INCH-POUND MIL-M-38510/51F 8 October 2004

SUPERSEDING MIL-M-38510/51E 30 April 1984

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, CMOS, FLIP-FLOPS AND LATCHES, MONOLITHIC SILICON

Reactivated after 8 Oct. 2004 and may be used for new and existing designs and acquisitions.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, CMOS, logic microcircuits. Two product assurance classes and a choice of case outlines, lead finishes, and radiation hardness assurance (RHA) are provided and are reflected in the complete Part or Identifying Number (PIN). For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535 (see 6.3).
 - 1.2 Part or identifying number (PIN). The PIN is in accordance with MIL-PRF-38535 and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	Dual D-type edge triggered flip-flop
02	Dual J-K master slave flip-flop
03	Quad three-state R/S latch
51	Dual D-type edge triggered flip-flop
52	Dual J-K master slave flip-flop
53	Quad three-state R/S latch

- 1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
N	CDFP4-T16	16	Flat pack
T	CDFP3-F14	14	Flat pack
X <u>1</u> / <u>2</u> /	GDFP5-F14 or CDFP6-F14	14	Flat pack, except A dimension equals 0.1" (2.54 mm) max
Y <u>1</u> / <u>2</u> /	GDFP1-F14 or CDFP2-F14	14	Flat pack, except A dimension equals 0.1" (2.54 mm) max
Z <u>1</u> / <u>2</u> /	GDFP2-F16 or CDFP3-F16	16	Flat pack, except A dimension equals 0.1" (2.54 mm) max

^{1/} As an exception to MIL-PRF-38535, appendix A, for case outlines X, Y, and Z only, the leads of bottom brazed ceramic packages (i.e., configuration 2 of case outlines A, D, or F) may have electroless nickel undercoating which is 50 to 200 microinches (1.27 to 5.08 μm) thick provided the lead finish is hot solder dip (i.e., finish letter A) and provided that, after any lead forming, an additional hot solder dip coating is applied which extends from the outer tip of the lead to no more than 0.015 inch (0.38 mm) from the package edge.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAC, P.O. Box 3990, Columbus, OH 43218-3990, or email CMOS@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A FSC 5962

^{2/} For bottom or side brazed packages, case outlines X, Y, and Z only, the S₁ dimension may go to .000 inch (.00 mm) minimum.

1.3 Absolute maximum ratings.

Supply voltage range (V_{DD} - V_{SS}): Device types 01, 02, 03	-0.5 V dc to +18.0 V dc \pm 10 mA $ (V_{SS} - 0.5 \text{ V}) \leq V_{I} \leq (V_{DD} + 0.5 \text{ V}) $ -65° to +175°C 200 mW +300°C See MIL-STD-1835
1.4 Recommended operating conditions.	
Device types 01, 02, 03: Supply voltage range (V_{DD} - V_{SS})	0.0 V to 0.85 V dc @ V_{DD} = 5.0 V dc 0.0 V to 2.0 V dc @ V_{DD} = 10.0 V dc 0.0 V to 2.1 V dc @ V_{DD} = 12.5 V dc
Supply voltage range (V _{DD} - V _{SS})	$\begin{array}{l} 4.5 \text{ V dc to } 15.0 \text{ V dc} \\ \text{V}_{\text{OL}} = 10\% \text{ V}_{\text{DD}}, \text{ V}_{\text{OH}} = 90\% \text{ V}_{\text{DD}} \\ 0.0 \text{ V to } 1.5 \text{ V dc } @ \text{ V}_{\text{DD}} = 5.0 \text{ V dc} \\ 0.0 \text{ V to } 2.0 \text{ V dc } @ \text{ V}_{\text{DD}} = 10.0 \text{ V dc} \\ 0.0 \text{ V to } 4.0 \text{ V dc } @ \text{ V}_{\text{DD}} = 15.0 \text{ V dc} \\ \end{array}$
Input high voltage range (V _{IH}) Load capacitance Ambient operating temperature range (T _A)	$\begin{array}{l} V_{OL} = 10\% \ V_{DD}, \ V_{OH} = 90\% \ V_{DD} \\ 3.5 \ V \ to \ 5.0 \ V \ dc \ @ \ V_{DD} = 5.0 \ V \ dc \\ 8.0 \ V \ to \ 10.0 \ V \ dc \ @ \ V_{DD} = 10.0 \ V \ dc \\ 11.0 \ V \ to \ 15.0 \ V \ dc \ @ \ V_{DD} = 15.0 \ V \ dc \\ 50 \ pF \ maximum \end{array}$
· ·····	

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein. Although eutectic die bonding is preferred, epoxy die bonding may be performed. However, the resin used shall be Dupont 5504 Conductive Silver Paste, or equivalent, which is cured at $200^{\circ}\text{C} \pm 10^{\circ}\text{C}$ for a minimum of 2 hours. The use of equivalent epoxies or cure cycles shall be approved by the qualifying activity. Equivalency shall be demonstrated in data submitted to the qualifying activity for verification.
 - 3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Logic diagram. The logic diagram shall be as specified on figure 2.
 - 3.3.3 Truth tables. The truth tables shall be as specified on figure 3.
- 3.3.4 <u>Switching waveforms and test circuits</u>. The switching waveforms and test circuits shall be as specified on figures 4 through 16.
- 3.3.5 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity or preparing activity upon request.
 - 3.3.6 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. Unless otherwise specified, the electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.7.1 <u>Radiation hardness assurance identifier</u>. The radiation hardness assurance identifier shall be in accordance with MIL-PRF-38535 and 4.5.4 herein.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 38 (see MIL-PRF-38535, appendix A).

TABLE I. <u>Electrical performance characteristics</u>.

Symbol	Conditions 1/		Device Limits		Unit	
			type	Min	Max	
V _{IC (POS)}	$T_A = +25^{\circ}C$, $V_{DD} = GN$	ID	All		1.5	V dc
		Open				
V _{IC (NEG)}	$T_A = +25^{\circ}C, V_{DD} = Op$		All		-6.0	V dc
	$I_{IN} = -1 \text{ mA}$					
I _{SS}	Any combination of inputs	$V_{DD} = 15 \text{ V dc}$	01, 02, 03		-2.5	μА
		$V_{DD} = 18 \text{ V dc}$	51, 52, 53		-2.5	
V _{OH1}	$V_{DD} = 5 \text{ V dc}, I_{OH} = -1$ (see table III)	1 75 μΑ	01, 02, 03	4.5		V dc
V _{OH2}	$V_{DD} = 5 \text{ V dc}, I_{OH} = 0.0$ (see table III)) A	01, 02, 03	4.95		
V _{OH3}	V_{DD} = 12.5 V dc, I_{OH} = (see table III)	0.0 A	01, 02, 03	11.25		
V_{OH4}	,		01, 02	4.95		V dc
V _{OH5}	$V_{DD} = 15 \text{ V dc}, I_{OH} = 0.0 \text{ A}$ (see table III)		51, 52, 53	14.95		
V _{OH6}	$V_{DD} = 15 \text{ V dc}, I_{OH} = 0$ (see table III)	.0 A	51, 52	14.95		
V_{OL1}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.3$ (see table III)	33 mA	01, 02, 03		0.50	V dc
V_{OL2}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.0 \text{ A}$ (See table III)		01, 02, 03		0.05	
V _{OL3}	V_{DD} = 12.5 V dc, I_{OL} = (See table III)	0.0 A	01, 02, 03		1.25	
V_{OL4}	$V_{DD} = 5 \text{ V dc}, I_{OL} = 0.0$ (See table III)) A	01, 02		0.05	
V_{OL5}	$V_{DD} = 15 \text{ V dc}, I_{OL} = 0$ (See table III)	.0 A	51, 52, 53		0.05	
V_{OL6}	$V_{DD} = 15 \text{ V dc}, I_{OL} = 0$ (See table III)	$V_{DD} = 15 \text{ V dc}, I_{OL} = 0.0 \text{ A}$ (See table III)			0.05	
V _{IH1}	$V_{DD} = 5 \text{ V dc}$ $V_{O} = 4.5 \text{ V}$		51, 52, 53	3.5		V dc
$V_{\text{IH}2}$	$V_{DD} = 10 \text{ V dc}$ $V_{O} = 9.0 \text{ V}$		51, 52, 53	7.0		V dc
V _{IH3}	$V_{DD} = 15 \text{ V dc}$ $V_{O} = 13.5 \text{ V}$		51, 52, 53	11.0		V dc
	VIC (POS) VIC (NEG) Iss VOH1 VOH2 VOH3 VOH4 VOH6 VOL1 VOL2 VOL3 VOL4 VOL5 VOL6 VIH1	$V_{SS} = 0 \\ -55^{\circ}C \leq T_{A} \leq - \\ Unless otherwise \\ V_{IC} (POS) \qquad T_{A} = +25^{\circ}C, \ V_{DD} = GN \\ V_{SS} = Open, \ Output = \\ I_{IN} = 1 \ mA \\ V_{IC} (NEG) \qquad T_{A} = +25^{\circ}C, \ V_{DD} = Op \\ V_{SS} = GND, \ Output = \\ I_{IN} = -1 \ mA \\ I_{SS} \qquad Any combination of inputs \\ V_{DD} = 5 \ V \ dc, \ I_{OH} = -1^{\circ} (see table III) \\ V_{OH2} \qquad V_{DD} = 5 \ V \ dc, \ I_{OH} = 0.0 \\ (see table III) \qquad V_{OH3} \qquad V_{DD} = 12.5 \ V \ dc, \ I_{OH} = 0.0 \\ (see table III) \\ V_{OH4} \qquad V_{DD} = 5 \ V \ dc, \ I_{OH} = 0.0 \\ (see table III) \\ V_{OH5} \qquad V_{DD} = 15 \ V \ dc, \ I_{OH} = 0 \\ (see table III) \\ V_{OH6} \qquad V_{DD} = 5 \ V \ dc, \ I_{OL} = 0.0 \\ (see table III) \\ V_{OL2} \qquad V_{DD} = 5 \ V \ dc, \ I_{OL} = 0.0 \\ (see table III) \\ V_{OL3} \qquad V_{DD} = 5 \ V \ dc, \ I_{OL} = 0.0 \\ (see table III) \\ V_{OL4} \qquad V_{DD} = 5 \ V \ dc, \ I_{OL} = 0.0 \\ (see table III) \\ V_{OL5} \qquad V_{DD} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL6} \qquad V_{DD} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL6} \qquad V_{DD} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL6} \qquad V_{DD} = 5 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL6} \qquad V_{DD} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL9} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL} = 15 \ V \ dc, \ I_{OL} = 0 \\ (see table III) \\ V_{OL} = 15 $	$V_{SS} = 0 \text{ V} \\ -55^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C} \\ \text{Unless otherwise specified} \\ V_{IC (POS)} \qquad T_{A} = +25^{\circ}\text{C}, V_{DD} = \text{GND} \\ V_{SS} = \text{Open, Output} = \text{Open} \\ I_{IN} = 1 \text{ mA} \\ V_{IC (NEG)} \qquad T_{A} = +25^{\circ}\text{C}, V_{DD} = \text{Open} \\ V_{SS} = \text{GND, Output} = \text{Open} \\ I_{IN} = -1 \text{ mA} \\ \text{Iss} \qquad \text{Any combination of inputs} \qquad V_{DD} = 15 \text{ V dc} \\ \text{Inputs} \qquad V_{DD} = 18 \text{ V dc} \\ V_{DD} = 18 \text{ V dc} \\ \text{Voh1} \qquad V_{DD} = 5 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOH2} \qquad V_{DD} = 5 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOH3} \qquad V_{DD} = 12.5 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOH4} \qquad V_{DD} = 5 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOH5} \qquad V_{DD} = 15 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOH6} \qquad V_{DD} = 15 \text{ V dc, I}_{OH} = 0.0 \text{ A} \\ \text{(see table III)} \\ \text{VOL1} \qquad V_{DD} = 5 \text{ V dc, I}_{OL} = 0.33 \text{ mA} \\ \text{(see table III)} \\ \text{VOL2} \qquad V_{DD} = 5 \text{ V dc, I}_{OL} = 0.0 \text{ A} \\ \text{(See table III)} \\ \text{VOL3} \qquad V_{DD} = 15 \text{ V dc, I}_{OL} = 0.0 \text{ A} \\ \text{(See table III)} \\ \text{VOL4} \qquad V_{DD} = 5 \text{ V dc, I}_{OL} = 0.0 \text{ A} \\ \text{(See table III)} \\ \text{VOL5} \qquad V_{DD} = 15 \text{ V dc, I}_{OL} = 0.0 \text{ A} \\ \text{(See table III)} \\ \text{VOL6} \qquad V_{DD} = 15 \text{ V dc, I}_{OL} = 0.0 \text{ A} \\ \text{(See table III)} \\ \text{VIH1} \qquad V_{DD} = 5 \text{ V dc} \\ V_{O} = 4.5 \text{ V} \\ _{IO} \leq 1 \mu \text{A} \\ \text{VIH2} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{O} = 13.5 \text{ V} \\ \text{VIH3} \qquad V_{DD} = 15 \text{ V dc} \\ V_{D$	$V_{SS} = 0 \text{ V} \\ -55^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C} \\ \text{Unless otherwise specified} \\ V_{IC (POS)} \\ \hline V_{A} = +25^{\circ}\text{C}, V_{DD} = \text{GND} \\ V_{SS} = \text{Open, Output} = \text{Open} \\ I_{IN} = 1 \text{ mA} \\ \hline V_{IC (NEG)} \\ \hline V_{S} = \text{GND, Output} = \text{Open} \\ I_{IN} = -1 \text{ mA} \\ \hline V_{SS} = \text{GND, Output} = \text{Open} \\ I_{IN} = -1 \text{ mA} \\ \hline V_{DD} = 18 \text{ V dc} \\ \hline V_{DD} = 10 \text{ V dc} \\ \hline V_{DD} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

