INCH-POUND MIL-M-38510/360B 25 June 2004 SUPERSEDING MIL-M-38510/360A 26 August 1983

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW POWER SCHOTTKY TTL, PRIORITY ENCODERS, MONOLITHIC SILICON

Inactive for new design after 8 July 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low power Schottky TTL, priority encoder, logic microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).

1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	8-line to 3-line priority encoder
02	8-line to 3-line priority encoder with 3-state outputs

1.2.2 <u>Device class.</u> The device class is the product assurance level as defined in MIL-PRF-38535.

1.2.3 <u>Case outlines</u>. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

1.3 Absolute maximum ratings.

Supply voltage range	lc
Storage temperature range65° to +150°C	
Maximum power dissipation, per device (P_D) <u>1</u> /	
Device type 01 110 mW	
Device type 02	
Lead temperature (soldering, 10 seconds) +300°C	
Thermal resistance, junction to case (θ_{JC}) :	
Cases E, F, and 2 (See MIL-STD-1835)	
Junction temperature (T _J) <u>2</u> /	

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	4.5 V dc minimum to 5.5 V dc
	maximum
Minimum high level input voltage (V _{III})	2.0 V dc
Maximum low level input voltage (VIL)	
Normalized fanout (each output) 3/	
Case operating temperature range (T _c)	

2. APPLICABLE DOCUMENTS

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

 $[\]underline{1}$ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature shall not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

^{3/} The device shall fanout in both high and low levels to the specified number of inputs of the same device type as that being tested.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figures 1.

3.3.2 Logic diagrams. The logic diagrams shall be as specified on figure 2.

3.3.3 <u>Truth tables.</u> The truth tables shall be as specified on figure 3.

3.3.4 <u>Schematic circuits.</u> The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.

3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 11 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- c. Additional screening for space level product shall be as specified in MIL-PRF-38535.
- 4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

TABLE I. Electrical performance characteristics.

Test	Symbol Conditions I				Lin	Unit	
		-55°C ≤ T _C ≤ +	-125°C	type	Min	Max	
		unless otherwise	specified				
High level output voltage	V _{OH}	$V_{CC} = 4.5 V,$	All	2.5		V	
		I _{OH} =4 mA					
Low level output voltage	Vol	$V_{CC} = 4.5 V,$	01		0.4	V	
		I _{OL} = 4.0 mA					
		$V_{CC} = 4.5 V,$		02		0.4	
		I _{OL} = 4.0 mA, EO, GS	S outputs				
		$V_{CC} = 4.5 V,$		02		0.4	
		I _{OL} = 12 mA, A0, A1,	A2 outputs				
Input clamp voltage	VIC	$V_{CC} = 4.5 \text{ V}, I_{IN} = -18$	mA,	All		-1.5	V
		$T_{\rm C} = 25^{\circ}{\rm C}$					
Low level input current at data	I_{IL1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 0.4$	4 V	All		76	mA
4, 5, 6, 7 inputs							
Low level input current at 0 input	I _{IL2}			All		40	mA
Low level input current at data	I _{IL3}			All		76	mA
1, 2, 3 inputs							
Low level input current at	I_{1L4}	1L4		All		36	mA
Enable input	input						
High level input current at data	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.7$	All		40	μA	
inputs							
	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V}$	5 V	All		20	μA
High level input current at	I _{IH3}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.7$	All		200	μA	
enable inputs							
	I _{IH4}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 5.5 \text{ V}$	= 5.5 V, V _{IN} = 5.5 V			100	μA
							·
Off state output current high	I _{OZH}	$V_{CC} = 5.5 V, V_{IN} = 2.0 V,$		02		20	μA
level voltage applied		V _O = 2.7 V					
Off state output current low	I _{OZL}	$V_{CC} = 5.5 \text{ V}, \text{ V}_{IN} = 2.0$) V.	02		-20	μA
level voltage applied	011	$V_{\rm O} = 0.4 \text{ V}$		-		-	<i>p</i>
Short circuit output current	I _{OS}	$V_{\rm CC} = 5.5 \text{ V}, \text{ V}_{\rm OUT} = 0.0000000000000000000000000000000000$	GND	01	-15	-100	mA
		<u>1</u> /	EO, GS	02	-15	-100	
			A0 - A2	02	-30	-130	
Supply current	I _{CC1}	V _{CC} = 5.5 V		01		20	mA
Cappy curon				01		25	
	I _{CC2}	V _{CC} = 5.5 V		02		17	mA
	·CC2	VCC - 0.0 V		01		17	шл

See footnotes at end of table.

TABLE I. Electrical performance characteristics.
--

Test	Symbol	Conditions	Device	Lin	Unit	
		$-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified	type	Min	Max	
Propagation delay time, low to	t _{PLH1}	$V_{CC} = 5.0 V,$	01	2	30	ns
high level output from data input		$R_{L} = 2/,$	02	2	29	
to A. In-phase output		C_L = See figure 4				
Propagation delay time, high to	t _{PHL1}		01	2	39	ns
low level output from data input			02	2	46	
to A. In-phase output						
Propagation delay time, low to	t _{PLH2}		01	2	53	ns
high level output from data to A.			02	2	52	
Out-of-phase						
Propagation delay time, high to	t _{PHL2}		01	2	44	ns
low level output from data to A.			02	2	52	
Out-of-phase						
Propagation delay time, low to	t _{PLH3}		01	2	30	ns
high level output from data to EO			02	2	30	
Propagation delay time, high to	t _{PHL3}		01	2	58	ns
low level output from data to EO			02	2	58	
Propagation delay time, low to	t _{PLH4}		01	2	78	ns
high level output from data to GS			02	2	78	
Propagation delay time, high to	t _{PHL4}	-	01	2	34	ns
low level output from data to GS			02	2	34	
Propagation delay time, low to	t _{PLH6}		01	2	29	ns
high level output from EI to GS			02	2	29	
Propagation delay time, high to	t _{PHL6}		01	2	53	ns
low level output from EI to GS			02	2	53	

See footnotes at end of table.

