reset inputs			01, 02	-120	-800	
Low level input current at input A	I _{IL2}	$V_{CC} = +5.5 \text{ V}, V_{IN} = +0.4 \text{ V}$	03, 04	-0.5	-2.4	mA
Low level input current at input B	I _{IL3}	V _{CC} = +5.5 V, V _{IN} = +0.4 V	03, 04	-0.4	-3.2	mA
Low level input current at load, data inputs	I _{IL4}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	01, 02	-120	-400	μА
Low level input current at CP0	I _{IL5}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01, 02	-0.6	-2.6	mA

See footnotes at end of table.

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions	Device	Li	mits	Unit
		$-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified	types	Min	Max	
Low level input current at CP1	I _{IL6}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	01	-0.4	-3.2	mA
1			02	-0.4	-1.6	1
Short circuit output current	I _{OS}	V _{CC} = 5.5 V 2/	01, 02	-15	-100	mA
·		_	03, 04	-15	-130	
Supply current	Icc	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V} \underline{3}/$	01, 02		27	mA
			03, 04		15	
Maximum count frequency	f_{MAX}	$V_{CC} = 4.5 \text{ V}, C_L = 50 \text{ pF} \pm 10\%$	01, 02	30		MHz
at input $\overline{CP0}$		$R_L = 2 k\Omega$				
Maximum count frequency	f _{MAX}		01, 02	15		MHz
at input CPI						
Maximum input A count	f _{MAX}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \pm 10\%,$	03, 04	29		MHz
frequency	W V	$R_L = 2 k\Omega$				
Propagation delay time	t _{PLH1}]	03, 04	3	74	ns
low to high, A to QC	<u>4</u> /					
Propagation delay time	t _{PHL1}		03, 04	3	81	ns
high to low, A to QC	<u>4</u> /					
Propagation delay time	t _{PLH2}		03	3	52	ns
low to high, B to QD			04	3	78	
Propagation delay time	t _{PHL2}		03	3	56	ns
high to low, B to QD			04	3	78	
Propagation delay time	t _{PLH3}		01, 02	3	100	ns
low to high, $\overline{CP0}$ to Q2	<u>5</u> /					
Propagation delay time	t _{PHL3}		01, 02	3	107	ns
high to low, $\overline{CP0}$ to Q2	<u>5</u> /					
Propagation delay time	t _{PLH4}		01	3	38	ns
low to high, CP1 to Q3			02	3	78	
Propagation delay time	t _{PHL4}		01	3	52	ns
high to low, $\overline{\text{CP1}}$ to Q3	TILY		02	3	110]
Propagation delay time	t _{PLH5}	1	01, 02	3	46	ns
low to high, load to Q	IPLH5		01,02	3	70	113
Propagation delay time	t _{PHL5}	1	01, 02	3	65	ns
high to low, load to Q	- I IILO		0., 02	Ŭ		"
Propagation delay time	t _{PHL6}	1	02	3	46	ns
high to low, reset to Q						

¹/ Input B ($\overline{\text{CPI}}$) is connected to QA (Q0) during the V_{OL} test.

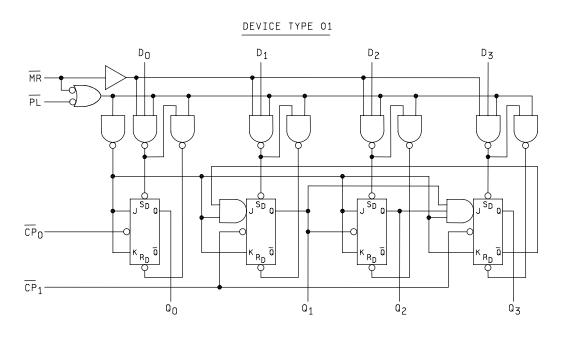
^{2/} Not more than one output should be shorted at a time.

^{3/} I_{CC} is measured with all outputs open, both Ro inputs grounded following momentary connection to 4.5 V and all other inputs grounded.

 $[\]underline{4}/$ When testing t_{PHL1} or t_{PLH1} , the QA pin shall be connected to the input B pin.

⁵/ When testing t_{PHL3} or t_{PLH3} , the Q0 pin shall be connected to the $\overline{CP1}$ pin.

TABLE II. Electrical test requirements.


	Subgroups (see table III)		
MIL-PRF-38535	Class S	Class B	
test requirements	devices	devices	
Interim electrical parameters	1	1	
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9	
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11	
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8, 9, 10, 11	N/A	
Group C end-point electrical parameters	1, 2, 3, 7, 8 9, 10, 11	1, 2, 3	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3	

^{*}PDA applies to subgroup 1.

- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 <u>Group C inspection.</u> Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows.
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Termina	Terminal symbol		l symbol	Termina	l symbol
	device type	e 01 and 02	device	type 03	device	type 04
Terminal number	Cases A, B, C, and D	Cases X and 2	Cases A, B, C, and D	Cases X and 2	Cases A, B, C, and D	Cases X and 2
1	PL	NC	R9(1)	NC	NC	NC
2	Q2	 PL	NC	R9(1)	NC	NC
3	D2	Q2	R9(2)	NC	NC	NC
4	D0	D2	QC	R9(2)	QC	NC
5	Q0	NC	QB	NC	QB	NC
6	CP1	D0	NC	QC	NC	QC
7	GND	NC	GND	NC	GND	NC
8	CP0	Q0	QD	QB	QD	QB
9	Q1	CP1	QA	NC	QA	NC
10	D1	GND	INPUT A	GND	INPUT A	GND
11	D3	NC	INPUT B	NC	INPUT B	NC
12	Q3	CP0	R0(1)	QD	R0(1)	QD
13	MR	Q1	R0(2)	QA	R0(2)	QA
14	V_{CC}	D1	V _{CC}	INPUT A	V _{CC}	INPUT A
15		NC		NC		NC
16		D3		INPUT B		INPUT B
17		NC		NC		NC
18		Q3		R0(1)		R0(1)
19		\overline{MR}		R0(2)		R0(2)
20		Vcc		Vcc		Vcc

FIGURE 1. <u>Terminal connections</u>.

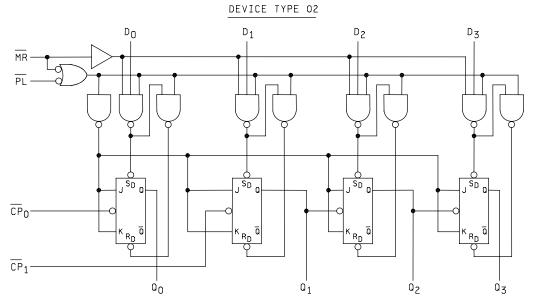


FIGURE 2. Logic diagrams.

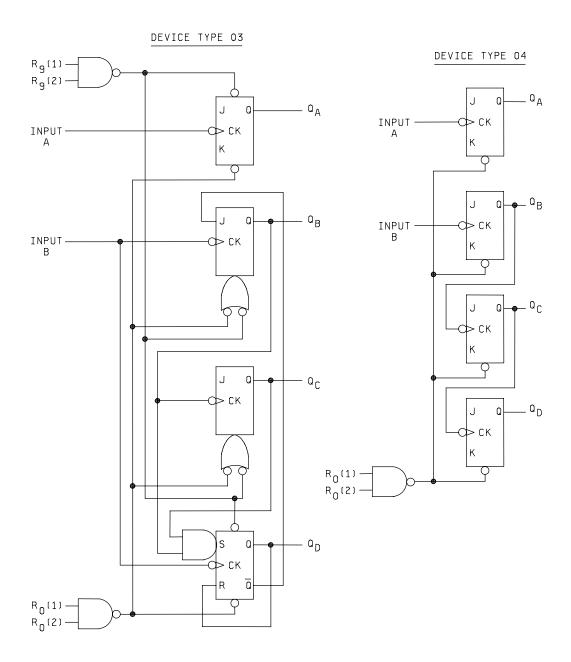


FIGURE 2. <u>Logic diagrams</u> - Continued.

Device type 01

	OUTPUT				
COUNT	QD	QC	QB	QA	
0	L	L	L	L	
1	Ш	Ш	Ш	Η	
2	L	L	Η	L	
3	L	Ш	Η	Η	
4	L	Н	L	L	
5	L	Н	L	Н	
6	L	Η	Η	L	
7	L	Н	Η	Η	
8	Η	L	L	L	
9	Η	L	L	Ι	

H = high level, L = low level NOTE A: Output Q0 connected to clock-2 input.

Device type 02

	OUTPUT				
COUNT	QD	QC	QB	QA	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	Н	L	
3	L	L	Н	Н	
4	L	Н	L	L	
5	L	Н	L	Н	
6	L	Н	Н	L	
7	L	Η	Н	Н	
8	Η	Ш	L	Ш	
9	Η	L	L	Н	
10	Η	L	Н	L	
11	Η	Ш	Н	Η	
12	Η	Η	L	L	
13	Н	Н	L	Н	
14	Н	Н	Н	L	
15	Η	Η	Н	Η	

H = high level, L = low level NOTE A: Output Q0 connected to clock-2 input.