See footnotes at end of the table.

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditi	Device	Device Limits		Unit	
		V _{SS} = 0 V		type	Min	Max	
		-55°C ≤ T _A					
Input low voltage	V _{IL1}	Unless otherw $V_{DD} = 5 \text{ V dc}$	vise specified	51, 52,		1.5	V dc
mp at ion romage	- 121	$V_0 = 0.5 \text{ V dc}$		53			
		$ I_0 \le 1\mu A$					
	V _{IL2}	$V_{DD} = 10 \text{ V dc}$ $V_{O} = 1.0 \text{ V dc}$		51, 52, 53		3.0	V dc
		$ I_0 \le 1\mu A$		33			
	V _{IL3}	$V_{DD} = 15 \text{ V dc}$		51, 52,		4.0	V dc
		$V_O = 1.5 \text{ V dc}$ $ I_O \le 1 \mu \text{A}$		53			
Output low (sink)	1	$V_{DD} = 5 \text{ V dc}$		51, 52,	0.36		mA
current	I _{OL1}	$V_{OL} = 3 \text{ V dC}$ $V_{OL} = 0.4 \text{ V dC}$		53			
	I _{OL2}	$V_{DD} = 15 \text{ V dc}$		51, 52,	2.4		mA
	IOL2	$V_{OL} = 1.5 \text{ V dc}$		53			
Output high (source)	I _{OH1}	$V_{DD} = 5 \text{ V dc}$		51, 52,	-0.36		mA
current	IOHI	$V_{OH} = 4.6 \text{ V dc}$	53				
	I _{OH2}	$V_{DD} = 15 \text{ V dc}$	51, 52,	-2.4		mA	
		$V_{OH} = 13.5 \text{ V dc}$		53			
Input leakage current, high	IIH I	Measure inputs sequentially	$V_{DD} = 15 \text{ V dc}$	01, 02		100	nA
				03		45	1
			$V_{DD} = 18 \text{ V dc}$	51, 52		100	
				53		45	
Input leakage current, low		Measure inputs sequentially	$V_{DD} = 15 \text{ V dc}$	01, 02		-100	nA
			V _{DD} = 18 V dc	03		-45	1
				51, 52		-100	1
			VDD = 10 V do	53		-45	1
1						_	
Input capacitance	Ci	$V_{DD} = 0 \text{ V dc, f} = 1$ $T_A = 25^{\circ}\text{C}$	MHz,	All		12	pF
Propagation delay times,	t _{PHL}	$V_{DD} = 5 \text{ V dc}, C_L =$	50 pF	01	13	750	ns
high level to low level	VENL	, -	•	02	13	865	1
				03	10	370	1
				52	13	865	1
				51	13	750	1
				53	10	370	1
Propagation delay times,	t _{PLH}	1		01	13	825	ns
low level to high level	-, []			02	13	940	
				03	10	245	
				52	13	940	
				51	13	825	
				53	10	245	

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions 1/	Device	Lin	nits	Unit
	-	$V_{SS} = 0 V$	type	Min	Max	
		-55°C ≤ T _A ≤ +125°C Unless otherwise specified				
Propagation delay high to	t _{PHL}	$V_{DD} = 5.0 \text{ V dc}, C_L = 50 \text{ pF}$	01	13	825	ns
low level (Set or reset)	(R) or (S)	V _{DD} = 0.0 V do, O _L = 00 pi	02	13	900	
			03	10	370	
			51	13	825	
			52	13	900	
			53	10	370	
Propagation delay low to	t _{PLH}	$V_{DD} = 5.0 \text{ V dc}, C_{L} = 50 \text{ pF}$	01	13	630	ns
high level (Set or reset)	(R) or (S)	155 ott 155, 52 oc p	02	13	600	
,			03	10	245	
			51	13	630	
			52	13	600	
			53	10	245	
Transition time high to	t _{THL}	$V_{DD} = 5.0 \text{ V dc}, C_L = 50 \text{ pF}$	01	10	450	ns
low levels		155 Ste 1 35, 52 55 pt	02	10	490	
			03	10	245	
			51	10	450	
			52	10	490	
			53	10	245	
Transition time low to	t _{TLH}	$V_{DD} = 5.0 \text{ V dc}, C_L = 50 \text{ pF}$	01	10	525	ns
high levels			02	10	490	
			03	10	360	
			51	10	525	
			52	10	490	
			53	10	360	
Maximum clock	f _{CL(max)}	$V_{DD} = 5.0 \text{ V dc}, C_L = 50 \text{ pF}$	01		1	MHz
frequency		, , ,	02		700	KHz
Hoquerity			51		1	MHz
			52		700	KHz
Maximum clock	tTLHCL	$V_{DD} = 5.0 \text{ V dc}$	01		10	μS
transition times		$C_L = 50 \text{ pF}$	02			
			51			
			52			
Minimum clock pulse	t _p	$V_{DD} = 5.0 \text{ V dc}$	01	300		ns
width		$C_L = 50 \text{ pF}$	02			
			51			
			52			
Set-up times	t _{SHL} ,	$V_{DD} = 5.0 \text{ V dc}$	01	225		ns
	t _{SLH}	$C_L = 50 \text{ pF}$	02			
			51			
			52			
Hold times	t _{HLH} ,	$V_{DD} = 5.0 \text{ V dc}$	01	225		ns
	t _{HHL}	$C_L = 50 \text{ pF}$	02			
			51			
			52		0.10	
Output enable time	t _{PZH} ,	$V_{DD} = 5.0 \text{ V dc}$	03		340	ns
	t _{PZL}	$C_L = 50 \text{ pF}$	53		240	
Output disable time	t _{PHZ} ,	$V_{DD} = 5.0 \text{ V dc}$	03		340	ns
	t _{PLZ}	C _L = 50 pF	53		240	

 $[\]underline{1}\!/$ Complete terminal conditions shall be a specified in table III. $\underline{2}\!/$ Input current at one input node.

Device types	01, 51	02, 52	03, 53
Case outlines	A, C, D, T, X, Y	E, F, N, Z	E, F, N, Z
Terminal number	Terminal	Terminal	Terminal
	symbol	symbol	symbol
1	Q1	Q2	Q4
2	Q 1	Q2	Q1
3	CL1	CL2	R1
4	R1	R2	S1
5	D1	K2	EN
6	S1	J2	S2
7	V_{SS}	S2	R2
8	S2	V_{SS}	V_{SS}
9	D2	S1	Q2
10	R2	J1	Q3
11	CL2	K1	R3
12	Q2	R1	S3
13	Q2	CL1	NC
14	V_{DD}	Q1	S4
15		Q1	R4
16		V_{DD}	V_{DD}

FIGURE 1. <u>Terminal connections</u>.

DEVICE TYPES 01 AND 51 SET O-CL MASTER SECTION ★ SLAVE SECTION TG TG $\overline{\mathsf{CL}}$ TG >>--- ā BUFFERED OUTPUTS O-RESET DEVICE TYPES 02 AND 52 SETO MASTER SECTION CL SLAVE SECTION 1 TG TG 2 CL 1 2 CL $\overline{\mathsf{CL}}$ CL TG ↑2 CL TG O-RESET

NOTE: One of two identical flip flops shown.

FIGURE 2. Logic diagram.

DEVICE TYPES 03 AND 53

FIGURE 2. <u>Logic diagram</u> – Continued.