Test	Symbol	Conditions	Device	Limits		Unit
		$\text{-}55^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq \text{+}125^{\circ}\text{C}$	type	Min	Max	
		unless otherwise specified				
Propagation delay time, low to	t _{PLH7}	$V_{CC} = 5.0 V,$	01	2	34	ns
high level output from EI to EO		$R_{L} = \underline{2}/,$	02	2	34	
		C_L = See figure 4				
Propagation delay time, high to	t _{PHL7}		01	2	52	ns
low level output from EI to EO			02	2	52	
Propagation delay time, low to high level output from EI to A	t _{PLH5}		01	2	39	ns
Propagation delay time, high to low level output from EI to A	t _{PHL5}		01	2	39	ns
Enable time to high level output from EI to A	t _{PZH}		02	2	76	ns
Enable time to low level output from EI to A	t _{PZL}		02	2	60	ns
Disable time from high level output from EI to A	t _{PHZ}		02	2	42	ns
Disable time from low level output from EI to A	t _{PLZ}		02	2	52	ns

TABLE I. Electrical performance characteristics.

 $\underline{1}$ / Not more than one output should be shorted at a time.

 $\underline{2}$ / R_L = 2 k Ω ±5% for type 01 and EO, GS outputs of device type 02 (regular output). R_L = 316 Ω ±5% for A0, A1, A2 outputs of device type 02 (3-state).

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8, 9, 10, 11
Group B electrical test parameters	1, 2, 3, 7,	N/A
when using the method 5005 QCI option	8, 9, 10, 11	
Group C end-point electrical	1, 2, 3, 7,	1, 2, 3
parameters	8, 9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

TABLE II. Electrical test requirements.

*PDA applies to subgroup 1.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 <u>Group A inspection</u>. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

a. Tests shall be as specified in table II herein.

b. Subgroups 4, 5, and 6 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End-point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows:

4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Device types 01 and 02					
Terminal	Case	Case				
number	E and F	2				
1	4	NC				
2	5	4				
3	6	5				
4	7	6				
5	EI	7				
6	A2	NC				
7	A1	EI				
8	GND	A2				
9	A0	A1				
10	0	GND				
11	1	NC				
12	2	A0				
13	3	0				
14	GS	1				
15	EO	2				
16	Vcc	NC				
17		3				
18		GS				
19		EO				
20		V _{CC}				

FIGURE 1. Terminal connections.

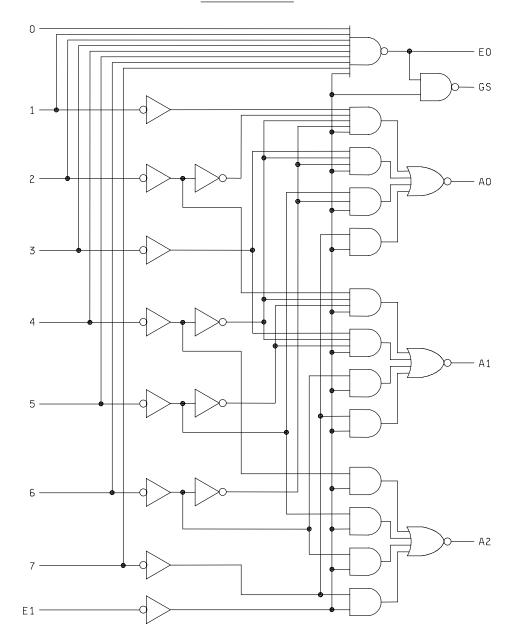


FIGURE 2. Logic diagrams.

DEVICE TYPE 02

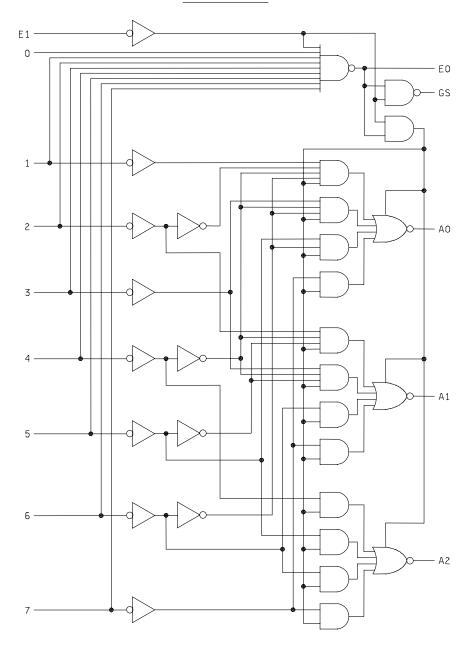
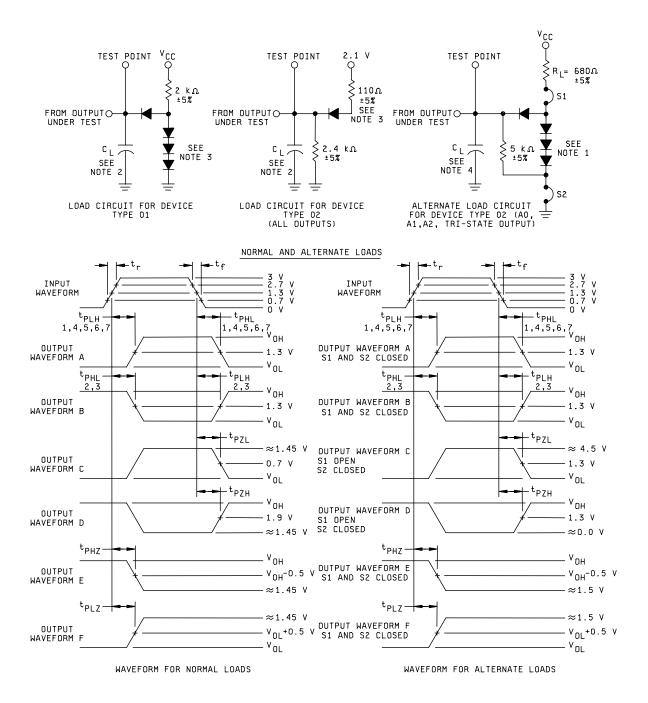


FIGURE 2. Logic diagrams - Continued.