FIGURE 3. Truth tables.

Device type 03

BCD COUNT SEQUENCE (See note A)

	OUTPUT					
COUNT	QD	QC	QB	QA		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Τ	Ш		
3	L	L	Ι	Η		
4	L	Η	L	L		
5	L	Н	L	Н		
6	L	Н	Н	L		
7	L	Η	Н	Н		
8	Н	L	L	L		
9	Н	L	L	Н		

BI-QUINARY (5-2) (See note B)

	OUTPUT				
COUNT	QA	QD	Q	QB	
0	L	L	L	L	
1	L	L	L	Η	
2	Ш	L	Ι	Ш	
3	L	L	Η	Η	
4	L	Н	L	L	
5	Н	L	L	L	
6	Н	L	L	Н	
7	Н	L	Н	L	
8	Н	L	Н	Н	
9	Н	Н	L	L	

RESET/COUNT FUNCTION TABLE

RESET INPUTS					OUT	PUT	
R0(1)	R0(2)	R9(1)	R9(2)	QD	Q	QB	QA
Н	Н	L	Х	L	L	L	L
Н	Н	Х	L	L	L	L	L
Х	Χ	Н	Н	Н	L	L	Η
Х	L	Χ	L	COUNT			
L	Х	L	Χ	COUNT			
L	Х	Х	L	COUNT			
Х	Ĺ	L	Х		COL	JNT	·

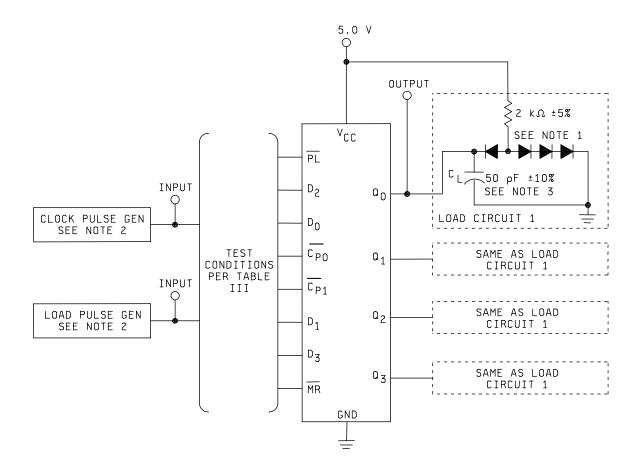
NOTES:

- A. Output QA is connected to input B for BCD count.
- B. Output QD is connected to input A for bi-quinary count.

FIGURE 3. <u>Truth tables</u> - Continued.

Device type 04

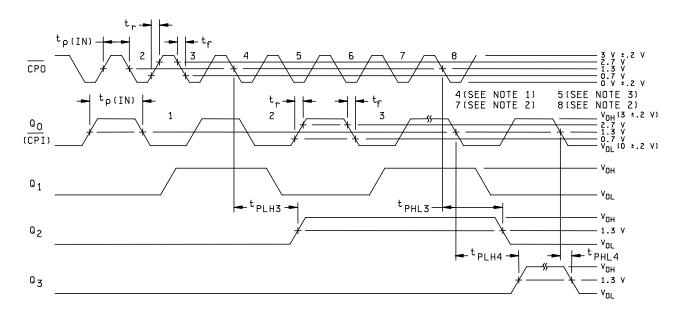
COUNT SEQUENCE (See note)


		OUT	PUT	
COUNT	QD	QC	QB	QA
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Η	Ш	Η
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н	L	L
13	Н	Н	L	Н
14	Н	Н	Н	L
15	Н	Н	Н	Н

RESET/COUNT FUNCTION TABLE

RESET	INPUTS		OUT	PUT	
R0(1)	R0(2)	QD	QC	QB	QA
Н	Н	L	L	L	L
L	Χ		COL	JNT	
X	L		COL	JNT	•

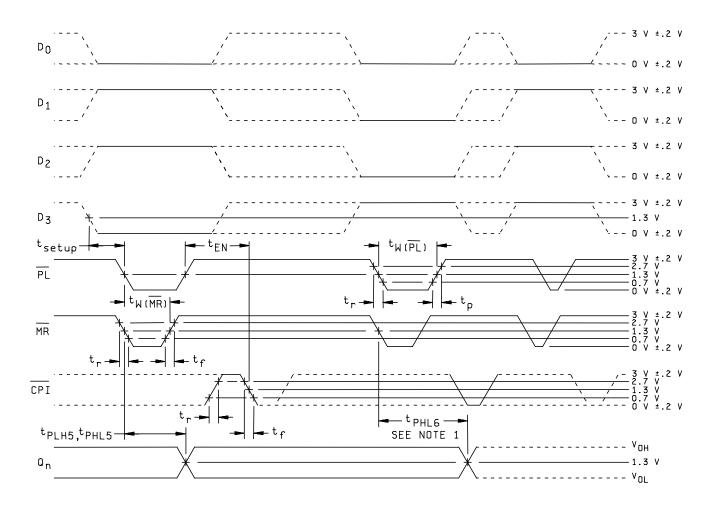
NOTE: Output QA is connected to input B.


FIGURE 3. <u>Truth tables</u> - Continued.

NOTES:

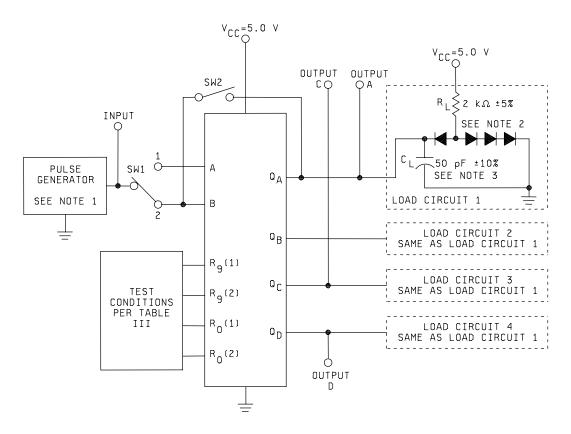
- 1. All diodes are 1N3064 or equivalent.
- 2. The pulse generator has the following characteristics: V_{gen} = 3 ±.2 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, $t_{p(IN)}$ = 500 ns, PRR \le 1 MHz, $Z_{OUT} \approx 50~\Omega,~F_{max}$: t_r = $t_f \le 6$ ns. 3. C_L includes probe and jig capacitance.

FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02.



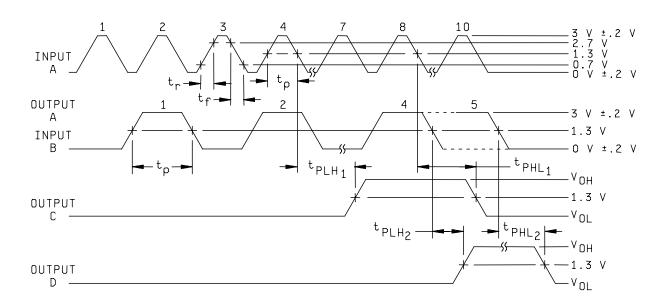
NOTES:

- 1. Applies to device types 01 and 02 on t_{PLH4} test; device type 01 on t_{PHL4} test.
- 2. Applies to device type 02 on t_{PHL4} test.
- 3. Applies to device type 01 on t_{PHL4} test.


FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued.

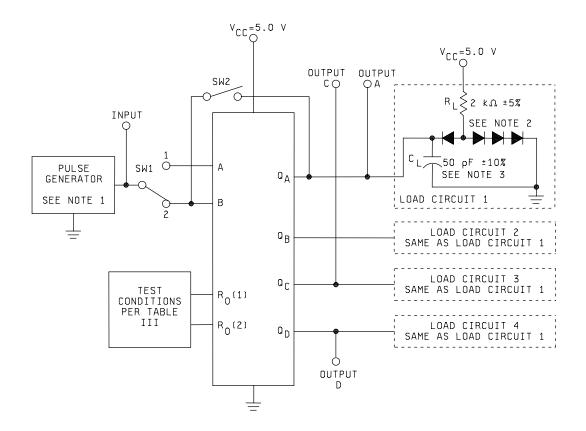
NOTE:

1. For device type 02 only.


FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued.

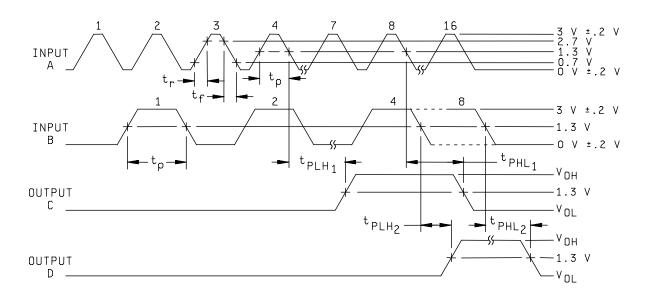
	SWITCH	POSITION
TEST	SW1	SW2
F MAX	1	CLOSED
A TO QC	1	CLOSED
B TO QD	2	OPEN

TEST CIRCUIT


FIGURE 4. Switching time test circuit and waveforms for device type 03 - Continued.