MIL-M-38510/51F

Device types 01 and 51

Ir	puts	1		Outputs			
CL	D	R	Ø	Ø	ΙØ		
↑	L	Ш	Ш	L	Η		
↑	Н	L	L	Ι	L		
\downarrow	Χ	L	L	Ø	lα	No Change	
Х	Χ	Τ	L	L	Н		
Х	Χ	L	Τ	Ι	Ĺ	_	
Х	Χ	Η	Η	Ι	Н		

H = High level voltage

L = Low level voltage

X = Irrelevant

 \uparrow = Low to high transition of the clock

 \downarrow = High to low transition of the clock

Device types 02 and 52

	*tr	**	* tn+1	Outputs				
CL	J	K	S	R	Q	Q	Q	
↑	Н	Χ	L	L	L	Η	L	
↑	Х	L	L	L	Н	Н	L	
↑	L	Х	L	L	L	L	Н	
↑	Χ	Ι	L	L	Н	L	Н	
\	Χ	Χ	L	L	Χ	Q	lα	No Change
Х	Χ	Χ	Η	L	Χ	Ι	L	
Х	Χ	Χ	L	Ι	Χ	L	Н	
Х	Χ	Χ	Η	Ι	Χ	Ι	Н	

H = High level voltage

L = Low level voltage

X = Irrelevant

 \uparrow = Low to high transition of the clock

 \downarrow = High to low transition of the clock

* = tn refers to the time interval before the positive clock pulse transition.

** = tn+1 refers to the interval after the positive clock pulse transition.

Device types 03 and 53

	Inputs		Output
S	R	Е	Q
Х	Х	L	Open circuit high impedance
L	L	Н	No change
Н	L	Н	Н
L	Н	Н	L
Н	Н	Н	Δ High

H = High level voltage

L = Low level voltage

X = Don't care

 Δ = Dominated by S = 1 input (high)

FIGURE 3. Truth tables.

- 1. To implement test numbers 63, 64, 65, and 66 (device type 01), and 47, 48, 49, and 50 (device type 51), place SW3 in the V_{IL1} position. Set the flip-flop by momentarily placing SW1 in position 2. Following the return of SW1 to position 1, momentarily place SW2 in position 2. Measure the output levels at Q and Q to insure compliance with table III limits.
- To implement test numbers 67, 68, 69, and 70 (device type 01), and 51, 52, 53, and 54 (device type 51), set the flip-flop as described in note 1. Place SW3 in the V_{IH1} position. Momentarily place SW2 in position 2. Following the return of SW2 to position 1, measure the output level at Q and Q to insure compliance with table III limits.
- 3. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. SW1 and SW2 are momentary contact switches.

FIGURE 4. Data input high and low test circuit for device types 01 and 51.

1. Test numbers 71 thru 74 (device type 01) and 55 thru 58 (device type 51) implemented by the following step by step sequence:

		SW1 POS	SW2 POS	SW3 POS	Q OUT	Q OUT	
STEP	1	2*	1	-	"1"	"0"	
	2	1	1	1*	"0"	"1"	* Denotes momentary
	3	1	2	1*	"1"	"0"	contact
	4	1	1	1*	"0"	"1"	
	5	1	2	2*	"0"	"1"	
	6	1	2	2*	"0"	"1"	
▼	7	1	2	1*	"1"	"0"	
STEP	8	1	1	1*	"0"	"1"	

Monitor either Q or \overline{Q} of the flip-flop under test. Compliance with table III limits is established by a change of logic levels at the Q or \overline{Q} output in going from step 1 to step 2, step 2 to step 3, step 3 to step 4, step 6 to step 7, and step 7 to step 8, while no change shall occur in going from step 4 to step 5 or step 5 to step 6.

- 2. Identical measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. $V_{OH} = 1$ and $V_{OL} = 0$.
- 4. SW1 and SW3 are momentary contact switches.

FIGURE 5. Clock input high and low test circuit for device types 01 and 51.

- 1. The pulse generator has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50% t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μs .
- 2. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. For f_{CL} and t_p , the pulse repetition period is variable.
- 4. Requirements for max clock frequency (f_{CL}), max clock rise time and minimum clock pulse width are established by setting the parameter to the limits given in table III and observing proper output state changes.

FIGURE 6. Switching time test circuit and waveforms for device types 01 and 51.

- 1. The pulse generators have the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, $t_{PH} = 1.0 \pm 0.1 \mu s$, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = $5.0 \pm 0.5 \mu s$.
- 2. The reset pulse delay is 2.5 \pm 0.25 $\mu s.$
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.

FIGURE 7. Set-reset switching test circuit and waveforms for device types 01 and 51.

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μ s.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = twice that of pulse generator number 1.
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- Requirements for setup times are considered met if proper output state changes occur with t_{SETUP} set to that given in the limits column of table III.

FIGURE 8. Setup time test circuit and waveforms for device types 01 and 51.

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = $5.0 \pm 0.5 \ \mu s$.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = twice that of pulse generator number 1.
- 3. Identical switching measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. Requirements for hold times are considered met if proper output state changes occur with t_{HOLD} set to that given in the limits column of table III.

FIGURE 9. Hold time test circuit and waveforms for device types 01 and 51.

- To implement test numbers 59 thru 62 (device type 02) and 43 thru 46(device type 52), place SW3 in position 1. Set the flip-flop by momentarily placing SW1 in position 2. Following the <u>return of SW1 to position 1</u>, momentarily place SW2 in position 2. Measure the output levels at Q and Q to insure compliance with table III limits.
- To implement test numbers 63 thru 66 (device type 02) and 47 thru 50 (device type 52), set the flip-flop
 as described in note 1. Place SW3 in position 2. Momentarily place SW2 in position 2. Following the
 return of SW2 to position 1, measure the output levels at Q and Q to insure compliance with table III
 limits.
- 3. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 4. SW1 and SW2 are momentary contact switches.

FIGURE 10. J and K input voltage high and low test circuit for device types 02 and 52.

1. Test numbers 67 thru 70 (device type 02) and 51 thru 54 (device type 52) are implemented by the following step by step sequence:

						_
		SW1	SW2	SW3	Q	Q
		POS	POS	POS	OUT	OUT
STEP	1	2	1	-	"0"	"1"
	2	1	1	1	"1"	"0"
	3	1	2	1	"0"	"1"
	4	1	1	2	"0"	"1"
	5	1	2	2	"0"	"1"
▼	6	1	1	1	"1"	"0"
STEP	7	1	2	1	"0"	"1"

Monitor either Q or \overline{Q} of the flip-flop under test. Compliance with table III limits is established by a change of logic levels at the Q or \overline{Q} output in going from step 1 to step 2, step 2 to step 3, step 5 to step 6, and step 6 to step 7, while no change shall occur in going from step 3 to step 4 to step 5.

- 2. Identical measurements are obtained from either flip-flop number 1 or flip-flop number 2.
- 3. $V_{OH} = "1"$ and $V_{OL} = "0"$.
- 4. SW1 and SW3 are momentary contact switches.

FIGURE 11. Clock input high and low test circuit for device types 02 and 52.

- 1. The pulse generator has the following characteristics: $V_{gen} = V_{DD} \pm 1.0\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μs .
- 2. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 3. For K input test, connect terminal 6 to terminal 16 and terminal 5 to terminal 1. Similar connection are required for measurements on flip-flop number 2.
- 4. For f_{CL} and t_p, the pulse repetition period is variable.
- 5. Requirements for max clock frequency (fcl.), max clock rise time and minimum clock pulse width are established by setting the parameter to the limit given in table III and observing proper output state changes.

FIGURE 12. Switching time test circuit and waveforms for device types 02 and 52.

- 1. The pulse generators have the following characteristics: $V_{GEN} = V_{DD} \pm 1.0$ %, $t_{PH} = 1.0 \pm 0.1$ μs , t_{r} and $t_{f} = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 μs .
- 2. The reset pulse delay is 2.5 \pm 0.25 $\mu s.$
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.

FIGURE 13. Set-reset switching test circuit and waveforms for device types 02 and 52.

- 1. Pulse generator number 1 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = 50%, t_r and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 \pm 0.5 μ s.
- 2. Pulse generator number 2 has the following characteristics: $V_{gen} = V_{DD} \pm 1\%$, duty cycle = variable, t_f and $t_f = 20 \pm 2.0$ ns and pulse repetition period = 5.0 ± 0.5 µs.
- 3. Identical switching measurements are obtained from flip-flop number 1 and flip-flop number 2.
- 4. For J input test, connect terminal 5 to terminal 16 and terminal 6 to pulse generator number 2. Similar terminal connections are required for measurement on flip-flop number 2.
- 5. Requirements for setup times and hold times are established by setting the parameter to the limit given in table III and observing proper output state changes.

FIGURE 14. Setup and hold time test circuit and waveforms for device types 02 and 52.

- 1. Pulse generator number 1 characteristics: t_r and $t_f \le 20$ ns, $t_P = 1.0 \ \mu s$, $V_{GEN} = 0$ to 5 V, PRR = 200 kHz.
- 2. Pulse generator number 2 characteristics: t_r and $t_f \le 20$ ns, $t_P = 1.0$ μ s, delayed 2.0 μ s after pulse number 1, $V_{GEN} = 0$ to 5 V, PRR = 200 kHz.
- 3. Load conditions: $C_L = 50 \text{ pF}$, $R_L = 200 \text{ k}\Omega$ (includes probe and jig impedances).
- 4. Identical switching measurements are obtained from latch 2, latch 3, and latch 4.

FIGURE 15. Switching time test circuit and waveforms for device types 03 and 53.

- 1. Identical switching measurements are obtained from latch 1, latch 2, latch 3, and latch 4.
- 2. Load conditions: C_L = 50 pF and R_L = 1 k Ω (includes probe and jig impedances).

FIGURE 16. Enable propagation delay time test circuit and waveforms for device types 03 and 53.

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Delete the sequence specified as interim (pre-burn-in) electrical parameters through interim (post-burn-in) electrical parameters of table IA of MIL-PRF-38535 and substitute lines 1 through 7 of table II herein.
 - c. Burn-in (method 1015 of MIL-STD-883).
 - (1) Unless otherwise specified in the manufacturers QM plan for static tests (test condition A), ambient temperature (T_A) shall be +125°C minimum. Test duration for each static test shall be 24 hours minimum for class S devices and in accordance with table I of method 1015 for class B devices.
 - i. For static burn-in I, all inputs shall be connected to 0.0 V.
 - ii. For static burn-in II, all inputs shall be connected to V_{DD}.
 - iii. Except for V_{DD} and V_{SS} , each terminal shall be connected through a resistor whose value is 2 k Ω to 47 k Ω . The actual measured value of the resistor selected shall not exceed $\pm 20\%$ of its branded value due to use, heat or age.
 - iv. Output may be open or connected to $V_{\text{DD}}/2$.
 - v. V_{DD} = 12.5 V minimum, 15 V maximum for device types 01, 02, 03. V_{DD} = 15 V minimum, 18 V maximum for device types 51, 52, 53. $V_{DD}/2 = V_{DD}/2 \pm 1.0$ %. V_{SS} = 0.0 V.
 - (2) Unless otherwise specified in the manufacturers QM plan for dynamic test (test condition D), ambient temperature shall be +125°C minimum. Test duration shall be in accordance with table I of method 1015.
 - i. Except for V_{DD} and V_{SS} , the terminals shall be connected through a resistor whose value is 2 k Ω to 47 k Ω . The actual measured value of the resistor selected shall not exceed $\pm 20\%$ of its branded value due to use, heat or age.
 - ii. Input signal requirements: Square wave, 50% duty cycle; 25 kHz < PRR < 1 MHz; t_{TLH} and t_{THL} < 1 μ s. Voltage level: Minimum = V_{SS} 0.5 V, +10% V_{DD} ; Maximum = V_{DD} + 0.5 V, -10% V_{DD} .
 - iii. $V_{DD}=12.5$ V minimum, 15 V maximum for device types 01, 02, 03. $V_{DD}=15$ V minimum, 18 V maximum for device types 51, 52, 53. $V_{DD}/2=V_{DD}/2\pm1.0$ V for all devices. $V_{SS}=0.0$ V.