Device types 01

	Function table												
	Inputs								Outputs	6			
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	Х	Х	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н
L	Н	Н	H	H	H	н	Н	Н	Н	Н	Н	н	L
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L	Н
L	Х	Х	Х	Х	Х	Х	L	Н	L	L	Н	L	Н
L	Х	Х	Х	Х	Х	L	Н	Н	L	Н	L	L	Н
L	Х	Х	Х	Х	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Х	Х	L	н	н	Н	Н	Н	L	L	L	Н
L	Х	Х	L	H	H	H	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н


Device types 02

Function table

				Inputs							Outputs	6	
EI	0	1	2	3	4	5	6	7	A2	A1	A0	GS	EO
Н	Х	Х	Х	Х	Х	Х	Х	Х	Z	Z	Z	Н	Н
L	Н	Н	H	H	Н	Н	Н	Н	Z	Z	Z	Н	L
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L	Н
L	Х	Х	Х	Х	Х	Х	L	Н	L	L	Н	L	Н
L	Х	Х	Х	Х	Х	L	Н	Н	L	Н	L	L	Н
L	Х	Х	Х	Х	L	Н	Н	н	L	Н	Н	L	Н
L	Х	Х	Х	L	Н	н	Н	Н	Н	L	L	L	Н
L	Х	Х	L	H	Н	H	н	Н	Н	L	Н	L	Н
L	Х	L	H	H	Н	H	н	Н	Н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н

H = High logic levelL = Low logic levelX = IrrelevantZ = High impedance state

FIGURE 3. Truth tables.

NOTES:

- 1. Input pulse characteristics: PRR \leq 1.0 MHz, t_r \leq 15 ns, and t_f \leq 6 ns.
- 2. For normal load $C_L = 50 \text{ pF} \pm 10\%$. C_L includes probe and jig capacitance.
- 3. All diodes are 1N3064 or 1N916.
- For alternate load C_L = 50 pF ±10% for t_{PLH}, t_{PLL}, t_{PZL}, and t_{PZH}; C_L = 15 pF min. for t_{PHZ} and t_{PLZ}. C_L includes probe and jig capacitance.
- Load circuits on a given output are only required where the specific test given in table III indicates "OUT" on that output. Load circuits may otherwise be omitted.

FIGURE 4. Switching tests.