NOTES:

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, $Z_{OUT} \approx 50~\Omega$.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F maximum: $t_r = t_f \le 6 \text{ ns}$


FIGURE 4. Switching time test circuit and waveforms for device type 03 - Continued.

	SWITCH F	POSITION
TEST	SW1	SW2
F MAX	1	CLOSED
A TO QC	1	CLOSED
B TO QD	2	OPEN

TEST CIRCUIT

FIGURE 4. Switching time test circuit and waveforms for device type 04 - Continued.

NOTES:

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, $Z_{OUT} \approx 50 \ \Omega$.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F maximum: $t_r = t_f \le 6 \text{ ns}$

FIGURE 4. Switching time test circuit and waveforms for device type 04 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 v, or open).

			1								be high ≥					•					
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lir	nits	Unit
			Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}		Min	Max	
1	V _{OL}	3007	1					4 mA 2/	<u>2</u> /	GND						0.7 V	4.5 V	Q0		0.4	V
Tc = 25°C		"	2					2/	"	íí		4 mA				"	"	Q1		"	"
		"	3		4 mA			2/	"	íí						"	"	Q2		"	"
		"	4					2/	"	"					4 mA		"	Q3		"	"
	V _{OH}	3006	5	0.7 V			2.0 V	4 mA		"						2.0 V	"	Q0	2.5		"
		"	6	"						"		4 mA	2.0 V			=	"	Q1	=		"
		"	7	"	4 mA	2.0 V				tt						=	=	Q2	=		"
		"	8	"						"				2.0 V	4 mA	"	"	Q3	"		"
	V _{IC}		9				-18 mA			"							"	D0		-1.5	"
			10							"			-18 mA				"	D1		"	
			11			-18 mA				"							- "	D2		- "	
			12							"				-18 mA				D3			- :-
			13								-18 mA							CP0			
			14						-18 mA	"							"	CP1		"	"
		·	15							"						-18 mA	"	MR		"	"
			16	-18 mA						"							"	PL		"	"
	I _{IH1}	3010	17							"						2.7 V	5.5 V	MR		40	μΑ
	I _{IH2}	"	18							"						5.5 V	"	MR		200	"
	I _{IH7}	=	19	2.7 V						"							"	PL		20	"
		"	20			2.7 V				tt							"	D2		"	"
		"	21				2.7 V			"							-	D0		"	"
		"	22							"			2.7 V				"	D1		"	"
		"	23							"				2.7 V			"	D3		"	
	I _{IH8}	"	24	5.5 V						"							. "	PL		100	. "
		"	25			5.5 V				ıı							"	D2		"	"
		"	26				5.5 V			"							=	D0		"	"
		"	27							íí.			5.5 V				"	D1		"	"
		"	28							"				5.5 V			"	D3		"	
	I _{IH9}	"	29							"	2.7 V						"	CP0		40	"
	I _{IH10}	"	30							"	5.5 V						"	CP0		200	"
	I _{IH11}		31						2.7 V	"								CP1		80	"
	I _{IH12}	"	32						5.5 V	"							"	CP1		400	"
	I _{IL1}	3009	33							"						0.4 V	"	MR	<u>3</u> /	<u>3</u> /	"
	I _{IL4}	"	34	0.4 V						"							"	PL	"	"	"
		"	35			0.4 V				"							"	D2	"	"	"
		"	36				0.4 V			"							"	D0	"	"	"
		"	37							"			0.4 V				"	D1	=	"	"
		"	38							"				0.4 V			"	D3	"	"	
	I _{IL5}	"	39							ű	0.4 V						"	CP0	"	"	mA
1	I _{IL6}	"	40						0.4 V	"							"	CP1	"	"	mA

TABLE III. Group A inspection for device type 01.

Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$, or low $\le 0.7 \text{ v}$, or open).

					Terr	minal coi	nditions (pins not	designa	ted may	be high 2	≥ 2.0 V,	or low ≤ 0	0.7 v, or	open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol		Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lir	nits	Unit
		mounou	Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}	torriiriai	Min	Max	
1	los	3011	41	GND			5.5 V	GND		GND							5.5 V	Q0	-15	-100	mΑ
Tc = 25°C		"	42							"		GND	5.5 V				"	Q1	-	"	"
		"	43		GND	5.5 V				"							"	Q2	"	"	"
		"	44							"				5.5 V	GND		"	Q3	"	"	"
	Icc		45	GND		GND	GND		GND	"	GND		GND	GND		GND	"	V_{CC}		27	"
2	Same to	ests, termina	l conditions	and limits	as for sul	bgroup 1,	except T _C	= +125°0	C and V _{IC}	tests are	omitted.										
3	Same to	ests, termina	l conditions	and limits	as for sul	bgroup 1,	except T _C	= -55°C	and V _{IC} te	sts are or	nitted.										
7	Funct-	3014	46	A <u>4</u> /	L	Α	À	L	Α	GND	Α	L	Α	Α	L	B <u>4</u> /	4.5 V				
Tc = 25°C	ional	"	47	"	L	В	В	Н	В	"	В	Н	В	В	"	Α	"				
	tests	"	48	"	L	"	В	Н	Α	"	Α	Н	В	В	"	"	"	1			
	<u>5</u> /	"	49	"	Н	"	Α	L	В	"	В	L	Α	Α	"	"	"	1			
		"	50	"	"	"	Α	L	Α	"	Α	L	Α	Α	"	"	"	1			
		"	51	"	"	"	В	Н	В	"	В	Н	В	Α	"	"	"		<u>6</u> /		
		"	52	"	"	"	"	Н	A	"	A	Н	В	Α	"	"	"	1	_		
		"	53	"	L	Α	"	L	В	"	В	L	Α	В	Н	"	"				
		"	54	"		"	=	L	Α	"	Α	"	"	В	Н	"	"	1			
		"	55	"	"	"	Α	Н	В	"	В	"	"	A	Ĺ	"	"				
		"	56	"	"	"	"	"	Α	"	Α	"	"	Α	L	"	"				
		"	57	В	"	В	"	"	В	"	В	"	В	Α	Н	"	"				
			58	"	"	"	"	"	A	"	A	"	В	Α	Н	"	"				
			59	"	"	"	В	L	В	"	В	Н	A	В	L	"	"				
			60	"	"	"	В	Ī	A	"	A	H	A	В	-	"	"				
			61	"	Н	Α	A	Н	В	"	В	L	В	В	"	"	"				
			62	"	"	"	Α	Н	A	"	A	L	В	В	"	"	"				
			63	"	"	"	В	Ĺ	В	"	В	Н	A	В	"	"	"				
			64	"	"	"	"	-	A	"	A	H	A	В	"	"	"				
			65	"	L	В	"	"	В	"	В	L	В	В	"	"	"				
		"	66	"	ī	В	"	"	A	íí.	A	ī	В	В	"	"	"				
8	Repeat	subgroup 7		5°C and T	c = -55°C					1					l .	1	1	I			
9	f _{MAX}	Fig. 4	67	5.0 V	000.	5.0 V	5.0 V	OUT		GND	IN		5.0 V	5.0 V		5.0 V	5.0 V	CP0 to Q0	30		MHz
Tc = 25°C		"	68	5.0 V		5.0 V	5.0 V		IN	"			5.0 V	5.0 V	OUT	"	"	8/ CPI to Q3	15		MHz
																		8/			
	t _{PLH3}	3003	69	<u>9</u> /	OUT	<u>9</u> /	<u>9</u> /			"	IN <u>9</u> /		<u>9</u> /	<u>9</u> /		"	"	CP0 to Q2	3	77	ns
	t _{PHL3}	Fig. 4 <u>7</u> /	70	<u>10</u> /	OUT	<u>10</u> /	<u>10</u> /			"	IN <u>10</u> /		<u>10</u> /	<u>10</u> /		"	"	CP0 to Q2		82	
	t _{PLH4}	"	71	<u>11</u> /		<u>11</u> /	<u>11</u> /		IN <u>11</u> /	"			<u>11</u> /	<u>11</u> /	OUT	"	"	CP1 to Q3	"	<u>13</u> /	
	t _{PHL4}	"	72	<u>12</u> /		<u>12</u> /	<u>12</u> /	0.17	IN <u>12</u> /	"			<u>12</u> /	<u>12</u> /	OUT	"		CPI to Q3	"	<u>14</u> /	
	t _{PLH5}	"	73	IN <u>15</u> /			<u>15</u> /	OUT		"		OUT	45/			<u>15</u> /	"	PL to Q0	"	35	
		"	74 75	IN IN	OUT	<u>15</u> /				"		OUT	<u>15</u> /					PL to Q1	-		-
					001	13/			1								ļ	PL to Q2			├
		"	76	IN						"				<u>15</u> /	OUT		"	PL to Q3		"	

MIL-M-38510/320D w/AMENDMENT 1

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, or low $\leq 0.7 \text{ v}$, or open).