- d. Interim and final electrical test parameters shall be as specified in table II.
- e. For class S devices, post dynamic burn-in, or class B devices, post static burn-in, electrical parameter measurements may, at the manufacturer's option, be performed separately or included in the final electrical parameter requirements.

TABLE II. Electrical test requirements.

Line	MIL-PRF-38535		Class S device	<u>1</u> /		Class B device	<u>1</u> /
no.	test requirements	Ref.	Table III	Table IV	Ref.	Table III	Table IV
		par.	Subgroups	delta	par.	subgroups	delta
			<u>2</u> /	limits		<u>2</u> /	limits
				<u>3</u> /			<u>3</u> /
1	Interim electrical		1			1	
	parameters						
2	Static burn-in I	4.2c					
	(method 1015)	4.5.2					
3	Same as line 1		1	Δ			
4	Static burn-in II	4.2c			4.2c	<u>4</u> /	
	(method 1015)	4.5.2			4.5.2		
5	Same as line 1		1*	Δ	4.2e	1*	Δ
6	Dynamic burn-in	4.2c					
	(method 1015)	4.5.2					
7	Same as line 1	4.2e	1*	Δ			
8	Final electrical		1*, 2, 3, 7, 9			1*, 2, 3, 7, 9	
	parameters						
	(method 5004)						
9	Group A test	4.4.1	1, 2, 3, 4, 7, 8,		4.4.1	1, 2, 3, 4, 7,	
	requirements		9, 10, 11			9, 10, 11	
	(method 5005)						
10	Group B test	4.4.2	1, 2, 3, 7, 8, 9,	Δ			
	when using		10, 11				
	method 5005						
44	QCI option				4.4.0	4.00	
11	Group C end-				4.4.3	1, 2,3	Δ
	point electrical						
	parameters						
12	(method 5005) Group D end-	4.4.4	1, 2, 3		4.4.4	1, 2, 3	
12	point electrical	4.4.4	1, ∠, ა		4.4.4	1, 2, 3	
	parameters						
	(method 5005)						
	(111611100 3003)						

- 1/ Blank spaces indicate tests are not applicable.
- 2/ * indicates PDA applies to subgroup 1 (see 4.2.1).
- $\underline{3}$ / Δ indicates delta limits shall be required only on table III subgroup 1, where specified, and the delta values shall be computed with reference to the previous interim electrical parameters.
- 4/ The device manufacturer may at his option either perform delta measurements or within 24 hours after burn-in (or removal of bias) perform the final electrical parameter measurements.

4.2.1 Percent defective allowable (PDA).

- a. The PDA for class S devices shall be 5 percent for static burn-in and 5 percent for dynamic burn-in, based on the exact number of devices submitted to each separate burn-in.
- b. Static burn-in I and II failure shall be cumulative for determining the PDA.
- c. The PDA for class B devices shall be in accordance with MIL-PRF-38535 for static burn-in. Dynamic burn-in is not required.
- d. Those devices whose measured characteristics, after burn-in, exceed the specified delta (Δ) limits or electrical parameter limits specified in table III, subgroup 1, are defective and shall be removed from the lot. The verified failures divided by the total number of devices in the lot initially submitted to burn-in shall be used to determine the percent defective for the lot and the lot shall be accepted or rejected based on the specified PDA.
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.3.1 <u>Qualification extension</u>. When authorized by the qualifying activity, if a manufacturer qualifies to a 51, 52, or 53 device type which is manufactured identically to a 01, 02, or 03 device type on this specification, then the 01, 02, or 03 device type may be part I qualified by conducting only group A electrical tests and any electrical tests specified as additional group C subgroups and submitting data in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI).</u> Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be performed in accordance with table II herein.
 - b. Subgroups 5, 6, and 8 of MIL-STD-883, method 5005 shall be omitted.
 - c. Subgroup 4 (C_I measurement) shall be measured only for initial qualification and after process or design changes that may affect input capacitance. Capacitance shall be measured between the designated terminal and V_{SS} at a frequency of 1 MHz.
 - d. Subgroups 9 and 11 shall be measured only for initial qualification and after process or design changes which may affect dynamic performance.
 - e. When device types 01 through 03 are qualified by extension (see 4.3.1), these device types will be inspected (QCI) according to the requirements for device types 51 through 53, respectively.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 <u>Group C inspection.</u> Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein. Delta limits shall apply only to subgroup 1 of group C inspection and shall consist of tests specified in table IV herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - c. When device types 01 through 03 are qualified by extension (see 4.3.1), these device types will be inspected (QCI) according to the requirements for device types 51 through 53, respectively.

TABLE III. Group A inspection for device type 01.

Symbol	MIL-	Cases						Te	rminal c	onditions	s <u>1</u> /						Measured			Test	limits			Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgi T _A =	roup 1		roup 2	Subgr		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14	-	Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		no.						1mA								GND	SET1		1.5					V
. ,		2				1mA	44									"	RS1		"					"
		3 4			1mA		1mA									"	D1 CLK1		"					"
		5			1111/					1mA						"	SET2		"					"
		6										1mA				"	RS2		"					"
		7 8									1mA		1mA			"	D2 CLK2		"					"
/ _{IC(neg)}		9						-1mA	GND				11117				SET1		-6					"
		10				-1mA	4 4		"								RS1		"					"
		11 12			-1mA		-1mA		"								D1 CLK1		"					"
		13							44	-1mA							SET2		"					"
		14							"		4 4	-1mA					RS2		"					"
		15 16							"		-1mA		-1mA				D2 CLK2		"					"
I _{SS} <u>2</u> /	3005	17			15V	GND	GND	GND	"	GND	GND	GND	GND			15V	None		25		-2.5			μΑ
	"	18 19			GND 15V	"	"	"	"	"	"	"	"			"	None None		"		"			,
	"	20			15V	"	15V	"	"	66	u	"	66			"	V _{SS}		"		"			
	"	21			GND	"	"	"	"	44	"	"	"			"	V _{SS}		"		"			
	"	22 23			15V 15V	"	" GND	"	"	"	"	"	"			"	None None		"		"			"
	"	23			GND	**	GND "	"	"	66	"	**	66			"	V _{SS}		"		"			"
	"	25			15V	66	"	"	44	66	44	**	66			"	None		"		44			"
	"	26			15V GND	15V 15V	15V	15V	"	"	"	"	66			"	V _{SS}		"		"			"
	"	27 28			GND "	GND	15V GND	15V GND	"	"	"	"	15V			"	V _{SS} None		"		"			"
	"	29			"	"	"	"	"	"	"	"	GND			"	None		"		"			"
	"	30			"	"	"	"	"	"	" 4E\/	"	15V			"	None		"		"			"
	"	31 32			"	"	"	"	"	"	15V "	"	15V GND			"	V_{SS} V_{SS}		"		"			"
	"	33			"	"	"	"	"	"	"	"	15V			"	None		"		"			-
	"	34			"	"	"	"	"	"	GND "	"	15V			"	None		"		"			"
	"	35 36			"	"	"	"	"	66	"	**	GND 15V			"	V _{SS} None		"		"			
	"	37			"	"	"	"	"	15V	15V	15V	15V			"	V _{SS}		"		"			44
.,	"	38	1 0/		"	"	"	"	"	15V	15V	15V	GND			"	V _{SS}		"		"			"
V_{OH1}	3006	39 40	I _{OH} <u>3</u> /	I _{OH}	"	V _{IL1} <u>7</u> / V _{IH1}	"	V _{IH1} <u>4</u> / V _{IL1}	"	GND GND	GND "	GND GND	"			5.0V	<u>Q</u> 1 Q1	4.5		4.5		4.5		V "
	"	41		IOH	"	GND	u	GND	"	V _{IH1}	"	V _{IL1}	66		I _{OH}	"	Q2	"		"		"		"
.,	"	42			u	GND	"	GND	"	V_{IL1}	"	V_{IH1}	"	I _{OH}		"	Q2	4.05		4.05		4.05		
V_{OH2}	"	43 44			"	V _{IL1} V _{IH1}	"	V _{IH1} V _{IL1}	"	GND GND	"	GND GND	**			"	<u>Q1</u> Q1	4.95		4.95		4.95		"
	"	45			"	GND	u	GND	"	V _{IH1}	"	V _{II 1}	66			"	Q2 Q2	"		"		"		"
.,	"	46			"	GND	"	GND	"	V_{IL1}	"	V_{IH1}	"			"	Q2	"		"		"		
V_{OH3}	"	47 48			"	V _{IL2} <u>8</u> / V _{IH2}	"	V _{IH2} <u>5</u> /	"	GND GND	"	GND GND				12.5V	<u>Q1</u> Q1	11.25		11.25		11.25		"
	"	49			"	GND	"	V _{IL2} GND	"	V _{IH2}	"	V _{IL2}	66			**	Q1 Q2	"		"		u.		"
	"	50			"	GND	"	GND	"	V _{IL2}	"	V _{IH2}	**			"	Q2	**		**		"		"

TABLE III. Group A inspection for device type 01 – Continued.