nethod 1 <th></th> <th></th> <th>MIL-STD-</th> <th>Cases E, F</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>16</th> <th></th> <th></th> <th></th> <th></th>			MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
1 0m 3000 1 0 1 0 <th>Subgroup</th> <th>Symbol</th> <th>883 method</th> <th></th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>17</th> <th>18</th> <th>19</th> <th>20</th> <th>Measured terminal</th> <th></th> <th></th> <th>Unit</th>	Subgroup	Symbol	883 method		2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal			Unit
Term 1 2 1 <th1< th=""> 1 1 1</th1<>				Test no.	4	5	6	7			A1		A0	0	1	2	3	GS	EO				Max	1
1 3 0		V _{OH}	3006						2.0 V	-400 μA		GND								4.5 V		2.5		V
Image: state	c = 25°C		"						"		-400 μA													"
N N			"	3					"			"	-400 μA								A0			
Vo 307 4 3 1 <th1< th=""> 1 1 1</th1<>			"						=			=						-400 μA				-		-
N N			"	5								-							-400 μA	-	EO	-		
i i		V _{OL}	3007	6				0.7 V	0.7 V	4 mA		=											0.4	-
Image: state			"	7					=		4 mA	=								-	A1		"	=
Image: state Image: state<			"					"	"				4 mA											
Image: book of the second se								"	-			-						4 mA		-			"	
Image: Problem Image:									-										4 mA	"			"	"
1 13 1 55 0.4V 1 <td></td> <td>I_{IL1}</td> <td>3009</td> <td></td> <td></td> <td></td> <td></td> <td>5.5 V</td> <td>GND</td> <td></td> <td></td> <td></td> <td></td> <td>5.5 V</td> <td>5.5 V</td> <td>5.5 V</td> <td>5.5 V</td> <td></td> <td></td> <td>5.5 V</td> <td></td> <td></td> <td>76</td> <td>mA</td>		I _{IL1}	3009					5.5 V	GND					5.5 V	5.5 V	5.5 V	5.5 V			5.5 V			76	mA
Image: second			"		5.5 V			"						"	"					"			"	"
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					"	5.5 V		"				-			"	-							"	
Is.a 1.6 · <td>Ļ</td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>5.5 V</td> <td></td> <td>"</td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td>	Ļ		"		"	"	5.5 V		"			"			"								"	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ļ		"		"	"	"	5.5 V	"											"			40	"
Image Image <t< td=""><td></td><td>I_{IL3}</td><td></td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td><td></td><td></td><td></td><td>5.5 V</td><td></td><td>"</td><td></td><td></td><td></td><td>"</td><td></td><td></td><td>76</td><td>"</td></t<>		I _{IL3}			"	"	"	"	"					5.5 V		"				"			76	"
h _k · ·																								
htt 300 19 2.7.V 0	F				"			"						"	5.5 V	5.5 V	0.4 V						"	
1 21 2.7V 0 <td></td> <td></td> <td></td> <td></td> <td>0.714</td> <td></td> <td></td> <td>"</td> <td>0.4 V</td> <td></td> <td>36</td> <td></td>					0.714			"	0.4 V														36	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		I _{IH1}	3010		2.7 V																		40	μA "
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						2.7 V																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							2.7 V	0.714																
Image: black 25 m <								2.7 V						071/										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														2.7 V	271/									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															2.7 V	271/								
Image * 28 / <td></td> <td>2.7 V</td> <td>271/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																2.7 V	271/							
Ins * 29 5.5 V ·<	F	1							271/			"					2.1 V						20	
10 30 5.5 V 1 </td <td>-</td> <td></td> <td>"</td> <td></td> <td>55V</td> <td></td> <td></td> <td></td> <td>2.1 V</td> <td></td> <td></td> <td>"</td> <td></td> <td>200</td> <td></td>	-		"		55V				2.1 V			"											200	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IH3			0.0 V	55V																	200	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"			5.5 V	55V																"	
Image: second							0.0 V	55V				"												
34 0 0 0 0 0 0 5.5 V 0 0 0 0 1 <th1< th=""> 1<td></td><td></td><td>"</td><td></td><td></td><td></td><td></td><td>0.0 1</td><td></td><td></td><td></td><td></td><td></td><td>55V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>"</td><td></td></th1<>			"					0.0 1						55V									"	
n 35 n														0.0 1	55V						-		"	
" 36 n			"									"				5.5 V					2		"	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"									"					5.5 V			"			"	"
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F	I _{IH4}	"						5.5 V			"					1			"			100	
n 39 n n n n GND n	F		3011	38						GND										"		-15	-100	mA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"						"		GND	"								"			"	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			"						"				GND							"			"	"
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			"	41					"			"						GND		"	GS		"	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			"						"			"							GND				"	
Vic 45 -18 mA Image: Marcon of the state of the	Γ								GND	GND		"											20	
46 -18 mA - </td <td>[</td> <td></td> <td>3005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td>17</td> <td></td>	[3005									"											17	
47 -18 mA " " -18 mA		VIC			-18 mA															4.5 V			-1.5	V
48 -18 mA " " -18 mA -1						-18 mA																	"	
49 -18 mA " EI -18 50 -18 -18 -18 mA -18 mA -18 mA " 0 -18 51 -18 -18 mA -18 mA -18 mA -18 mA 1 1 -18 52 -18 -18 mA -18 mA -18 mA -18 mA " 3 -18							-18 mA																"	
50								-18 mA																
51									-18 mA					40.										
52 " -18 mA " 2 53 " " " -18 mA " 2														-18 mA	10.									
53 " " -18 mA " 3															-18 mA	10 .	<u> </u>						-	
																-18 mA	10 1							
		Contract	ata t!		المحمد المحمد			ant T	10500 -	J \ /							-18 mA				3			
2 Same tests, terminal conditions, and limits as subgroup 1, except $T_c = +125^{\circ}C$ and V_{1c} tests are omitted. 3 Same tests, terminal conditions, and limits as subgroup 1, except $T_c = -55^{\circ}C$ and V_{1c} tests are omitted.																								