					1 611	Illilai co	iuitions (pins not	uesigna	leu illay	be nign 2	<u> </u>	JI IUW >	0.7 V, OI	open).						
			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Cub aroun	Symbol	MIL-STD- 883	A,B,C,D Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	l in	nits	Unit
Subgroup	Symbol	method	X, 2 <u>1</u> /	2	3	4	b	0	9	10	12	13	14	16	10	19	20	terminal	LII	IIIIS	Offic
			Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}		Min	Max	
9	t _{PHL5}	3003	77	IN <u>16</u> /			<u>16</u> /	OUT		GND						5.0 V	5.0 V	PL to Q0	3	50	ns
Tc = 25°C		<u>7</u> /	78	IN						"		OUT	<u>16</u> /				"	PL to Q1	"	"	"
		"	79	IN	OUT	<u>16</u> /				"							"	PL to Q2	"	"	"
		"	80	IN										<u>16</u> /	OUT		"	PL to Q3	"	"	"
10	f _{MAX}	Fig. 4	81									•	•		•		•	CP0 to Q0	30		MHz
																		<u>8</u> /			
Tc = 125°C		"	82															CPI to Q3	15		MHz
																		<u>8</u> /			
	t _{PLH3}	3003	83															CP0 to Q2	3	100	ns
	t _{PHL3}	Fig. 4 <u>7</u> /	84															CP0 to Q2	"	107	"
	t _{PLH4}	"	85															CPI to Q3	"	<u>17</u> /	"
	t _{PHL4}	"	86															CPI to Q3	"	<u>18</u> /	"
	t _{PLH5}	"	87	Same te	erminal co	nditions a	s for subg	roup 9.										PL to Q0	"	46	"
		"	88															PL to Q1	"	"	"
		"	89															PL to Q2	"	"	"
		"	90															PL to Q3	"	"	"
	t _{PHL5}	"	91															PL to Q0	"	65	"
		"	92															PL to Q1	"	"	"
		"	93															PL to Q2	"	"	"
		"	94															PL to Q3	"	"	"
11	Same to	ests, termina	l conditions	, and limits	s as for su	bgroup 1	0, except	$T_C = -55^{\circ}C$	and V _{cc}	= 4.5 volt	s for the f	MAX tests.	•	•	•		•				

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 v, or open).

						illilai coi															
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883	Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lir	nits	Unit
		method	X, 2 <u>1/</u> Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}	terminal	Min	Max	
1	V _{OL}	3007	1					4 mA <u>2</u> /	<u>2</u> /	GND						0.7 V	4.5 V	Q0		0.4	V
Tc = 25°C	V OL	"	2					<u>2</u> /	<u></u>	"		4 mA				0.7 V	1.0 1	Q1		"	"
10 - 20 0		"	3		4 mA			2/	"	"		11117				"	"	Q2		"	"
			4		11117			2/		"					4 mA	"	"	Q3		"	"
	V _{OH}	3006	5	0.7 V			2.0 V	4 mA							111171	2.0 V	"	Q0	2.5		"
	• 011	"	6	"						"		4 mA	2.0 V				"	Q1	"		"
		"	7	"	4 mA	2.0 V				"							"	Q2	"		"
		"	8	"						"				2.0 V	4 mA		"	Q3	"		"
	Vic		9				-18 mA			u							"	D0		-1.5	"
			10							"			-18 mA				"	D1		"	"
			11			-18 mA				-							"	D2		-	"
			12							"				-18 mA			-	D3		-	"
			13							"	-18 mA						"	CP0		"	"
			14						-18 mA	"							"	CP1		"	"
			15							"						-18 mA	"	MR		"	"
			16	-18 mA						"							"	PL		"	"
	I _{IH1}	3010	17							"						2.7 V	5.5 V	MR		40	μА
	I _{IH2}	"	18							"						5.5 V	"	MR		200	"
	I _{IH7}	"	19	2.7 V						"							"	— PL		20	"
		"	20			2.7 V				"							"	D2		"	"
		"	21				2.7 V			"							"	D0		"	"
		"	22							u			2.7 V				=	D1		-	"
		"	23							"				2.7 V			"	D3		"	"
	I _{IH8}	"	24	5.5 V						"							"	PL		100	"
		"	25			5.5 V				"							"	D2		"	"
		"	26				5.5 V			tt							"	D0		"	"
		"	27							"			5.5 V				-	D1		-	"
		"	28							"				5.5 V			"	D3		"	"
	I _{IH9}	"	29							"	2.7 V						"	CP0		40	"
	I _{IH10}	"	30							"	5.5 V						"	CP0		200	"
	I _{IH11}	"	31						2.7 V	"							"	CP1		80	"
	I _{IH12}	"	32						5.5 V	íí							"	CP1		400	"
	I _{IL1}	3009	33							"						0.4 V	"	MR	<u>3</u> /	<u>3</u> /	"
	I _{IL4}	"	34	0.4 V						"							"	PL	"	"	"
		"	35			0.4 V				ű							"	D2	"	"	"
		"	36				0.4 V			"							- "	D0	- "	- "	"
			37							"			0.4 V	0.411			- "	D1	- "	"	"
		"	38 39						-	"	0.41/			0.4 V			"	D3	- "	"	" ^
	I _{IL5}	"	40						0.4 V	"	0.4 V							CP0			mA
	I _{IL6}	*	40						U.4 V									CP1	-		mA

TABLE III. <u>Group A inspection for device type 02</u>. Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 v, or open).

							naitions (pins not	designa	ed may	be high 2	≥ 2.0 V,	or low ≤	0.7 V, or							
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lir	nits	Unit
			Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}		Min	Max	
1	los	3011	41	GND			5.5 V	GND		GND							5.5 V	Q0	-15	-100	mΑ
Tc = 25°C		"	42							"		GND	5.5 V				"	Q1		"	"
		"	43		GND	5.5 V				"							"	Q2	"	"	"
			44											5.5 V	GND		"	Q3	"	"	"
	Icc		45	GND		GND	GND		GND		GND		GND	GND	_	GND	"	V _{CC}		27	"
2		ests, termina			as for sul			= +125°(tests are											
3		ests, termina																			
7	Funct-	3014	46	A <u>4</u> /	1	A A	А	1	A A	GND	A	- 1	Α	Α	1	B <u>4</u> /	4.5 V				
Tc = 25°C	ional	3014	47	"	Ĺ	A	В	H	В	0110	В	H	В	В	-	A	7.0 V				
10 - 25 0	tests		48	"	-	A	В	H	A		A	H	В	В		"	"				
	<u>5</u> /		49	"	Н	В	A	Ľ	В	"	В	Ľ	A	A	"	"	"				
	<u> </u>		50	"	H	В	A	-	A	"	A	I I	A	A	"	"	"	1			
			51	"	H	В	В	H	В	"	В	H	В	A	"	"	"	1	6/		
			52	"	H	В	В	Н	A		A	H	В	A	"	"	"	1	<u>6</u> /		
				"				L	В		В		A	В		"		-			
			53		<u> </u>	A	A	<u> </u>				L			H		-	4			
			54	-	<u> </u>	A	A	L L	A		A		A	B B	"	-	"	4			
			55		L.	A	В	H	В	"	В	H	В				"				
			56	"	<u>-</u>	A	В	H	A		A	Н.	В	В	"	"	"	_			
			57		H	В	A	Ŀ	В		В	L.	A	В							
			58		H	В	A	L	A		A	L	A	В							
			59	"	H	В	В	H	В	- "	В	H	В	В	"	"	"				
			60		Н	В	В	Н	A		A	Н	В	В			"				
			61		L.	A	A	L	В		В	L	A	Α	L "						
			62			A	A	L	Α		A	L	A	A		- "	"				
			63	В		В	В	L	В		В	<u>L</u>	В	В	- "		- "-				
			64		- :	В	В	L	A	"	A	L	В	В	"	"	"				
			65		- :	В	A	H	В		В	H	A	В							
			66			В	A	Н	A	"	A	H	A	В		- "	"				
			67	"	H	A	В	L	В	"	В	L.	В	В			- "	4			
			68	"	H	A	В	L	A		A	L	В	В	- "	- "	- "				
			69	"	H	A	A	H	В		В	H	A	В			**	4			
			70		H	A	A	H	A	"	A	H	A	В		"		4			
			71	"	L L	В	В	L	В	"	В	L	В	Α	Н	"	"	4			
			72	"	L.	В	В	L	A	-	A	L	В	Α		- "	"	4			
			73	"	H	A	A	H	В	-	В	H	A	A	- "	- "	- "	4			
		L . "	74		H	Α	Α	Н	Α		Α	Н	Α	Α		"	"				
8	_	subgroup 7			_C = -55°C.		1		1					1	1		1			1	
9	f _{MAX}	Fig. 4	75	5.0 V		5.0 V	5.0 V	OUT		GND	IN		5.0 V	5.0 V		5.0 V	5.0 V	CP0 to Q0	30		MHz
Tc = 25°C		"	76	5.0 V		5.0 V	5.0 V		IN	ű			5.0 V	5.0 V	OUT	"	"	CPI to Q3	15		MHz
	t _{PLH3}	3003	77	<u>9</u> /	OUT	<u>9</u> /	<u>9</u> /			"	IN <u>9</u> /		<u>9</u> /	<u>9</u> /		"	"	CP0 to Q2	3	77	ns
	t _{PHL3}	Fig. 4 <u>7</u> /	78	<u>10</u> /	OUT	<u>10</u> /	<u>10</u> /			"	IN <u>10</u> /		<u>10</u> /	<u>10</u> /		"	"	CP0 to Q2	"	82	"
	t _{PLH4}	"	79	<u>11</u> /		<u>11</u> /	<u>11</u> /		IN <u>11</u> /				<u>11</u> /	<u>11</u> /	OUT	"	"	CPI to Q3	"	<u>13</u> /	"

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 V, or open).