me	STD- 883 nethod 3007 " " " " " " " " " "	A,C,D, T,X,Y Test no. 51 52 53 54 55 56 57 58	Q1 1 I _{OL} <u>6</u> /	Q1 2 I _{OL}	GND " " " " " " " " " " " " " " " " " " "	RS1 4 V _{IH1} V _{IL1} GND GND V _{IH1} V _{IL1} GND	D1 5 GND " " " " " " " " " " " " " " " " " " "	SET1 6 V _{IL1} V _{IH1} GND GND V _{IL1}	V _{SS} 7 GND " "	SET2 8 GND GND V _{IL1} V _{IH1}	9 GND "	RS2 10 GND GND	CLK2 11 GND	Q2 12	Q2 13	V _{DD} 14 5.0V	terminal Q1 Q1	Subgr T _A = Min		Subgr $T_A = 1$ Min	oup 2 25°C Max 0.5	Subgr T _A = - Min		V
V _{OL1} 30	3007	no. 51 52 53 54 55 56 57 58			GND " "	V _{IH1} V _{IL1} GND GND V _{IH1} V _{IL1}	GND " "	V _{IL1} V _{IH1} GND GND V _{IL1}	GND " "	GND GND V _{IL1}	GND "	GND GND	GND	12	13		<u>Q1</u>	Min	0.5		Max	Min		
V _{OL2}	66 66 66 66 66 66 66 66	51 52 53 54 55 56 57 58	I _{OL} <u>6</u> /	I _{OL}	"	V _{IL1} GND GND V _{IH1} V _{IL1}	"	V _{IH1} GND GND V _{IL1}	"	GND V _{IL1}	"	GND				5.0V	<u>Q1</u>				0.5		0.5	
	« « « «	53 54 55 56 57 58 59		·OL		GND GND V _{IH1} V _{IL1}	"	GND GND V _{IL1}	"	V_{IL1}						44	()1							
	" "	55 56 57 58 59				V _{IH1} V _{IL1}		V _{IL1}	"		"	V _{IH1} V _{IL1}	"	I _{OL}	I_{OL}	"	Q2 Q2		"		"		"	"
V _{OL3}	"	57 58 59			"			V_{IH1}	"	GND GND	"	GND GND	"	-OL		"	Q1 Q1		.05		.05		.05	"
V _{OL3}	"	59				GND	"	GND GND	"	V _{IL1} V _{IH1}	"	V _{IH1}	"			"	Q2 Q2		"		"		"	"
	,,	60			"	V _{IH2} V _{IL2}	"	V _{IL2} V _{IH2}	"	GND GND	"	GND GND	"			12.5V	Q1 Q1		1.25		1.25		1.25	"
	"	61 62			"	GND GND	"	GND GND	"	V _{IL2} V _{IH2}	"	V _{IH2}	"			"	Q2 Q2		"		"		"	"
V _{OH4} 3	3006	63			<u>9</u> /	"	V _{IL1}	<u>9</u> /	"	GND	66	GND	66			5.0V	Q1	4.95		4.95		4.95		"
OLT -	3007	64			<u>9</u> /	"	V_{IL1}	<u>9</u> /	"	GND	"	66	"			"	Q1		0.05		0.05		0.05	"
0111	3006	65			GND	"	GND	GND	**	<u>9</u> /	V_{IL1}	66	<u>9</u> /			"	Q2	4.95		4.95		4.95		"
02.	3007	66			GND	"	GND	GND	"	<u>9</u> /	V _{IL1}	"	<u>9</u> /			"	<u>Q2</u>		0.05		0.05		0.05	"
	3007 3006	67 68			<u>9</u> / 9/	"	V _{IH1}	<u>9</u> / 9/	"	GND	GND	"	GND GND			"	Q1 Q1	4.95	0.05	4.95	0.05	4.95	0.05	
0.11	3006	69			g ₀ / GND	"	V _{IH1} GND	g _N D	66	9/	V _{IH1}	66	9/			"		4.95	0.05	4.95	0.05	4.95	0.05	"
	3006	70			GND	"	GND	GND	66	<u>s</u> /	V _{IH1}	"	9/			"	Q2 Q2	4.95	0.00	4.95	0.00	4.95	0.00	"
V _{OH4} 3	3000	71			10/	"	10/	10/	"	GND	GND	"	GND			"	CLK1, <u>10</u> /	4.33	V _{IH1}	4.33	V _{IH1}	4.93	V _{IH1}	"
V _{ICL1}		72			10/	"	10/	10/	"	GND	GND	"	GND			"	CLK1, 10/	V_{IL1}	·IHI	V_{IL1}	·IHI	V _{IL1}	* IH I	"
V _{ICL2}		73			GND	"	GND	GND	"	<u>10</u> /	<u>10</u> /	"	<u>10</u> /			"	CLK2, 10/		V_{IH1}		V_{IH1}		V _{IH1}	"
V _{ICL2}	2212	74			GND	"	GND	GND	"	<u>10</u> /	<u>10</u> /	"	<u>10</u> /			"	CLK2, <u>10</u> /	V_{IL1}	000	V_{IL1}		V_{IL1}		"
I _{IH1} 3 ¹	3010	75			15.0V	15.0V	15.0V	15.0V		15.0V	15.0V	15.0V	15.0V			15.0V	All inputs together		800					nA
I _{IH2}	"	76 77			"	"	"	"	"	"	"	"	"			"	CLK1 RS1		100.0		100.0			"
	"	77 78			"	"	"	"	"	"	"	"	"			"	D1		"		"			"
	"	79			"	"	44	"	"	"	"	66	"			44	SET1		66		"			"
	"	80			"	"	44	"	"	"	"	66	"			44	SET2		**		**			**
	"	81			"	"	"	"	"	"	"	"	"			"	D2		"		"			"
	"	82 83			"	"		"	"	"		"	"				RS2 CLK2		"		"			"

TABLE III. Group A inspection for device type 01 – Continued.

Symbol	MIL-	Cases	l					Te	rminal c	onditions	: 1/						Measured			Test I	imite			Unit
Cymbol	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2		Q2	V_{DD}	terminal	Subgr	oup 1		roup 2	Subgr	oup 3	Oiii
	883	T,X,Y	Qı	Qı	CLKI	KSI	υı	SEII	V _{SS}	SEIZ	DZ	K52	CLKZ	Q2	Q2	V _{DD}		T _A =		$T_A = \frac{1}{2}$		T _A = -		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
	3009	no. 84			GND	GND	GND	GND	GND	GND	GND	GND	GND			15.0V	All inputs		-800					nA
I _{IL1} <u>11</u> /	3009	04			GND	GND	GND	GND	GND	GND	GIND	GND	GIND			15.00	together		-000					IIA
I _{IL2}	"	85			"	"	"	u	"	"	66	66	"			"	CLK1		-100.0		-100.0			"
	"	86			"	"	"	"	"	"	"	"	"			"	RS1		"		"			"
	"	87 88			44	"	"	"	"	"	"	"	"			"	D1 SET1		"		44			"
	"	89			"	"	"	"	"	"	"	"	"			"	SET2		"		"			"
	"	90			"	"	"	"	"	"	"	"	"			"	D2		"		"			"
	"	91			"	"	"	"	"	"	"	"	**			"	RS2		"		"			"
	"	92			"	"	"	"	"	"	"	"	"			"	CLK2		"		"			"
																			oup 4					
																		T _A =						
	0040	00	1	1	40/	1			OND	1		1				OND	01.144	Min	Max					-
Ci	3012	93 94			<u>12</u> /	<u>12</u> /			GND "							GND "	CLK1 RS1		12					pF "
	"	9 4 95				12/	12/		"							"	D1		"					"
	"	96					12/	12/	"							"	SET1		"					"
	"	97							"	12/						"	SET2		"					"
	"	98							"		<u>12</u> /					"	D2		"					"
	"	99							"			<u>12</u> /	40/			"	RS2		"					"
		100											<u>12</u> /				CLK2	Subgr	oup 7		Subgro	un 8		
																		$T_A =$	25°C	$T_A = \frac{1}{2}$		$T_A = -$	-55°C	
																		Min	Max	Min	Max		Max	
Truth	3014	101			5.0V	GND	GND	GND	GND	GND	GND	GND	5.0V			5.0V	None		7					
table	"	102			GND	"	"	"	"	"	"	**	GND			"	None							
test	"	103	L "	Н	5.0V	"	"	"	"	"	"		5.0V	Н	L "	"	All							
	"	104	"	"	5.0V	"	5.0V	"	"	"	5.0V	"	5.0V	"	"	"	outputs							
	"	105 106	Н	L	GND 5.0V	"	"	"	"	"	"	"	GND 5.0V	L	Н	"	"							
	"	100	Ľ	Ь'n	5.0V 5.0V	5.0V	"	"	"	"	"	5.0V	5.0V 5.0V	H	Ë	"	"							
	"	108	"	"	GND	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	109	"	**	5.0V	"	"	"	"	"	"	66	5.0V	"	**	"	44			See	notes			
	"	110	Н	L "	5.0V	GND	GND	5.0V	**	5.0V	GND	GND	5.0V	L	Н	44	"				and 14/			
	"	111	"		GND	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	112	"	"	5.0V	"	"	« CND	"	CND	"	"	5.0V	"	"	"	"							
	"	113 114	"	"	5.0V GND	"	"	GND "	"	GND "	"	"	5.0V GND	"	"	"	"							
	"	115	L	Н	5.0V	"	"	"	"	"	44	66	5.0V	Н	L	"	44							
	"	116	H	"	5.0V	5.0V	"	5.0V	"	5.0V	"	5.0V	5.0V 5.0V	"	Н	"	"							
	"	117	"	"	GND	"	44	"	**	"	"	"	GND	"	"	44	"		J					
	"	118	"	66	5.0V	"	u	u	"	tt.	"	££	5.0V	66	"	"	"		ノ					

TABLE III. Group A inspection for device type 01 – Continued.

Symbol	MIL-	Cases						Te	rminal c	onditions	<u>1</u> /						Measured				limits			Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgi T _A =	roup 9 25°C		oup 10 125°C		oup 11 -55°C	
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
t _{PHL}	3003 (Fig. 6)	119 120 121	OUT	OUT	IN IN				GND "				IN	OUT	OUT	5.0V "	CLK1 to Q1 CLK1 to Q1 CLK 2 to Q2	13	500	18	750 "	13	500	ns "
t _{PHL} R or S	3003 (Fig. 7)	122 123 124 125 126	OUT	OUT		IN		IN	"	IN		IN	IN	OUT	OUT	"	SET1 to Q1 RS1 to Q1 SET2 to Q2 RS2 to Q2	"	550	"	825	"	550	66 66
t _{PLH}	3003 (Fig. 6)	127 128 129 130	OUT	OUT	IN IN				cc cc				IN IN	OUT	OUT	"	CLK1 to Q1 CLK1 to Q1 CLK 2 to Q2 CLK 2 to Q2	"	"	"	"	"	"	"
t _{PLH} R or S	3003 (Fig. 7)	131 132 133 134	OUT	OUT		IN		IN	"	IN		IN		OUT	OUT	"	SET1 to Q1 RS1 to Q1 SET2 to Q2 RS2 to Q2	"	420	"	630	"	420	ee ee
t _{THL}	3004 (Fig. 6)	135 136 137 138	OUT	OUT	IN IN				"				IN IN	OUT	OUT	"	Q1 Q1 Q2 Q2	10	300	14	450 "	10	300	"
t _{TLH}	3004 (Fig. 6)	139 140 141 142	OUT	OUT	IN IN				"				IN IN	OUT	OUT	"	Q1 Q1 Q2 Q2	"	350	"	525 "	"	350	"
f _{CL(max)} 15/	(Fig. 6)	143 144	OUT		IN				"				IN		OUT	"	CLK1 CLK2		0.67 0.67		1.0 1.0		0.67 0.67	μ S "
t _{TLHCL} (Max) 16/	(Fig. 6)	145 146	OUT		IN								IN		OUT	"	CLK1 CLK2	15 15		15 15		10 10		"
t _p <u>17</u> /	(Fig. 6)	147 148	OUT		IN				"				IN		OUT	"	CLK1 CLK2		300 300		450 450		300 300	ns "
t _{SHL}	(Fig. 8)	149 150 151			IN IN		IN IN		"		IN		IN			"	D1 to CLK1 D2 to CLK2 D1 to CLK1		165		225		165	"
t _{SLH} t _{SLH}	"	151 152			IIN		IIN		"		IN		IN			"	D1 to CLK1 D2 to CLK2		"		"		"	66