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

						Te	erminal o	conditio	ns (pins	not des	signated	l may be	high ≥∶	2.0 V; lo	$w \le 0.7$	V; or op	en).						
		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	Vcc	1	Min	Max	
7 <u>2</u> /	Truth	3014	54	A	Ă	Ă	A	A	H	Н	GND	Н	Ă	A	Ā	Ă	H	H	5.0 V	3/			
Tc = 25°C	table		55	"	"	"	A	В	Н	Н	"	Н	"			"	H	L	"		1		
10 - 20 0	test		56	"	"	"	B	"	L	L	"	L		"		"	L	H	"				
			57	"	"	В	A	"		L	"	Ĥ		"					"		1		
			58	"	В	A	"	"	"	H		L							"		•		
			59	В	A		"	"	"	Н		H							"		1		
			60	A	"	"	"	"	н	L		L				В			"		1		
			61	"	"	"	"	"	"	L		H			В	A			"		•		
			62	"	"	"	"	"	"	Ĥ		L		В	A	"					1		
			63	"	"	"	"	"		"		H	В	A	"				"		•		
			64	"	"	"	"	А	"	"		H	B	A			Н		"		•		
8	Sama ta	ests, termina		ond limit	s as for su	haroup 7 a	woont To		nd T – F	E°C			D	A							L		
				5.0 V			IN		and $\Gamma_C = -0$	50.	GND	OUT	1	5.0 V	5.0 V	E O V			E O V	7 to 10		23	20
9	t _{PLH1}	3003	65 66	J.U V	5.0 V	5.0 V	11N "	GND "		OUT	GND "	001		5.0 V	J.U V "	5.0 V			5.0 V	7 to A0 7 to A1	2	23	ns "
c = 25°C		Fig. 4					"	"	OUT	001					"						<u> </u>	<u>⊢ </u>	
			67 68			 IN	5.0 V		OUT	OUT					"					7 to A2 6 to A1	<u> </u>		
				"			0.U V			001					"			-					
			69		IN	IN			OUT			OUT			"					6 to A2	-		
			70 71		IN IN	5.0 V			OUT			001			"					5 to A0	<u> </u>		
			71	IN	5.0 V				OUT						"					5 to A2 4 to A2			
					5.0 V				001			OUT				INI					-		
			73	5.0 V						0.117		OUT				IN				3 to A0	<u> </u>		
			74							OUT						IN				3 to A1			
			75							OUT		OUT			IN	5.0 V				2 to A1	<u> </u>		
			76									OUT		IN	5.0 V					1 to A0			
	t _{PHL1}		77				IN					OUT		5.0 V						7 to A0	<u> </u>	30	
			78						OUT	OUT										7 to A1	<u> </u>		
			79				5.0.1/		OUT	OUT										7 to A2	<u> </u>		
			80			IN	5.0 V			OUT										6 to A1			
			81			IN			OUT											6 to A2	<u> </u>		
			82		IN	5.0 V						OUT								5 to A0			
			83		IN				OUT											5 to A2			
			84	IN	5.0 V				OUT						"				"	4 to A2		"	
			85	5.0 V								OUT				IN				3 to A0			
			86							OUT						IN				3 to A1			
			87		"					OUT				"	IN	5.0 V			"	2 to A1		"	
			88		"							OUT		IN	5.0 V					1 to A0			
	t _{PLH2}		89	IN	"	"	"			OUT						GND			"	4 to A1		41	
			90	IN								OUT				GND				4 to A0	<u> </u>		
	Ļ		91		GND	IN		-	<u> </u>	o:		OUT				01:5		<u> </u>		6 to A0	<u> </u>		
	t _{PHL2}		92	IN	5.0 V	5.0 V				OUT		01.7				GND				4 to A1	<u> </u>	34	
			93	IN	5.0 V	5.0 V						OUT				GND				4 to A0	<u> </u>	<u> </u>	
			94	5.0.1/	GND	IN						OUT		5 0 1 (5 0 1 (5.0.1/		0.117		6 to A0	<u> </u>		
	t _{PLH3}		95	5.0 V	5.0 V	5.0 V							IN	5.0 V	5.0 V	5.0 V		OUT		0 to EO	<u> </u>	23	
			96		"	"	"	"					5.0 V	IN	5.0 V					1 to EO			
			97	"	"	"	"	"					"	5.0 V	IN	"				2 to EO		-	
			98	"	"	"	"	"					"	"	5.0 V	IN				3 to EO			"
			99	IN	"	"	"	"							"	5.0 V		"	"	4 to EO	-	-	"
			100	5.0 V	IN	"	"							"	"					5 to EO		-	
			101	"	5.0 V	IN	"								"					6 to EO			"
			102	-	"	5.0 V	IN							"	"			"	"	7 to EO	"		
	t _{PHL3}	"	103	"	"	"	5.0 V	"					IN	"	"			"		0 to EO		45	
		"	104	"	"	"	"	"			"		5.0 V	IN	"	"		"	"	1 to EO		"	
		"	105	"	"	"	"	"			"			5.0 V	IN			"	"	2 to EO		"	
		"	106	"	"	"	"	"						"	5.0 V	IN		"	"	3 to EO		"	
			107	IN		"	"	"							"	5.0 V			"	4 to EO		"	
															"				"	5 to EO		"	
			108	5.0 V	IN																		
			108 109 110	5.0 V	IN 5.0 V	" IN 5.0 V	" " IN				"		"		"			"	"	6 to EO 7 to EO	-	"	

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high \geq 2.0 V: low \leq 0.7 V: or open).

See footnotes at end of table.

14

TABLE III. Group A inspection for device type 01 - Continued.	
Terminal conditions (pins not designated may be high \ge 2.0 V; low \le 0.7 V; or open).	

			Cases	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
		MIL-STD-	E, F																				
Subgroup	Symbol	883 method	Case 2 <u>1/</u>	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	V _{cc}	1	Min	Max	
9	t _{PLH4}	3003	111	5.0 V	5.0 V	5.0 V	5.0 V	GND			GND		IN	5.0 V	5.0 V	5.0 V	OUT		5.0 V	0 to GS	2	60	ns
Tc = 25°C	1 2114	Fig. 4	112	"	"	"	"	"					5.0 V	IN	5.0 V	"			"	1 to GS		"	"
		"	113	"	"	"	"	"					"	5.0 V	IN		"		"	2 to GS		"	
			114	"	"	"	"	"			"		"	"	5.0 V	IN	"		"	3 to GS	"	"	
		"	115	IN	"	"	"	"							"	5.0 V	"		"	4 to GS	-	"	
		"	116	5.0 V	IN		-								"		"		"	5 to GS	"	"	
		"	117	"	5.0 V	IN		"			"		"	"	"		"		"	6 to GS	"	"	"
		"	118	"	"	5.0 V	IN						"	"	"		"		"	7 to GS	"	"	
	t _{PHL4}		119	"	"	"	5.0 V	"					IN	"	"		"		"	0 to GS		26	"
			120		"								5.0 V	IN	"		"		"	1 to GS		"	
			121		"									5.0 V	IN	"	"		"	2 to GS			
			122												5.0 V	IN	"			3 to GS			
			123	IN												5.0 V				4 to GS			
			124 125	5.0 V	IN 5.0 V	IN														5 to GS 6 to GS			
			125	"	5.0 V	5.0 V	IN								"		"		"	7 to GS		"	
	+	"	120			5.0 V	GND	IN				OUT							"	El to A0		30	
	t _{PLH5}		127				GND "	"		OUT		001							"	El to Al		30	
			120				"	"	OUT	001									"	EI to A2			
	t _{PHL5}	"	130				"	"				OUT							"	EI to A0			
	THES	"	131				"	"		OUT	"								"	EI to A1	"	"	"
		"	132				"	"	OUT										"	EI to A2			
	t _{PLH6}	"	133				"	"			"						OUT		"	EI to GS	"	22	
	t _{PHL6}	"	134				"	"			"						OUT		"	EI to GS		41	
	t _{PLH7}	"	135	5.0 V	5.0 V	5.0 V	5.0 V				"		5.0 V	5.0 V	5.0 V	5.0 V		OUT	"	EI to EO		26	"
	t _{PHL7}	"	136	5.0 V	5.0 V	5.0 V	5.0 V	"			"		5.0 V	5.0 V	5.0 V	5.0 V		OUT	"	EI to EO	"	40	"
10	t _{PLH1}	1																				30	
	t _{PHL1}																					39	
	t _{PLH2}	ł																				53	
	t _{PHL2}					-																44	
	t _{PLH3}	Same tests	s and termin	al conditio	ons as sub	group 9, e	xcept I _C =	+125°C.														30	
	t _{PHL3}	-																				58	
	t _{PLH4}	1																				78 34	
	t _{PHL4}	1																				34	
	t _{PLH5} t _{PHL5}	1																				39	
	t _{PI H6}	1																				29	
	t _{PHL6}	1																				53	
	t _{PLH7}	1																			"	34	
	t _{PHI 7}	1																			"	52	"
11		ests, termina	al conditions	s and limits	s as for su	baroup 10	except T	- = -55°C															