			Casas	1												40	1.1	I I			
		MIL-STD-	A,B,C,D	'	2	3	4	5	0	<i>'</i>	0	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lir	nits	Unit
			Test no.	PL	Q2	D2	D0	Q0	CP1	GND	CP0	Q1	D1	D3	Q3	MR	V _{CC}		Min	Max	
9	t _{PHL4}	3003	80	<u>12</u> /		<u>12</u> /	<u>12</u> /		IN <u>12</u> /	"			<u>12</u> /	<u>12</u> /	OUT	5.0 V	5.0 V	CPI to Q3	3	<u>14</u> /	"
Tc = 25°C	Symbol 883 Cases 2 3 4 6 8 9 10 12 13 14 16 18 19 20 Measured Limits Min Max														35	"					
		"	82	"						"		OUT	<u>15</u> /			"	"	PL to Q1	"	"	"
	Symbol Radio Reference Symbol Radio Reference Radio Ra														"	"					
		"	84	"						"				<u>15</u> /	OUT	"	"		"	"	"
	t _{PHL5}	"	85	IN <u>16</u> /			<u>16</u> /	OUT		"						5.0 V	"	PL to Q0	"	50	ns
		"	86	"						"		OUT	<u>16</u> /				"	PL to Q1	"	"	"
		"	87	"	OUT	<u>16</u> /				"							"		"	"	"
		"	88	"						"				<u>16</u> /	OUT		"	PL to Q3	"	"	"
	t _{PHL6}	"	89	IN	OUT	3.0 V	3.0 V		GND	"	GND		3.0 V	3.0 V		IN	"	MR to Q2	"	35	ns
		"	90	"		"	"	OUT	"	"	"		"	"		"	"	MR to Q0	"	"	"
		"	91	"			"		"	"	"	OUT	"	"		"	"	MR to Q1	"	"	"
		"	92	"		"	"		"	"	"		"	"	OUT	"	"	MR to Q3	"	"	"
10	f _{MAX}	Fig. 4	93																30		MHz
Tc = 125°C		"	94															CP1 to Q3	15		MHz
	t _{PLH3}	3003	95																3	100	ns
	t _{PHL3}	Fig. 4 <u>7</u> /	96																"	107	"
	t _{PLH4}	"	97																"	<u>17</u> /	"
	t _{PHL4}	"	98															CPI to Q3	"	<u>18</u> /	"
	t _{PLH5}	"	99	Same te	erminal co	nditions a	s for subg	roup 9.										PL to Q0	"	46	"
		"	100															PL to Q1	"	"	"
		"	101															PL to Q2	"	"	"
		"	102															PL to Q3	"	"	"
	t _{PHL5}	"	103															PL to Q0	"	65	"
		"	104															PL to Q1	"	"	"
		"	105															PL to Q2	"	"	"
		"	106															PL to Q3	"	"	"
	t _{PHL6}	"	107															MR to Q2	"	46	"
		"	108															MR to Q0	"	"	"
		"	109															MR to Q1	"	"	"
		"	110															MR to Q3	"	"	"
11	Same to	ests, termina	l conditions	, and limits	s as for su	ıbgroup 1	0, except	T _C = -55°0	C and V _{CC}	= 4.5 volt	s for the f	MAX tests.	•		•		•				

- 1/ Cases X and 2 pins not referenced are NC.
- 2/ Input CPI shall be connected to Q0 during the V_{OL} test.
- 3/ IIL limits are as follows:

		Min/Max li	mits for circuits	
Test	В	С	Е	F
I _{IL1}	-320/-800 μΑ	-180/-410 μA	-280/-760 μA	-120/-360 μA
I _{IL4}	-160/-400 μA	-150/-380 μA	-160/-400 μA	-120/-360 μΑ
I _{IL5}	-1.0/-2.4 mA	-1.2/-2.6 mA	-0.6/-1.6 mA	-1.0/-2.4 mA
I _{IL6}	-0.4/-1.4 mA	-1.2/-2.6 mA	-0.8/-2.8 mA	-1.3/-3.2 mA
		(Device 01)	(Device 01)	(Device 01)
		62/-1.35 mA	-0.4/-1.4 mA	65/-1.6 mA
		(Device 02)	(Device 02)	(Device 02)

- 4/ A = 2.5 V, B = 0.4 V.
- 5/ Only a summary of attributes data is required.
- 6/ Output voltages shall be either:
 - a. H ≥ 1.5 V
 - b. $L \le 1.5 \text{ V}$
- $\overline{2}$ / If proper setup is achieved from previous test and conditions, no additional setup is required. (See figure 4). When testing t_{PHL3} or t_{PLH3}, the Q0 pin shall be connected to the $\overline{CP1}$ pin
- 8/ The f_{MAX} minimum limit is the frequency of the input pulse. Outputs shall be monitored and shall be observed to toggle per the truth table for that device type. Recommended operating conditions (particularly for t_{o(IN)}) shall be observed.
- 9/ Setup to count 3 (Q0 = 1, Q1 = 1, Q2 = 0, Q3 = 0) by either:
 - a. Serial up count (3 clock pulses; PL high).
 - b. Parallel load to count 3 (D0 = 1, D1 = 1, D2 = 0, D3 = 0; following data setup as shown, make \overline{PL} low, then high.

Following the above setup, apply clock pulse to $\overline{\text{CP0}}$ ($\overline{\text{PL}}$ high) for test. (See figure 4, connect Q0 to $\overline{\text{CP1}}$.)

- 10/ Setup to count 7 (Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 0) by either:
 - a. Serial up count (7 clock pulses; PL high).
 - b. Parallel load to count 7 (D0 = 1, D1 = 1, D2 = 1, D3 = 0; following data setup as shown, make \overline{PL} low, then high.

Following the above setup, apply clock pulse to $\overline{\text{CP0}}$ ($\overline{\text{PL}}$ high) for test. (See figure 4, connect Q0 to $\overline{\text{CP1}}$.)

- 11/ Setup to count 6 (Q0 = 0, Q1 = 1, Q2 = 1, Q3 = 0) by either:
 - a. Serial up count (3 clock pulses at $\overline{\text{CP1}}$, $\overline{\text{PL}}$ high).
 - b. Parallel load to count 6 (D0 = 0, D1 = 1, D2 = 1, D3 = 0; following data setup as shown, make \overline{PL} low, then high.

Following the above setup, apply clock pulse to $\overline{\text{CP1}}$ ($\overline{\text{PL}}$ high) for test. (See figure 4)

- 12/ Setup to count 8 (for device type 01) (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0) or count 14 (for device type 02) (Q0 = 1, Q1 = 1, Q2 = 0, Q3 = 1) by either:
 - a. Serial up count (4 clock pulses at $\overline{CP1}$ for device type 01; 7 clock pulses at $\overline{CP1}$ for device type 02; \overline{PL} high).
 - b. Parallel load to count 8 (D0 = 0, D1 = 0, D2 = 0, D3 = 1) for device type 01 or count 14 (D0 = 0, D1 = 1, D2 = 1, D3 = 1) for device type 02; following data setup as shown, make \overline{PL} low, then high.

Following the above setup, apply clock pulse to $\overline{\text{CP1}}$ ($\overline{\text{PL}}$ high) for test. (See figure 4)

- 13/ The maximum limit for device type 01 is 29 ns, 02 is 60 ns.
- $\underline{14}$ / The maximum limit for device type 01 is 40 ns, 02 is 85 ns.
- 15/ The output under test must be set to logical 0 previous to test. This may be done by setting \overline{MR} low, then high, or as follows: Dn = low followed by pulse on \overline{PL} . Set Dn = high, pulse on \overline{PL} to run test. (See figure 4).
- $\frac{16}{PL}$. Set Dn = low, pulse on $\frac{PL}{PL}$ to run test. (See figure 4).
- 17/ The maximum limit for device type 01 is 38 ns, 02 is 78 ns.
- 18/ The maximum limit for device type 01 is 52 ns, 02 is 110 ns.

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 V, or open).