TABLE III.	Group A in	spection for	r device type 01	 Continued

Symbol	MIL-	Cases						Te	rminal c	onditions	<u>1</u> /						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr				Subgro		
	883	1,X,Y																$T_A = 1$	25°C	$T_A = 1$	125°C	$T_A = -$	-55°C	ı
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	ı
		no.																						l
t _{HHL}	(Fig. 9)	153			IN		IN		GND							5.0V	D1 to CLK1		150		225		150	ns
t _{HHL}	"	154							**		IN		IN			"	D2 to CLK2		"		"		"	"
t _{HLH}	"	155			IN		IN		"							"	D1 to CLK1		"		"		"	"
t _{HLH}	"	156							**		IN		IN			44	D2 to CLK2		"		"		"	"

- 1/ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: V_{IC(pos)} tests, the V_{SS} terminal shall be open; V_{IC(neg)} tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 17 thru 38 shall be run in sequence.
- $I_{OH} = -0.25 \text{ mA}$ at 25°C, -0.175 mA at 125°C, -0.31 mA at -55°C.
- $4/V_{IH1} = 3.8 \text{ V at } 25^{\circ}\text{C}, 3.6 \text{ V at } 125^{\circ}\text{C}, 3.95 \text{ V at } -55^{\circ}\text{C}.$
- $5/V_{IH2} = 9.5 \text{ V at } 25^{\circ}\text{C}, 9.25 \text{ V at } 125^{\circ}\text{C}, 9.75 \text{ V at } -55^{\circ}\text{C}.$
- 6/ $I_{OL} = 0.5 \text{ mA}$ at 25°C, 0.35 mA at 125°C, 0.65 mA at -55°C.
- 7/ $V_{IL1} = 1.1 \text{ V at } 25^{\circ}\text{C}, 0.85 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- 8/ $V_{IL2} = 2.8 \text{ V}$ at 25°C, 2.55 V at 125°C, 3.0 V at -55°C.
- 9/ For input conditions, see figure 4.
- 10/ For input voltage conditions, see figure 5.
- 11/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 12/ See 4.4.1c.
- 13/ Test numbers 101 thru 118 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 15.0 V.
- $\underline{14}$ / L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- 15/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 16/ Pulse repetition period = 100 μs, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 17/ The minimum clock pulse width (tp) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

STD BF, NA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 terminal Min Max Min	Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
March Marc		STD-	E,F,N,	1	2	3	4	5	6					11	12	13	14	15	16	4	Subg	roup 1	Subgr	oup 2			
Method No. O2 O2 CLK2 KSZ KZ JZ SE12 Vss SE11 J1 K1 KS1 CLK1 G1 O1 Vso No.																					$T_A =$: 25°C	$T_A = 1$	25°C			
Vicine V				Q2	 Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
Second S	V	memod	110.							1 m A										CETO		1.5					V
No.	V _{IC(pos)}						1mA			IIIIA									GIND "								v "
A							11117		1mA										"			"					"
Table Tabl								1mA											"			"					"
No.						1mA																					"
Votes Section Sectio												1mA															"
Vicines 11													4 4		1mA												"
10													1mA	1m A													"
Votes 11 12 12 13 14 15 14 16 16 16 16 16 17 18 18 19 18 19 18 19 18 19 18 19 18 18														IIIIA		1mA			"			"					"
12	V _{IC(pog)}									-1mA	GND					111111						-6					"
Iss	io(neg)						-1mA				44									RS2		"					"
15									-1mA											J2							"
15								-1mA												K2							"
10						-1mA						4 4															
18												-TMA			-1m A												"
19											**		-1mA		-11117							"					"
Section Sect											**			-1mA								"					"
15.0V 15.0																						"					"
23	I _{SS} <u>2</u> /								15.0V	GND		GND	GND	GND	GND	GND			15.0V					-2.5			μΑ
24									"	"		"	"	"	"	"			"					"			"
							GND "	"		"	**	44	"	66	"	"			"			"		"			"
							66	"	44	"	**	44	"	66	"	"			"			"		"			"
28						"	**	GND	GND	"	"	"	"	**		"			"			"		"			"
29									"		"					"								"			"
None 15.0V						GND	GND			GND	"		15.0V	15.0V										"			"
None						"	"			"			"	"										"			"
Note						"	"								GND "									"			"
Nome						**	66	"	44	"	**	44	"	66	"				"			"		"			"
Vohi 3006 35 Ioh 3/2 Ioh						"	**	"		"	"	"	GND	GND	"	"			"			"		"			"
1			_			"			"			15.0V	"		15.0V	"				V_{SS}		"		"			"
1	V _{OH1}			I _{OH} 3/			V _{IL1} 7/									GND				<u>Q2</u>							V
Voh2 38					I_{OH}											"		١.		Q2							"
Voh2 " 39 " ViL1 " " ViH1 " GND " " GND " " Q2 4.95 4.95 4.95 " 4																	1	IOH									"
" 40 " V _{IH1} " " " V _{IL1} " " GND " " " GND " " Q2 " " " " " " Q1 " " " Q1 " " " Q1 " " " Q1 " " Q1 " " Q2 " " " Q1 " " Q1 " " " Q1 " " " Q1 " " Q1 " " Q1 " Q1 " " Q2 " " Q1 " " Q1 " " Q1 " " Q1 " Q2 " " Q1 " " " Q1 " " " Q1 " " " Q1 " " " " " " " " "	Vous	"				"		"	"		"		66	66		"	OH		u		4 95		4.95		4.95		"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V OH2	"				**		"	44		"		"	**		"			"	Q2			"		*.55		"
V _{OH3} " 43 " V _{IL2} 8/ " " V _{IL2} 5/ " GND " " GND " " GND " " Q2 11.2 11.25			41				GND			GND		V _{IH1}								<u>Q1</u>							"
" 45						"			"			V_{IL1}			V _{IH1}					Q1							"
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{OH3}					"			"	V _{IH2} <u>5</u> /										<u>Q2</u>							"
$oxed{ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$												GND	"			"				Q2							"
		"				"		"	"		"	V _{IH2}	"	"		"			"	01	"		"		"		"
							5.15			5.15		* ILZ			* IH2					α.	"						i

TABLE III. Group A inspection for device type 02 – Continued.

V _{OL2}		E,F,N, and Z Test no. 47 48 49 50	1 Q2 I _{OL} <u>6</u> /	2 Q2 I _{OL}	3 CLK2 GND	4 RS2	5 K2	6 J2	7	8	9	10	11	12	13	14	15	16	Measured terminal	Subg	roup 1	Subgr	oup 2	Subgr	oup 3	1
V _{OL2}	test ethod 8007 "	Test no. 47 48 49 50					K2	10							.0					-		_				1
V _{OL2} me	ethod 8007 " "	no. 47 48 49 50					K2	10													25°C	$T_A = 1$		$T_A = -$		1
V _{OL2}	"	48 49 50	I _{OL} <u>6</u> /	la:	GND	١,		JZ	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{OL2}		49 50		la.	66	V _{IH1}	GND	GND	V _{IL1}	GND	GND	GND	GND	GND	GND			5.0V	<u>Q2</u> Q2		0.5		0.5		0.5	V
V _{OL2}		50		IOL	"	V _{IL1} GND	"	"	V _{IH1} GND	"	GND	"	"	GND	"		١.	"			"		"		"	"
V _{OL2}		E4			"	GND	"	"	GND	"	V_{IL1} V_{IH1}	"	"	V_{IH1} $V_{II 1}$	"	I _{OL}	I _{OL}	"	<u>Q1</u> Q1		"		"		"	"
	"				"	V _{IH1}	"	"	V _{IL1}	"	GND	"	"	GND	"	- 02		"	Q2		0.05		0.05		0.05	"
		52			"	V_{IL1}	"	"	V_{IH1}	"	GND	"	"	GND	"			"	Q2		"		"		"	"
	"	53 54			"	GND GND	"	"	GND GND	"	V _{IL1}	"	"	V_{IH1} $V_{II 1}$	"			"	<u>Q1</u> Q1		"		"		"	"
V _{OL3}	"	55			"	V _{IH2}	"	"	V _{IL2}	**	V _{IH1} GND	"	"	GND	u			12.5V	Q2		1.25		1.25		1.25	"
V OL3	"	56			"	V _{IL2}	"	"	V _{IH2}	"	GND	**	"	GND	"			12.5 V	Q2		1.20		"		"	"
	"	57			"	GND	"	"	GND	"	V _{IL2}	**	"	V _{IH2}	"			"	<u>Q1</u>		**		"		"	"
	"	58			"	GND	"	44	GND	"	V_{IH2}	"	"	V_{IL2}	"			"	Q1		"		íí		"	"
V _{OH4} 30	3006	59			<u>9</u> /	**	V _{IH1}	V _{IL1}	<u>9</u> /	"	GND	"	"	GND	**			5.0V	Q2	4.95		4.95		4.95		"
	3007	60			<u>9</u> /	"	V_{IH1}	V_{IL1}	<u>9</u> /	"	GND	"	"	ű	"			"	Q2		.05		.05		.05	"
V _{OH4} 30	3006	61			GND	"	GND	GND	GND	**	<u>9</u> /	V_{IL1}	V_{IH1}	"	<u>9</u> /			"	Q1	4.95		4.95		4.95		"
	3007	62			GND	"	GND	GND	GND	"	<u>9</u> /	V_{IL1}	V_{IH1}	"	<u>9</u> /			"	<u>Q1</u> Q2		.05		.05		.05	"
UL.	3007	63			<u>9</u> /	"	V _{IL1}	V _{IH1}	9/	**	GND	GND	GND	"	GND			"			.05		.05		.05	"
0111	3006 3007	64 65			<u>9</u> / GND	"	V _{IL1}	V _{IH1} GND	<u>9</u> / GND	"	GND	GND	GND V _{IL1}	"	GND			"	Q2 Q1	4.95	.05	4.95	.05	4.95	.05	"
021	3007	66			GND	- 66	GND	GND	GND "	"	<u>9</u> /	V _{IH1}		"	<u>9</u> / 9/			"	Q1 Q1	4.95	.05	4.95	.05	4.95	.05	"
V _{OH4} 30	3006	67				10/			"	"	<u>9</u> / GND	V _{IH1} GND	V _{IL1}	"	9/ GND			"	CLK2	4.95	V _{IH1}	4.95	V _{IH1}	4.95	V _{IH1}	"
V _{ICL1}		68			<u>10</u> / 10/	<u>10</u> / 10/	<u>10</u> / 10/	<u>10</u> / 10/	"	"	GND "	GND	GND	"	GND			"	CLK2 CLK2	V _{II 1}	V IH1	V _{II 1}	V IH1	V _{II 1}	VIH1	"
V _{ICL2}		69			GND	GND	GND	GND	"	"	"	10/	10/	<u>10</u> /	10/			"	CLK1	V IL1	V _{IH1}	V IL1	V _{IH1}	* IL1	V _{IH1}	"
V _{ICL2}		70			GND	GND	GND	GND	"	"	"	10/	10/	10/	10/			"	CLK1	V_{IL1}	- 1111	V_{IL1}	- 1111	V_{IL1}	- 1111	"
	3010	71			15.0V	15.0V	15.0V	15.0V	15.0V	66	15.0V	15.0V	15.0V	15.0V	15.0V			15.0V	All		1000					nA
<u>11</u> /																			inputs							l
	"	70			"	"	"	"	"	"	"	"	"	"	"			"	together		400.0		400.0			
IIH2	"	72 73			"	"	"	"	"	"	"	"	"	"	"			"	CLK2 RS2		100.0		100.0			"
	"	74			"	"	"	"	"	"	"	"	"	"	"			"	K2		"		"			"
	"	75			"	**	"	"	"	"	"	"	"	44	"			"	J2		**		"			"
	"	76			"	**	**	"	"	"	44	"	"	44	"			"	SET2		66		"			"
	"	77			"	"	"	"	"	"	"	"	"	"	"			"	SET1		"		"			"
	"	78			"	"	"	"	"	"	"	"	"	"	"			"	J1		"		"			"
	"	79 80			"	"	"	"	"	"	"	"	"	"	"			"	K1 RS1		"		"			"
	"	81			"	"	"	"	44	"	"	"	"	"	"			"	CLK1		"		"			"