 $\underline{1}$ / Case 2 pins not referenced are NC.

15

 $\underline{2}$ / Input voltages shown are: A = 2.0 V minimum and B = 0.7 V maximum.

<u>3</u>/ Output voltages shall be either:

a. H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator; or b. H \geq 1.5 V and L \leq 1.5 V when using a high speed checker single comparator

Subgroup S	Symbol		E, F					5	6	7	8	9	10	11	12	13	14	15	16				
1	-	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lin	nits	Unit
1			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	V _{cc}		Min	Max	
	V _{OH}	3006	1	2.0 V	2.0 V	2.0 V	2.0 V	0.7 V	-400 μA		GND		0.7 V	2.0 V	2.0 V	2.0 V			4.5 V	A2	2.5		V
Tc = 25°C			2	"	"	"	"			-400 μA	-		"		-					A1			
			3	"	"	"	"				-	-400 μA	"		-					A0			
			4					2.0 V			-						-400 μA		"	GS			
			5					2.0 V										-400 μA	-	EO			
	V _{OL}	3007	6				0.7 V	0.7 V	12 mA		-								"	A2		0.4	
			7				"			12 mA	=								-	A1		"	
			8									12 mA								A0			
			9				"										4 mA			GS		"	
			10	2.0 V	2.0 V	2.0 V	2.0 V						2.0 V	2.0 V	2.0 V	2.0 V		4 mA	"	EO			"
	I _{IL1}	3009	11	0.4 V	5.5 V	5.5 V	5.5 V	GND					5.5 V	5.5 V	5.5 V	5.5 V			5.5 V	4		76	mA
			12	5.5 V	0.4 V	5.5 V														5			
			13 14		5.5 V	0.4 V 5.5 V	0.4 V													6 7			
-			14	"		0.5 V "	0.4 V 5.5 V						0.4 V							0		40	
-	I _{IL2} I _{IL3}		15	"			5.5 V						5.5 V	0.4 V						1		40	
	'IL3		10	"									J.J V "	5.5 V	0.4 V					2		70	
			18	"										5.5 V	5.5 V	0.4 V			"	3			
-	I_{IL4}		19					0.4 V						0.0 V	0.0 V	0.4 V				EI		36	
	I _{IH1}	3010	20	2.7 V				0												4		40	μA
			21		2.7 V															5			"
			22			2.7 V														6			
			23				2.7 V													7		"	
			24								-		2.7 V							0		"	
			25								=			2.7 V						1			
			26								-				2.7 V				-	2			
I L			27													2.7 V				3			
	I _{IH2}		28					2.7 V			-									EI		20	
	I _{IH3}		29	5.5 V	14															4		200	
			30		5.5 V	\														5			
			31			5.5 V	E E V													6			
			32 33				5.5 V						5.5 V							0			
			33										5.5 V	5.5 V						1			
			35											J.J V	5.5 V					2			
			36												0.0 V	5.5 V				3			
	I _{IH4}		37					5.5 V											"	EI		100	
	los	3011	38	4.5 V	4.5 V	4.5 V	4.5 V	GND	GND				GND	4.5 V	4.5 V	4.5 V			"	A2	-30	-130	mA
			39	"	"	"	"			GND	-			"					"	A1			"
			40	"	"							GND								A0			
			41					4.5 V			-						GND			GS	-15	-100	
1 L			42					4.5 V										GND	"	EO	-15	-100	"
	I _{CC1}	3005	43					GND	GND											V _{cc}		25	
	I _{CC2}	3005	44	0.0.1/	0.01/	0.01/	0.01/	0.01/				0.714	0.0.1/	0.01/	0.01/	0.01/				V _{cc}		23	
	I _{OZH}		45	2.0 V	2.0 V	2.0 V	2.0 V	2.0 V		071		2.7 V	2.0 V	2.0 V	2.0 V	2.0 V				A0		20	μA "
			46						271	2.7 V										A1			
⊢	_		47 48						2.7 V			0.4 V								A2 A0		-20	
	I _{OZL}		48							0.4 V		0.4 V								A0 A1		-20	
			49 50						0.4 V	0.4 V										A1 A2			
-	VIC		50	-18 mA					0.4 V										4.5 V	4 4		-1.5	V
	*IC		52	10 11/1	-18 mA															5		"	
			53			-18 mA														6			
			54				-18 mA				"								"	7		"	

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of table.