		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	R9(1)	NC	R9(2)	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{cc}	1	Min	Max	
1	V _{OL}	3007	1	GND		GND	4 mA			GND			GND	2.0 V	2.0 V	2.0 V	4.5 V	QC		0.4 V	V
c = 25°C	OL.	"	2	"		"		4 mA		"			"	"	"		"	QB		"	"
0 - 20 0		"	3	2.0 V		0.7 V				"	4 mA		"	"	"	"	"	QD		"	"
		"	4	0.7 V		2.0 V				"		4 mA +	2.0 V	GND	"	"	"	QA		"	"
		"	5	2.0 V		"	4 mA			"		I _{II 3}	GND	2.0 V	"	0.7 V	"	QC		"	"
		"	6	"		"		4 mA		"		(max)	"	"	0.7 V	2.0 V	"	QB		"	"
	V _{OH}	3006	7	"		"				"	-0.4 mA	(max)	"	"	2.0 V	0.7 V	66	QD	2.5		"
	* OH	"	8	"		"				"	01111111	-0.4 mA	2.0 V	GND	0.7 V	2.0 V	"	QA	"		"
		"	9	"		"				"	-0.4 mA	011111111	GND	2.0 V	"	0.7 V	"	QD	"		"
			10	"		"				"	01111111	-0.4 mA	2.0 V	GND	"	"	"	QA	"		"
			11	0.7 V		0.7 V	-0.4 mA			"		0.111171	GND	2/ <u>3</u> /	2/	<u>2</u> /	"	QC	"		-
			12	"		"	0.11117	-0.4 mA		"			"	2/ 4/	2/	2/	"	QB	"		"
	I _{I L}	3009	13					0.111171		"					0.4 V	5.5 V	5.5 V	R0(1)	5/	5/	μA
	-112	"	14							"					5.5 V	0.4 V	"	R0(2)	"	"	"
			15	0.4 V		5.5 V				"					0.0 1	0.1 0	"	R9(1)	"	"	"
			16	5.5 V		0.4 V				"							"	R9(2)	"	"	-
	I _{I L2}	"	17	2/		2/				"			0.4 V		GND	GND	"	A	"	"	m.
	I _{I L3}	"	18	<u> </u>		<u>=</u> /				"			0.7 V	0.4 V	GND	GND	66	В	"	"	"
	VIC		19	-18 mA						"				0. + v	OND	GIVE	4.5 V	R9(1)		-1.5	V
	VIC		20	-101117		-18 mA				"							4.5 V	R9(2)		"	"
			21			10 111/1				"			-18 mA				66	A		"	"
			22							"			10 111/1	-18 mA			"	В		"	"
			23							"				-10 1117	-18 mA		66	R0(1)		"	-
			24							"					-101117	-18 mA	66	R0(1)		"	"
	I _{IH1}	3010	25	2.7 V						"						-101117	5.5 V	R9(1)		20	μA
	чн1	0010	26	Z.1 V		2.7 V				"							0.0 V	R9(2)		20	μ/
			27			Z.1 V				"					2.7 V		66	R0(1)		"	-
			28							"					Z.1 V	2.7 V	"	R0(1)		"	"
	I _{I H 2}		29	5.5 V						"						Z.1 V		R9(1)		100	
	Ч H 2		30	3.5 V		5.5 V				"								R9(1)		"	-
			31			3.5 V				"					5.5 V			R0(1)			-
			32							"					3.5 V	5.5 V	"	R0(1)		"	"
	I _{I H 3}	"	33							"			2.7 V			0.0 V	"	A		80	"
	1 _{1 H 4}	"	34				-			"			5.5 V				66	A		400	"
	I _{1 H 5}	"	35				-			"			J.J V	2.7 V			66	В		160	"
	I _{1H6}	"	36			<u> </u>				"				5.5 V			66	В		800	"
	I _{OS}	3011	37	5.5 V		5.5 V	-			"	GND			J.J V	GND	GND	66	QD	-15	-100	m
	6/	3011	38	J.J V		3.3 V	-			"	OIND	GND			"	UND "	66	QD QA	-10	"	"
	<u>U</u> /		39	GND		GND		GND		"		GIVD	GND	<u>2</u> / <u>4</u> /	2/	2/	"	QA	"	"	**
			40	GND "		GIND "	GND	GIVD		"			"	2/ 3/	<u> </u>	<u> </u>	"	QC		"	**
	I _{CC}		41	"			GIVD			"			-	GND			"	V _{CC}		15	"
	ICC .		41			1	1	1		1	1			טויט				v CC		ıΰ	1

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$, or low $\le 0.7 \text{ V}$, or open).

					Tern	ninal con	iditions (pins not	designat	ed may b	oe high ≥	≥ 2.0 V, c	or low ≤ 0).7 V, or	open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol		Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lir	mits	Unit
		metriou	Test no.	R9(1)	NC	R9(2)	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{CC}	terrilliai	Min	Max	+
7	Funct-	3014	42	A <u>8</u> /	INC	A	L	L	INC	GND	Н	Н	B <u>8</u> /	A	A	A	4.5 V		IVIIII	IVIAX	<u></u>
Tc = 25°C	ional	"	43	A		A	-	-		"	H	H	"	В	A	A	"	1			
10 - 20 0	tests	"	44	В		В	"	"		"	L	L	"	В	A	A	"	1			
	<u>7</u> /	"	45	A		A	"	"		"	H	H	"	A	В	В	"				
			46	Α		Α	"	"		"	Н	Н	"	В	В	В	"	1			
		"	47	В		В	"	"		"	L	L	"	В	Α	Α	"	1			
		"	48	"		В	"	"		"	"	"	"	Α	Α	"	"	1			
		"	49	"		Α	"	"		"	"	"	"	В	Α	"	"				
		"	50			"	"	"			"	"	"	Α	Α	"	"				
		"	51	"		"	"	"		"	"	"	"	В	В	"	"				
		"	52	"		"	"	"		"	"	"	"	Α	"	"	"	1			
		"	53	"		"	"	Н		"		"	"	В	"	"	"				
		"	54	В		Α	L	Н		"	"	"	"	Α	"	"	"]	<u>9</u> /		
		"	55	"		"	Н	L		-	"	"	"	В	"	-	"	1			
		"	56	"		"	"	L		"	-	"	"	Α	"	"	"				
		"	57	"		"	"	Н		"	"	"	"	В	"	"	"				
		"	58	"		"	"	Н		"	"	"	"	Α	"	"	"				
			59	"		"	L	L		"	Н	"	"	В	"	"	"	1			
		"	60	"		"	"	"		"	Н	"	"	Α	"	"	"	1			
		"	61	"		"	"	"			L	"	"	В	"	"	"				
			62	"		В	"	"		íí	-	"		В		В	"	1			
			63	Α		"	"	"		"	"	"	"	A	"	"	"	1			
			64	"		"		Н		"		"		В	А		"				
			65	"		"		Н				"			A		"				
						"				"		"		A B	"	"	"	4			
			66			"	H	L		"		"				"	"	4			
			67			"		L		"		"		A	"		"				
		"	68	"			"	Н						В				4			
		"	69	"		"	"	Н		"	"	"	"	Α	"	"	"	_			
		"	70	"		"	L	L		"	Н	"	"	В	"	"	"	_			
		"	71	"		"	"	"		"	Н	"	"	Α	"	"	"	1			
		"	72	"		"	"	"		"	L	"	"	В	"	"	"	4			
			73	B		"	"	"		"	- "	"	- "	В	- "	"	"	4			
		"	74						-	"	"	"	"	A	"		"	4			
			75	"		A "	"	H		"				В	"	"	"	4			
		"	76	"			"	Н	1		"	"	"	Α				4			
		"	77	"		"	Н	L		"	"	"	"	В	"	"	"	_			
		"	78	"		"	Н	L		"	"	"	"	Α	"	"	"	1			
		"	79	"		"	Н	Н		"	"	"	"	В	"	"	"]			
		"	80	"		В	L	L		"	-	"	"	В	"	Α	"				
		"	81	Α		"	"	L		66	"	"	"	В	В	"	"				
		"	82	"		"	"	L		66	"	"	"	Α	"	"	"				
		"	83	"		"	"	Н		"	"	"	"	В	"	"	"	1			
		"	84	"		"	"	Н		"	"	"	"	A	"	"	"	1			
		"	85	"		"	Н	L		"	"	"		В	"	"	"	1			
		"	86	"		"	H	L		66	"	"	"	A	"		"	1			
			87	"		"	H	Н	-	"	"	"		В	"	"	"	†			
			01				П	П	1									1			

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$, or low $\le 0.7 \text{ V}$, or open).