TABLE III. Group A inspection for device type 02 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
Cymbol	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Suba	roup 1		oup 2	Subgr	oup 3	Oilit
	883	and Z																			25°C	$T_A = 1$		T _A = -		
	test	Test	Q2	Q2	CLK2	RS2	K2	J2	SET2	Vss	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}	1	Min	Max	Min	Max	Min	Max	
	method	no.	QZ	3	CLKZ			JZ			SEII	JI	ΚI	KSI		3	Qi									
I _{IL1}	3009	82			GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND			15.0V	All		-1000					nA
<u>11</u> /																			inputs							
																			together							
I _{IL2}	"	83			"	"	"	"	"	"	"	"	"	"	"			"	CLK2		-100.0		-100.0			"
	"	84						"	"	"	"			"				"	RS2		"		"			"
	"	85			"			"	"	"	"	"		"	"			"	K2		"		"			"
	"	86 87			"	"	"	"	"	"	"	"	"	"	"			"	J2 SET2		"		"			"
	"	88			**	**	"	"	66	"	44	"	"	"	"			"	SET2 SET1		"		"			**
	"	89				66	"	44	"	44	44	"	**	"	**			"	J1		66		"			"
	"	90			"	**	"	"	"	"	**	"	"	"	"			"	K1		"		"			**
	"	91			"	"	"	"	"	"	"	"	"	"	"			"	RS1		**		"			"
	"	92			**	66	"	44	"	66	"	44	"	"	"			"	CLK1		66		"			"
		, V <u>-</u>									1								, <u>v</u> =i\(i	Suba	roup 4					
																				T ₁ =	25°C					
																				Min	Max					
Ci	3012	93			<u>12</u> /					GND								GND	CLK2		12					pF
	"	94				<u>12</u> /				"								"	RS2		**					"
	"	95				_	<u>12</u> /			"								"	K2		"					"
	"	96						<u>12</u> /		"								"	J2		"					"
	"	97							<u>12</u> /	"								"	SET2		"					66
	"	98								"	<u>12</u> /							"	SET1		"					"
	"	99								"		<u>12</u> /						"	J1		"					**
	"	100								"			<u>12</u> /					"	K1		"					"
	"	101								"				<u>12</u> /				"	RS1		"					"
		102													<u>12</u> /				CLK1							
																					roup 7	_	Subgr		0	
																					25°C		25°C	T _A = -		
		1 400 1				0115	= 0) /	0115	0110	ONE	0110	0115	- ov	0.10	= 0) /			I = 0\ /		Min	Max	Min	Max	Min	Max	
Truth table	3014	103 104			5.0V GND	GND "	5.0V	GND "	GND "	GND "	GND "	GND "	5.0V	GND "	5.0V GND			5.0V	None	\	١					
	"					**	"	"	"	44	44	"	"	"				"	None							
test	"	105 106	L "	H	5.0V 5.0V	"	GND	"	"	"	"	"	GND	"	5.0V 5.0V	H	L "	"	All outputs							
	"	100	"	44	GND	**	"	66	"	**	**	"	"	"	GND	"	"	"	uipuis "							
	"	107	"	"	5.0V	"	"	"	"	"	"	"	"	"	5.0V	"	"	"	"							
	"	100	"	"	5.0V	"	"	5.0V	"	"	"	5.0V	"	"	5.0V	"	"	"	"		1					
	"	110	"	"	GND	"	"	3.0 V	"	"	"	0.0 v	"	"	GND	"	"	"	"							
	"	111	Н	L	5.0V	66	"	**	"	**	"	"	"	"	5.0V	L	Н	"	"		/					
	"	112	"	44	5.0V	66	"	GND	"	**	"	GND	"	"	5.0V	"	"	"	"		>		See <u>13</u> /	and 14/	/	
	"	113	"	"	GND	"	"	"	"	"	"	"	"	"	GND	"	"	"	"		(_	_		
	"	114	"	44	5.0V	66	"	**	"	**	"	"	"	"	5.0V	"	"	"	"							
	"	115	"	"	5.0V	**	5.0V	5.0V	"	"	**	5.0V	5.0V	"	5.0V	"	"	"	"		1					
	"	116	"	"	GND	"	"	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	117	L	Н	5.0V	**	"	"	"	"	"	"	"	"	5.0V	Н	L	"	"							
	"	118	Н	L	5.0V	"	"	GND	5.0V	"	5.0V	GND	"	"	5.0V	L	Н	"	"		1					
	"	119	H	L	GND		0	"	5.0V	"	5.0V	"			GND	L	H	"	"							
	"	120	L	Н	GND	5.0V	GND	44	GND	"	GND		GND	5.0V	GND	Н	L	"	"		'					
		121	L	Н	5.0V	5.0V	GND		GND	-	GND	L	GND	5.0V	5.0V	Н	L									

TABLE III. Group A inspection for device type 02 – Continued.

Symbol		Cases							Ter	minal c	ondition	ns <u>1</u> /							Measured			Test	limits			Unit
-		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 7		Subgr	oup 8		
		and Z																		$T_A =$		$T_A = 1$		$T_A = -$	-55°C	J
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
Truth table test	3014	122 123 124 125	H " L	L " H	5.0V 5.0V GND 5.0V	GND "	GND 5.0V "	GND "	5.0V GND "	GND "	5.0V GND "	GND "	GND 5.0V "	GND "	5.0V 5.0V GND 5.0V	H	H " L	5.0V "	All outputs "							
	" " "	126 127 128 129 130 131	" H L "	" L H "	5.0V GND 5.0V 5.0V GND 5.0V	5.0V "	" " "	5.0V " "	" " "	" " "	" " "	5.0V " " "	" " " "	5.0V "	5.0V GND 5.0V 5.0V GND 5.0V	" " L H " " "	" H L "	"	u u u		-	S	see <u>13</u> /	and <u>14</u> /		
	"	132 133 134	H "	"	5.0V GND 5.0V	"	GND "	GND "	5.0V "	"	5.0V "	GND "	GND "	"	5.0V GND 5.0V	"	H "	"	"							
	•			•								•								$T_A =$	roup 9 25°C	$T_A = 1$	25°C	Subgro	oup 11 ·55°C	
																				Min	Max	Min	Max	Min	Max	
t _{PHL}	3003 Fig.	135 136	OUT	OUT	IN IN					GND "								5.0V "	CLK2 to Q2 CLK2 to Q2	13	575 "	18	865	13	575 "	ns "
	12	137 138								"					IN IN	OUT	OUT	"	CLK1 to Q1 CLK1 to Q1	"	"	"	"	"	"	"
t _{PHL} R or S	3003 Fig. 13	139 140 141 142	OUT	OUT		IN			IN	"	IN			IN		OUT	OUT	"	RS2 to Q2 SET2 to Q2 RS1 to Q1 SET1 to Q1	"	600	"	900	"	600	"
t _{PLH}	3003 Fig. 12	143 144 145 146	OUT	OUT	IN IN					"	IIN				IN IN	OUT	OUT	"	CLK2 to Q2 CLK2 to Q2 CLK1 to Q1 CLK1 to Q1	"	625	"	940	"	625	"
t _{PLH} R or S	3003 Fig. 13	147 148 149 150	OUT	OUT		IN			IN	"	IN			IN	IIV	OUT	OUT	"	SET2 to Q2 RS2 to Q2 SET1 to Q1 RS1 to Q1	"	400	"	600	"	400	"
t _{THL}	3004 Fig. 12	151 152 153 154	OUT	OUT	IN IN					"					Z Z	OUT	OUT	"	Q2 Q2 Q1 Q1	10	325	14	490	10	325	"
t _{TLH}	"	155 156 157 158	OUT	OUT	IN IN					"					IN IN	OUT	OUT	"	Q2 Q2 Q1 Q1	"	"	"	"	"	"	"
f _{CL(max)} 15/	"	159 160	OUT		IN					"					IN	301	OUT	"	CLK2 CLK1		1.0 1.0		1.4 1.4		1.0 1.0	μS "

TABLE III. Group A inspection for device type 02 - Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s <u>1</u> /							Measured			Test	limits			Unit
	STD- 883	E,F,N, and Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal			Subgr	oup 10 125°C		oup 11 -55°C	
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Į	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
t _{TLHCL} <u>16</u> /	Fig. 12	161 162	OUT		IN					GND "					Z		OUT	5.0V "	CLK2 CLK1	15 15		15 15		10 10		μ s μ s
t _p <u>17</u> /	"	163 164	OUT		IN					"					IN		OUT	"	CLK2 CLK1		300 300		450 450		300 300	ns "
t _{SHL}	Fig. 14	165 166	OUT OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		165		225		165	"
	"	167 168								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{SLH}	"	169 170	OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		"		"		"	"
	"	171 172								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{HLH}	"	173 174	OUT		IN IN		IN	IN		"								44	K2 to CLK2 J2 to CLK2		150		"		150	££
	"	175 176								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{HHL}	"	177 178	OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		"		"		"	"
	"	179 180								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"

- $\underline{1}$ / Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 21 thru 34 shall be run in sequence.
- $I_{OH} = -0.25 \text{ mA}$ at 25°C , -0.175 mA at 125°C , -0.31 mA at -55°C .
- 4/ $V_{IH1} = 3.8 \text{ V}$ at 25°C, 3.6 V at 125°C, 3.95 V at -55°C.
- $V_{IH2} = 9.5 \text{ V at } 25^{\circ}\text{C}, 9.25 \text{ V at } 125^{\circ}\text{C}, 9.75 \text{ V at } -55^{\circ}\text{C}.$
- 6/ $I_{OL} = 0.5 \text{ mA}$ at 25°C, 0.35 mA at 125°C, 0.65 mA at -55°C.
- 7/ $V_{IL1} = 1.1 \text{ V at } 25^{\circ}\text{C}, 0.85 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- 8/ $V_{IL2} = 2.8 \text{ V}$ at 25°C, 2.55 V at 125°C, 3.05 V at -55°C.
- 9/ For input voltage conditions, see figure 10.
- 10/ For input voltage conditions, see figure 11.