16

						т	rminal								continued		an)						
	-		0	4	0			5	ns (pins	7	signated	may be		2.0 V; I	$5w \le 0.7$	v; or op		45	40	1			
		MIL-STD-	Cases E, F	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	its	Unit
			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	V _{CC}		Min	Max	1
1	VIC		55					-18 mA	/ 12		"	7.0	Ű		_				4.5 V	EI		-1.5	V
Tc = 25°C			56										-18 mA						"	0		"	
			57											-18 mA						1		"	
			58								-				-18 mA					2			
			59													-18 mA			"	3		"	
2		ests, termina																					
3		ests, termina																	5 0 1 (<u> </u>			
7 <u>2/</u>	Truth	3014	60	A	A	A	A	A	н	н	GND	Н	A	A	A	A	н	H	5.0 V	<u>3/ 4/</u>			
Tc = 25°C	table		61 62				AB	B	Н	Н		Н					H	L H					
	tests					D		"		L		L					L	н "					
		"	63 64		В	B A	A "	"	"	L H		H	"	"	"								
			65	В	A	"	"	"	"	H		H	"	"									
		"	66	A	"	"	"	"	н	L		L	"	"	"	В		"	"				
		"	67	"	"	"	"	"	"	L		H	"	"	В	A		"	"	"			
		"	68		"	"	"	"	"	H		L	"	В	A		"	"	"				
		"	69	"	"	"	"	"	"	"		Н	В	A	"				"	"			
		"	70		"	"	"	A	"			Н	В	A	"	"	Н	"	"				
8	Repeat	subgroup 7	tests, at Tc	= 125°C a	and $T_c = -5$	5°C.																	
9	t _{PLH1}	3003	71	5.0 V	5.0 V	5.0 V	IN	GND			GND	OUT		5.0 V	5.0 V	5.0 V			5.0 V	7 to A0	2	22	ns
$Tc = 25^{\circ}C$		Fig. 4	72		"	"	"	"		OUT				"	"					7 to A1			
		"	73		"	"	"	"	OUT					"	"				"	7 to A2			
		"	74		"	IN	5.0 V			OUT				"	"					6 to A1			
			75		"	IN	"	"	OUT						"				"	6 to A2			
			76		IN	5.0 V			OUT			OUT								5 to A0			
			77		IN				OUT											5 to A2			
			78 79	IN 5.0 V	5.0 V				OUT			OUT				IN				4 to A2 3 to A0			
			80	5.0 V	"	"	"	"		OUT		001		"	"	IN				3 to A0			
			81		"	"	"	"		OUT				"	IN	5.0 V				2 to A1			"
		"	82		"	"	"	"		001		OUT		IN	5.0 V	3.0 V				1 to A0			
	t _{PHL1}	"	83		"	"	IN	"				OUT		5.0 V	"					7 to A0		35	
	41161	"	84		"	"	"	"		OUT				"	"				"	7 to A1	"	"	"
		"	85	"	"	"	"	"	OUT					"	"				"	7 to A2			
		"	86	=	=	IN	5.0 V	"		OUT	-			"	"	-			"	6 to A1			
		"	87	-	-	IN	-		OUT		-			"	"	-				6 to A2			-
		"	88		IN	5.0 V		"			"	OUT		"	"				"	5 to A0			
			89	"	IN		"	"	OUT					"	"				"	5 to A2			
			90	IN	5.0 V				OUT			0.117								4 to A2			
			91	5.0 V						OUT		OUT				IN	ļ			3 to A0			
			92 93		"	"	"	"		OUT				"	IN	IN 5.0 V				3 to A1 2 to A1			
		"	93 94		"	"	"	"		001		OUT		IN	5.0 V	5.0 V 5.0 V				1 to A0			"
	t _{PLH2}	"	94 95	IN	"	"	"	"		OUT		001		111	0.0 V	GND				4 to A1		40	
	PLRZ	"	96	IN	"	"	"	"				OUT				GND			"	4 to A0			"
		"	97		GND	IN		"				OUT		1					"	6 to A0			
	t _{PHL2}	"	98	IN	5.0 V	5.0 V		"		OUT	"		İ	1		GND		İ	"	4 to A1	"		"
		"	99	IN	5.0 V	5.0 V	"	"			"	OUT				GND			"	4 to A0			"
		"	100		GND	IN						OUT								6 to A0			
	t _{PLH3}	"	101	5.0 V	5.0 V	5.0 V							IN	5.0 V	5.0 V	5.0 V		OUT		0 to EO		23	"
		"	102		"	"	"	"					5.0 V	IN	5.0 V					1 to EO			
			103		"	"	"	"						5.0 V	IN				"	2 to EO			
			104	"			"								5.0 V	IN				3 to EO			
			105	IN												5.0 V				4 to EO			
			106	5.0 V	IN	IN														5 to EO			
			107 108		5.0 V	IN 5.0 V	" IN			ļ							ļ			6 to EO			
			108			5.U V	IIN													7 to EO			

TABLE III. <u>Group A inspection for device type 02</u> - Continued.

See footnotes at end of table.