					rem	illiai con	uitions (pins not	uesignai	eu may i	be nign ∠	2 Z.U V, C		0.7 V, or							
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol		Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	L	imits.	Unit
		metriou	Test no.	R9(1)	NC	R9(2)	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{cc}	terriiriai	Min	Max	+
7	Funct-	3014	88		NC		QC I		INC	GND	Н	H	В	A	B	B	4.5 V	l	IVIIII	IVIAX	
	ional	3014	89	A		A B		L .		GIND	Н	Н	B "	A	 "	В	4.5 V				
Tc = 25°C	1		90	-		D "	-				п .	П	-	1			-				
	tests			B "		"					L "	<u> </u>	"	A	A	A	-				
	<u>7</u> /		91 92	"		"	,				"	-	"	B A	A B	A B	"				
			93	"		"		Н			"		"	В	D	D	"				
			94	"				Н						A			"				
			95	"		"	Н	L		"	"	"	"	В		"	"				
			96	"		"	"	i			"	"	"	A		"	"				
			97	"		"		H		"		"		В			"				
			98	"		"		Н			"	"	"	A			"				
			99	"		"	- 1	-			"			В	Α	Α	"				
			100	"		"		-			"	"	"	В	В	В	"		<u>9</u> /		
			101	"		"	"	<u> </u>			"	"	"	A	"	"	"		<u>3</u> /		
			102	"		"	- 1	Н			"			В			"				
			103	"		"	l l	H		"	"	"	"	A		"	"				
				"		"				66		"	"				"				
			104	"		"	H	L		"	"	"	"	В	"	"	"				
			105	"		"		L		"	"	-	"	A	"	-	"				
			106					Н						В							
		"	107	"		"	"	Н		"	"	"	"	Α	"	"	"				
		"	108	Α		Α	L	L		"	Н	Н	"	Α	"	"	"				
		"	109	Α		Α	"	"		"	"	"	"	В	"	"	"				
		"	110	В		В	"	"		"	"	"	"	В	"	"	"				
		"	111	"		"	=	"		"	"	"	"	Α	"	"	"				
		"	112	"		"		"		"	L	L	"	Α	Α	Α	"				
		"	113	"		"	"	"		"	"	L	"	В	Α	Α	**				
			114	"		"		"		"	"	L	Α	"	В	В	"				
		"	115	"		"	"	"		"	"	Н	В	"	"	"	"				
			116	"		"	"	"		"	"	Н	A	"	"	"	"				
			117	"		"	"	"		"	"	L	В	"		"	"				
			118	"		"	"	"		"	"	"	A	"	"	Α	"				
		"	119	"		"	"	"		"	"	"	В	"	Α	A	"				
		"	120	"		"	"	"		"	"	"	A	"	A	В	"	1			
			121	"		Α	"	"		"	"	Н	В	"	В	"	"	1			
		"	122	"		A	"	"		"	"	"	A	"	В	"	"	1			
		"	123	Α		A				"	Н	"	В	"	В	"	"				
			124	A		В		"		66	H	"	A	"	A	"	"	1			
			125	A		A		"		"	H	"	В	"	A	Α	"	1			
8	Some to	ooto tormina			oo for ou		oveent T	_ 112F0	ond T			l	ט	1	^_	^	1	I			
0	Same to	ests, termina	ii conditions,	, anu iiriiitS	สร เปเ รน	ugroup 7,	except I	c=+125°(ر, anu n	= - 33 ⁻ U.											

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$, or low < 0.7 V, or open).

					1 011	illiai con	uitions (יווטו פוווכ	acsignat	cu may i	oc mgm z	_ Z.O v, C	$0 \le 0$	7.7 V, OI	open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883	Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Lin	nits	Unit
		method	X, 2 <u>1</u> /															terminal			
			Test no.	R9(1)	NC	R9(2)	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V_{CC}		Min	Max	
9	f_{MAX}	Fig. 4	126	GND						GND		OUT	IN <u>10</u> /		GND		5.0 V	A to QA	29		MHz
Tc = 25°C	t _{PLH1} 11/	"	127	"			OUT			44			IN		<u>12</u> /	A <u>8</u> /	"	A to QC	3	53	ns
	t _{PHL1}	"	128	"			OUT			"			IN		GND		"	A to QC	"	58	"
	t _{PLH2}	"	129	"						"	OUT			IN	<u>12</u> /	A <u>8</u> /		B to QD	"	37	
	t _{PHL2}	"	130	"						"	OUT			IN	GND		"	B to QD	"	40	"
10	f _{MAX}	Fig. 4	131	"						-		OUT	IN 10/		GND		=	A to QA	29		MHz
Tc = 125°C	t _{PLH1} 11/	"	132	"			OUT			"			IN		<u>12</u> /	A <u>8</u> /	"	A to QC	3	74	ns
	t _{PHL1} 11/	"	133	"			OUT			66			IN		GND		"	A to QC	"	81	"
	t _{PLH2}	"	134	"						"	OUT			IN	<u>12</u> /	A <u>8</u> /	"	B to QD	"	52	"
	t _{PHL2}	"	135	"						"	OUT			IN	GND		"	B to QD	"	56	"
11	Same to	ests, termina	I conditions,	, and limits	as for su	bgroup 10	, except 7	T _C = -55°C							·						

- 1/ Case X and 2 pins not referenced are NC. 2/ Apply 4.5 V pulse, then ground prior to taking measurements to set device in the desired state.
- 3/ Apply two pulses after R0 (reset) pulse.
- 4/ Apply one pulse after R0 (reset) pulse.
- $\frac{1}{5}$ / I_{IL} limits are as follows:

		Min/	Max limits for circ	uits	
Test	Α	В	С	E	F
I _{IL1}	-120/-360 μΑ	-30/-400 μΑ	-30/-400 μΑ	-120/-360 μA	-120/-360 μΑ
I _{IL2}	-0.5/-2.0 mA	-1.0/-2.4 mA	-1.0/-2.4 mA	-0.5/-2.0 mA	-1.0/-2.4 mA
I _{IL3}	-0.8/-3.2 mA	-1.4/-3.2 mA	-1.4/-3.2 mA	-0.8/-3.2 mA	-0.8/-3.2 mA

- 6/ Ios limits for circuit C are -30/-130 mA.
- 7/ Only a summary of attributes data is required.
- $\frac{8}{8}$ A = 2.5 V minimum, B = 0.4 V.
- 9/ Output voltages shall be either:
 - a. H≥1.5 V
 - b. $L \le 1.5 \text{ V}$
- 10/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one half of the input frequency.
- 11/ When testing t_{PHL1} or t_{PLH1}, the QA pin shall be connected to the input B pin.
- 12/ Momentary 3.0 V (min), then ground. Maintain ground for measurement.

TABLE III. <u>Group A inspection for device type 04.</u> Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 V, or open).

					ren	ninai coi	iditions (pins not	designat	ed may i	be nign ≥	2.0 V, 0	I IOW ≤ C	1.7 V, OI	open).						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	iits	Unit
		mounou	Test no.	NC	NC	NC	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{CC}	1	Min	Max	
1	V _{OL}	3009	1	110	110	110	QO.	QD	110	GND	QD	4 mA +	2.0 V	GND	2.0 V	2.0 V	4.5 V	QA	101111	0.4	V
Tc = 25°C	· OL	"	2					4 mA		"		I _{II.3}	GND	2.0 V	"		"	QB		"	,
10-20 0		"	3				4 mA			"		(max)	"	"	"	"	"	QC		"	"
			4				11117			"	4 mA	(παλ)	"	"	"	"	"	QD		"	"
	V _{OH}	3006	5							"		-0.4mA	2/ 3/	GND	2/	2/	"	QA	2.5		"
	OII	"	6					-0.4mA		"			GND	2/ 3/		-	"	QB	"		"
			7				-0.4 mA			"			"	2/ 4/		"	"	QC	"		"
		"	8				_			"	-0.4 mA		"	2/ 5/	"	"	"	QD	"		"
	V _{IC}		9							"			-18 mA				"	A		-1.5	"
			10							"				-18 mA			"	В		"	-
			11							"					-18 mA		"	R0(1)		"	-
			12							"						-18 mA	"	R0(2)		"	-
	I _{IL1}	3009	13							"					0.4 V	5.5 V	5.5 V	R0(1)	<u>6</u> /	<u>6</u> /	μΑ
		"	14							"					5.5 V	0.4 V	"	R0(2)	"	"	
	I _{IL2}		15							"			0.4 V		<u>2</u> /	<u>2</u> /	"	A	"	"	mA
	I _{IL3}		16							"				0.4 V	-	-	"	В	-	"	-
	I _{IH1}	3010	17							"					2.7 V	GND	"	R0(1)		20	μА
		"	18							"					GND	2.7 V	"	R0(2)		"	. "
	I _{IH2}		19							"					5.5 V	GND	"	R0(1)		100	-
		"	20							"					GND	5.5 V	"	R0(2)		"	-
	I _{IH3}		21							"			2.7 V		5.5 V	5.5 V	"	Α		80	"
	I _{IH4}		22							"			5.5 V		-	"	"	Α		400	"
	I _{IH5}	=	23							-				2.7 V	-	=	"	В		80	=
	I _{IH6}	=	24							-				5.5 V	-	=	"	В		400	=
	Ios	3011	25							-		GND	<u>2</u> / <u>3</u> /	GND	<u>2</u> /	<u>2</u> /	"	QA	-15	-100	mΑ
	<u>7</u> /	"	26					GND		"			GND	<u>2</u> / <u>3</u> /	"	"	"	QB		"	
		"	27				GND			"				<u>2</u> / <u>4</u> /	"	"	"	QC		"	
		"	28							"	GND			<u>2</u> / <u>5</u> /	"	"	"	QD	"	"	"
	I _{CC}	3005	29							"				GND			"	V _{CC}		15	=
2			al conditions																		
3	Same to	ests, termina	al conditions	and limits	as for su	bgroup 1,	except To	$c = -55^{\circ}C$	and V _{IC} te	ests are or	nitted.										
7	Funct-	3014	30				L	L		GND	L	L	B <u>8</u> /	В	A <u>8</u> /	Α	4.5 V				·
Tc = 25°C	ional	"	31				"	"		"	"	"	"	Α	"	Α	"		<u>9</u> /		
	tests	"	32				"	"		"	"	"	"	В	"	Α	"	1	_		
	<u>8</u> /	"	33				"	"		"	"	"		В	"	В	"	1			
	<u> </u>	"	34				"			"	"	"		A	"	В	"	1			
		,	35				"	Н		"	"	"		В		В	"	1			
		,	36									"		В	"			1			
								L					"			A	"	1			
			37				- "	"			- "			В	В	A		-			
		ď	38							"		"	"	Α	"	Α	"				
		"	39				"	"		íí	"	"	"	Α	"	В	"				
		"	40				"	Н		"	"	"	"	В	"	"	"				

TABLE III. Group A inspection for device type 04.

Terminal conditions (pins not designated may be high $\ge 2.0 \text{ V}$, or low $\le 0.7 \text{ V}$, or open).

					I err	ninai cor	naitions (pins not	designat	ed may l	oe high ≥	≥ 2.0 V, C	or low ≤ 0	J. / V, or	open).					
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14			
Subgroup	Symbol		Cases	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured	Limits	Unit
ousg.oup	0,	method	X, 2 <u>1</u> /	_	Ŭ		ŭ	ŭ	Ü									terminal		O
			Test no.	NC	NC	NC	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{CC}	l	Min Max	
7	Funct-	3014	41				L	Н		GND	L	L	B <u>8</u> /	Α	В	В	4.5 V			ı
Tc = 25°C	ional	"	42				Н	L		í,	"	"	"	В	"	"	"		<u>9</u> /	
	tests	"	43				"	L		"	"	"	"	Α	"	"	"		_	
	<u>8</u> /	"	44				=	Н		"	"	"	"	В		"	"			
		"	45				"	Н		"	"	"	"	Α	"	"	"			
		"	46				L	L		tt.	Н	"	"	В	"	"	"			
		"	47				=	L		"	"	"	"	Α	"	"	"			
		"	48				=	Н		"	"	"	"	В	"	"	"			
		"	49				"	Н		"	"	"	"	Α	"	"	"			
		"	50				Н	L		tt.	"	"	"	В	"	"	"			
		"	51				"	L		"	"	"	"	Α	"	"	"			
			52				"	Н		íí.	"	"	"	В	"	"	"			
		"	53				"	Н		"	"	"	"	Α	"	"	"			
		"	54				L	L		"	L	"	"	В	"	"	"			
		"	55				"	L		"	"	"	"	Α	"	"	"			
		"	56				"	Н		"	"	"	"	В	"	"	"			
		"	57				"	Н		"	"	"	"	Α	"	"	"			
		"	58				Н	L		tt	"	"	"	В	"	"	"			
		"	59				Н	L		"	"	"	"	Α	"	"	"			
		"	60				Н	Н		"	"	"	"	В	"	"				
		"	61				Н	Н		"	"	"	"	Α	"	"	"			
		"	62				Г	Г		"	Н	"	"	В	"	"	"			
		"	63				=	L		"	=	"	"	Α	"	"	"			
		"	64				=	Н		"	"	"	"	В	"	"	"			
		"	65				=	Н		=	=	"	"	В	Α	=	"			
		"	66				=	Η		"	=	"	"	Α	=	=	"			
		"	67				Н	L		=	=	"	"	В	"	=	"			
		"	68				=	L		"	=	"	"	Α	"	=	"			
		"	69				=	Н		=	=	"	"	В	"	=	"			
		"	70				"	Н		"	"	"	"	Α	"	"	"			
		"	71				L	L			L	"	"	Α	"	Α	"			
		"	72				"	"		"	"	"	"	В	"	Α	"			
		"	73				=	=			-	"	Α	"	В	В	"			
		"	74				"	"		"	"	Н	В	"	"	"	"			
		"	75				=	=			-	Н	Α	"	"		"			
		"	76				"	"		"	"	L	В	"	"	"	"			
8	Same to	ests, termina	al conditions	s, and limit	s as for su	ubgroup 7	, except T	_C = +125°	C, and T _c	= -55°C.										

TABLE III. <u>Group A inspection for device type 04.</u> Terminal conditions (pins not designated may be high \geq 2.0 V, or low \leq 0.7 V, or open).

					1 011	minui ooi	iuitions (pino not	acoignai	.cu may i	oc mgm =	_ Z.O V, C	71 10W <u>-</u> 0	7.7 V, OI	орону.						
		MIL-STD-	Cases A,B,C,D	1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Subgroup	Symbol	883 method	Cases X, 2 <u>1</u> /	2	3	4	6	8	9	10	12	13	14	16	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	NC	NC	NC	QC	QB	NC	GND	QD	QA	Α	В	R0(1)	R0(2)	V _{CC}		Min	Max	
9	f_{MAX}	Fig. 4	77							"		OUT	IN <u>10</u> /		GND		5.0 V	A to QA	29		MHz
Tc = 25°C	t _{PLH1} 11/	3003 Fig. 4	78				OUT			"			IN		<u>12</u> /	A <u>8</u> /	"	A to QC	3	53	ns
	t _{PHL1} 11/	"	79				OUT			"			IN		GND		"	A to QC	"	58	"
	t _{PLH2}	"	80							"	OUT			IN	<u>12</u> /	A <u>8</u> /	"	B to QD	"	56	"
	t _{PHL2}	"	81							"	OUT			IN	GND		"	B to QD	"	56	"
10	f_{MAX}	Fig. 4	82							"		OUT	IN <u>10</u> /		GND		"	A to QA	29		MHz
Tc = 125°C	t _{PLH1} 11/	3003 Fig. 4	83				OUT			"			IN		<u>12</u> /	A <u>8</u> /	"	A to QC	3	74	ns
	t _{PHL1} 11/	"	84				OUT			"			IN		GND		"	A to QC	"	81	"
	t _{PLH2}	"	85	•					•	"	OUT			IN	<u>12</u> /	A <u>8</u> /	"	B to QD	"	78	"
	t _{PHL2}	"	86							"	OUT			IN	GND		"	B to QD	"	78	"
11	Same to	ests, termina	al conditions	, and limit	s as for su	ubgroup 1	0, except	$T_C = -55^{\circ}C$	D												

- 1/ Case X and 2 pins not referenced are NC.
- 2/ Apply 4.5 V pulse, then ground prior to taking measurements to set device in the desired state. Maintain ground measurement.
- 3/ Input pulse must be applied one time after R0 pulse.
- 4/ Input pulse must be applied twice after R0 pulse.
- 5/ Input pulse must be applied four times after R0 pulse.
- 6/ I_{II} limits are as follows:

		Min/	Max limits for circ	uits	
Test	Α	В	С	E	F
I _{IL1}	-120/-360 μA	-30/-400 μΑ	-30/-400 μΑ	-120/-360 μA	-120/-400 μA
I _{IL2}	-0.5/-2.0 mA	-1.0/-2.4 mA	-1.0/-2.4 mA	-0.5/-2.0 mA	-1.0/-2.4 mA
I _{IL3}	-0.4/-1.6 mA	-0.4/-1.6 mA	-0.7/-3.2 mA	-0.4/-1.6 mA	65/-1.6 mA

- 7/ I_{OS} limits for circuit C are -30/-130 mA.
- 8/A = 2.5 V minimum, B = 0.4 V.
- 9/ Output voltages shall be either:
 - a. $H \ge 1.5 \text{ V}$
 - b. $L \le 1.5 V$
- 10/ f_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one half of the input frequency.
- 11/ When testing t_{PHL1} or t_{PLH1}, the QA pin shall be connected to the input B pin.
- 12/ Momentary 3.0 V (min), then ground. Maintain ground for measurement.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirement for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for carriers, special lead lengths or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Superseding information.</u> The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at http://assist.daps.dla.mil.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IN}	Voltage level at an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	54LS196
02	54LS197
03	54LS290
04	54LS293

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designations.

			Circuits		
Device	Α	В	С	Ш	F
type	Texas	Signetics	National	Motorola	Fairchild
	Instruments	Corp.	Semiconductor	Inc.	Semiconductor
		-	Corp.		
01		X	Χ		X
02		Х	Χ	X	X
03	X	X	X	X	X
04	X	X	X	X	X

6.9 <u>Amendment notations</u>. The margins of this specification are marked with vertical lines to indicate modifications generated by this amendment. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations.

Custodians:

Army - CR Navy - EC Air Force - 85

DLA - CC

Preparing activity: DLA - CC

(Project 5962-2008-006)

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.