17

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	nits	Unit
			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	V _{CC}		Min	Max	
9	t _{PHL3}	3003	109	5.0 V	5.0 V	5.0 V	5.0 V	GND			"		IN	5.0 V	5.0 V	5.0 V		OUT	5.0 V	0 to EO	2	45	ns
Tc = 25°C		Fig. 4	110	"	"	"	"	"			"		5.0 V	IN	"	"		"	"	1 to EO			
			111	"	"	"	"	"			"		"	5.0 V	IN	"				2 to EO			"
			112	"	"	"	"	"			"		"	"	5.0 V	IN		"		3 to EO			"
			113	IN	"	"	"	"			"		"	"	"	5.0 V		"		4 to EO			"
			114	5.0 V	IN	"					"		"		"			"		5 to EO			"
			115		5.0 V	IN					"		"		"					6 to EO			"
			116		"	5.0 V	IN				"		"		"					7 to EO			"
	t _{PLH4}		117		"	"	5.0 V	"			-		IN	-	-	-	OUT		"	0 to GS		60	-
		"	118		"	"	"	"			-		5.0 V	IN		-	"		"	1 to GS			
			119		"	"	"	"					"	5.0 V	IN		"		"	2 to GS			
			120		"	"	"	"			-			-	5.0 V	IN	-		"	3 to GS			-
			121	IN	"	"		=			-		-	-	=	5.0 V	=		"	4 to GS			=
			122	5.0 V	IN	-		=			-		-	-	=	-	=		"	5 to GS			=
			123	"	5.0 V	IN		-						-	-	-	=		"	6 to GS			-
			124		"	5.0 V	IN	-						-		-	-		"	7 to GS			-
	t _{PHL4}		125				5.0 V	"					IN				"		"	0 to GS		26	
			126		"	"		"					5.0 V	IN		-	"		"	1 to GS			
			127		"	"		"						5.0 V	IN		"		"	2 to GS			
			128	"	"	"	"	"					"		5.0 V	IN	"		"	3 to GS			
			129	IN	"	"	"	"			-		"		"	5.0 V	"		"	4 to GS			
			130	5.0 V	IN			"					"		"		"		"	5 to GS			
			131	"	5.0 V	IN		-					"		-		-		"	6 to GS			-
		-	132	"	"	5.0 V	IN	-					"		-		-		"	7 to GS			-
	t _{PLH6}	-	133				GND	IN									OUT		"	EI to GS		22	
	t _{PHL6}	-	134				GND	-			-						OUT		"	EI to GS		41	=
	t _{PLH7}		135	5.0 V	5.0 V	5.0 V	5.0 V						5.0 V	5.0 V	5.0 V	5.0 V		OUT		EI to EO		26	
	t _{PHL7}		136	5.0 V	5.0 V	5.0 V	5.0 V						5.0 V	5.0 V	5.0 V	5.0 V		OUT	"	EI to EO		40	
	t _{PZL}		137				GND					OUT							"	EI to A0		46	
			138					"		OUT										EI to A1			
			139						OUT			OUT	L	L		L				EI to A2			
	t _{PLZ}		140							OUT		OUT								EI to A0		40	
			141						OUT	OUT										EI to A1			
			142	5 0 1 1	5 0 1 1	5 0 1 1			OUT			0.117	0110	5.0.1/	5.0.1/	5.0.1/				EI to A2			
	t _{PZH}		143	5.0 V	5.0 V	5.0 V	5.0 V			OUT		OUT	GND	5.0 V	5.0 V	5.0 V				EI to A0		49	
			144						OUT	OUT		L								EI to A1			
			145						OUT			0.117								EI to A2			
	t _{PHZ}		146									OUT								EI to A0		32	-
			147			"		"		OUT						"				EI to A1			
			148	"				"	OUT						"	"			"	EI to A2			

TABLE III. <u>Group A inspection for device type 02</u> - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

See footnotes at end of table.

18

erminal conditions (pins not designated may be high ≥ 2.0

TABLE III. Group A inspection for device type 02Continued.Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.7 V; or open).

		MIL-STD-	Cases E, F	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
Subgroup	Symbol	883 method	Case 2 <u>1</u> /	2	3	4	5	7	8	9	10	12	13	14	15	17	18	19	20	Measured terminal	Lim	its	Unit
			Test no.	4	5	6	7	EI	A2	A1	GND	A0	0	1	2	3	GS	EO	V _{cc}		Min	Max	
10	t _{PLH1}																				2	29	ns
	t _{PHL1}																					46	
	t _{PLH2}																					52	
	t _{PHL2}																					52	
	t _{PLH3}	Same tests	and termin	al conditio	ns as sub	group 9, e	xcept T _C =	+125°C.														30	
	t _{PHL3}																					58	
	t _{PLH4}																					78	"
	t _{PHL4}																					34	"
	t _{PLH6}																					29	
	t _{PHL6}																					53	
	t _{PLH7}																					34	
	t _{PHL7}																					52	
	t _{PZL}																					60	
	t _{PLZ}																					52	
	t _{PZH}																					76	
	t _{PHZ}																					42	
11	Same t	ests, termina	al conditions	and limits	s as for sul	bgroup 10	except T _c	= -55°C.															

1/ Case 2 pins not referenced are NC.

 $\underline{2}$ / Input voltages shown are: A = 2.0 V minimum and B = 0.7 V maximum.

<u>3</u>/ Output voltages shall be either:

19

.

a. H = 2.5 V minimum and L = 0.4 V maximum when using a high speed checker double comparator; or

b. $H \ge 1.5$ V and $L \le 1.5$ V when using a high speed checker single comparator.

<u>4</u>/ Apply resistor 0.5 k Ω to 5.0 k Ω between pin 16 and pins 6, 7, and 9.

5. PACKAGING

5.1 Packaging requirements. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

l _{in}	Ground zero voltage potential Current flowing into an input terminal
V _{IN} t _{PHZ}	Voltage level at an input terminal Output disable time (of a three state output) from high level. The time between the specified reference points on the input and output voltage waveforms with the three state output changing from the defined high level to a high impedance (off) state.
t _{PLZ}	Output disable time (of a three state output) from low level. The time between the specified reference points on the input and output voltage waveforms with the three state output changing from the defined low level to a high impedance (off) state.
t _{РZH}	Output enable time (of a three state output) to high level. The time between the specified reference points on the input and output voltage waveforms with the three state output changing from a high impedance (off) state to the defined high level.
t _{PZL}	Output enable time (of a three state output) to low level. The time between the specified reference points on the input and output voltage waveforms with the three state output changing from a high impedance (off) state to the defined low level.
	Output current in the high impedance mode with the output voltage high. Output current in the high impedance mode with the output voltage low.

6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	54LS148
02	54LS348

6.8 <u>Manufacturers' designation</u>. Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

Device	Circuit A
type	Texas
	Instruments
01	Х
02	Х

TABLE IV. Manufacturers' designations.
--

6.9 <u>Changes from previous issue.</u> Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-2048)

Review activities: Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at <u>www.dodssp.daps.mil</u>.