- $\underline{11}$ / The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 12/ See 4.4.1c.
- 13/ Test numbers 103 thru 134 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0 \text{ V}$ and $\ge 15.0 \text{ V}$.
- 14/ $L = V_{SS} + 0.5 \text{ V}$ maximum and $H = V_{DD} 0.5 \text{ V}$ minimum.
- 15/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- $\underline{16}$ / Pulse repetition period = 100 μs, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- $\underline{17}$ / The minimum clock pulse width (t_p) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

MIL-M-38510/51F

TABLE III. Group A inspection for device type 03.

Symbol	MIL-	Cases							Terr	ninal co	ondition	s 1/							Measured			Test	imits			Unit
,		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgr	oup 2	Subgr		
	883	Z																		$T_A = 2$		$T_A = 1$		$T_A = -$		
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	V _{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		1			1mA	4												GND	R1		1.5					V
		2				1mA	1mA											"	S1 E		"					"
		4					IIIIA	1mA										"	S2		"					"
		5						11117	1mA									"	R2		"					"
		6											1mA					"	R3		"					"
		7												1mA				"	S3		"					"
		8														1mA	4 4	"	S4		"					"
\/		9 10			-1mA					GND							1mA	-	R4 R1		-6					"
V _{IC(neg)}		11			-111174	-1mA				GIVD									S1		-6					"
		12				'''''	-1mA			44									E		"					"
		13						-1mA		"									S2		"					"
		14							-1mA	"									R2		"					"
		15								"			-1mA	1 mm A					R3 S3		"					"
		16 17								44				-1mA		-1mA			S3 S4		"					"
		18								"						-11117	-1mA		R4		"					"
I _{SS} <u>2</u> /	3005	19			GND	15.0V	15.0V	15.0V	GND	"			GND	15.0V		15.0V		15.0V	V _{SS}		-1.0		-2.5			μΑ
	"	20			GND	GND	"	GND "	GND	"			GND	GND		GND	GND	"	"		"		"			"
	"	21			15.0V	"	"	"	15.0V	"			15.0V	"		"	15.0V	"	"		"		"			"
	"	22 23			GND 15.0V	15.0V	"	15.0V	GND 15.0V	"			GND 15.0V	15.0V		15.0V	GND 15.0V	"	"		"		"			"
	"	24			GND	GND	GND	GND	GND	"			GND	GND		GND	GND	"	"		"		"			"
V_{OH1}	3006	25		I _{OH} <u>3</u> /	V _{IL1} <u>7</u> /	V _{IH1} <u>4</u> /	V _{IH1}	V _{IL1}	V _{IL1}	"			V _{IL1}	V _{IL1}		V _{IL1}	V _{IL1}	5.0V	Q1	4.5		4.5		4.5		٧
	"	26 27			"	V _{IL1}	"	V_{IH1} V_{IL1}	"	"	I _{OH}		"	V_{IL1} V_{IH1}		V _{IL1}	"	"	Q2 Q3	"		"		"		"
	"	28	I _{OH}		"	V _{IL1}	"	V _{IL1}	"	"		I _{OH}	"	V _{IH1} V _{IL1}		V _{IL1} V _{IH1}	"	"	Q3 Q4	"		"		"		"
V _{OH2}	u	29	ЮП		"	V _{IH1}	££	V _{IL1}	и	"			"	V _{IL1}		V _{IL1}	66	"	Q1	4.95		4.95		4.95		"
	"	30			"	V _{IL1}	"	V _{IH1}	44	66			"	V _{IL1}		V _{IL1}	"	44	Q2	**		"		66		"
	"	31			"	V _{IL1}	"	V_{IL1}	"	"			"	V _{IH1}		V _{IL1}	"	"	Q3	"		"		"		"
\/	"	32			0/	V _{IL1}		V _{IL1}		"				V _{IL1}		V _{IH1}			Q4	-		11.05				
V _{OH3}	"	33 34			V _{IL2} <u>8</u> /	V _{IH2} <u>5</u> / V _{IL2}	V _{IH2}	V_{IL2} V_{IH2}	V _{IL2}	"			V _{IL2}	V_{IL2} V_{IL2}		V_{IL2} V_{IL2}	V _{IL2}	12.5V	Q1 Q2	11.25		11.25		11.25		"
	"	35			**	V _{IL2}	"	V _{IH2} V _{IL2}	"	44			44	V _{IL2} V _{IH2}		V _{IL2}	66	"	Q3	66		"		66		"
	"	36			"	V_{IL2}	"	V _{IL2}	"	"			"	V _{IL2}		V_{IH2}	"	"	Q4	"		"		66		"
V_{OL1}	3007	37		I _{OL} 6/	V _{IH1}	V _{IL1}	V _{IH1}	V _{IH1}	V _{IH1}	"			V _{IH1}	V _{IH1}		V _{IH1}	V _{IH1}	5.0V	Q1		.5		.5		.5	"
	"	38			"	V _{IH1}	"	V _{IL1}	"	"	I _{OL}		"	V _{IH1}		V _{IH1}	"	"	Q2		"		"		"	"
	"	39 40	I _{OL}		"	V _{IH1} V _{IH1}	"	V_{IH1} V_{IH1}	"	"		I _{OL}	44	V_{IL1} V_{IH1}		V _{IH1} V _{II 1}	**	"	Q3 Q4		"		"		"	"
V _{OL2}	"	41	IOL		44	V _{IL1}	"	V _{IH1}	"	"			**	V _{IH1}		V _{IL1}		"	Q1		.05		.05		.05	"
* UL2	"	42			"	V _{IH1}	"	V _{IL1}	44	44			**	V _{IH1}		V _{IH1}	**	"	Q2		"		"		"	"
	"	43			"	V_{IH1}	"	V_{IH1}	"	"			44	V_{IL1}		V_{IH1}	66	"	Q3		"		"		"	"
	íí.	44			"	V_{IH1}	"	V_{IH1}	"	"			"	V _{IH1}		V_{IL1}	"	"	Q4		"		"		u	"

TABLE III. Group A inspection for device type 03 – Continued.

Symbol	MIL-	Cases							Terr	minal co	ondition	s <u>1</u> /							Measured			Test	limits			Unit
"	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgr		Subgr		1
	883 test	Z																		$T_A = 2$		T _A = 1		T _A = -		
	method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
V_{OL3}	3007	45			V _{IH2}	V _{IL2}	V _{IH2}	V _{IH2}	V _{IH2}	GND			V _{IH2}	V _{IH2}		V _{IH2}	V _{IH2}	12.5V	Q1		1.25		1.25		1.25	V
	"	46 47			"	V_{IH2} V_{IH2}	"	V_{IL2} V_{IH2}	"	**			"	V_{IH2} V_{IL2}		V_{IH2} V_{IH2}	"	"	Q2 Q3		"		"		"	"
	"	48			"	V _{IH2}	"	V _{IH2}	"	"			"	V _{IH2}		V _{II 2}	"	"	Q4		"		"		"	"
I _{IH1}	3010	49			15.0V	15.0V	15.0V	15.0V	15.0V	"			15.0V	15.0V		15.0V	15.0V	15.0V	All		9					nA
<u>9</u> /																			inputs together							
I _{IH2}	"	50			"	"	"	"	"	"			"	"		"	"	"	R1		1.0		45			"
	"	51			"	"	"	"	"	"			"	"		"	"	"	S1		"		"			"
	"	52 53			"	"	"	"	"	"			"	"		"	"	"	E S2		"		"			"
	"	54			"	"	"	"	"	"			"	"		"	"	"	R2		"		"			"
	"	55			"	"	"	"	"	"			"	"		"	"	"	R3		"		"			"
	"	56			"	"	"	"	"	"			"	"		"	"	"	S3		"		"			"
	"	57			"	"	"	"	"	**			"	"		"	"	"	S4		"		**			"
		58				"	"	"		"			"			"	" OND	"	R4		"		"			"
I _{IL1} <u>9</u> /	3009	59			GND	GND	GND	GND	GND	-			GND	GND		GND	GND		All inputs		-9					
<u> </u>																			together							
I _{IL2}	"	60			"	"	"	"	44	"			"	44		"	"	"	R1		-1.0		-45			"
	"	61			"	"	"	"	44	**			"	44		"	"	**	S1		"		"			"
	"	62			"	"	"	"	"	"			"	"		"	"	"	E		"		"			"
	"	63			"	"	"	"	"				"	"		"	"	"	S2 R2		"		"			"
	"	64 65			"	"	"	"	"	"			"	"		"	"	"	R3		"		"			"
	"	66			"	**	"	"	"	**			"	"		"	**	**	S3		"		**			"
	"	67			"	"	"	"	"	"			"	"		"	"	"	S4		"		"			"
	"	68			"	"	"	"	"	"			"	"		"	"	"	R4		íí.		"			"
																				Subgr						
																				$T_A = 2$ Min	25°C Max	}				
Ci	3012	69			10/	ı	ı	1		GND			1			1	ı	GND	R1	IVIII	12					pF
O _i	3012	70			10/	10/				"								GIND "	S1		"					ρr "
	"	71				10,	<u>10</u> /			"								"	E		"					"
	"	72					_	<u>10</u> /		"								**	S2		"					"
	"	73							<u>10</u> /	"								"	R2		"					"
	"	74								"			<u>10</u> /	10/				"	R3		"					"
	"	75 76								"				<u>10</u> /		10/		"	S3 S4		"					"
	"	77								"						10/	10/	"	R4		"					"
					·	·	·						L	·		L	<u></u>	L			·	L				L

TABLE III. <u>Group A inspection for device type 03</u> – Continued.

Symbol	MIL-	Cases							Teri	minal c	ondition	s 1/							Measured			Test	limits			Unit
1		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 7		Subgi	roup 8		
	883	Z																		$T_A = 3$	25°C	$T_A = 1$	25°C	$T_A = -$	55°C	
	test method	Test	Q4	Q1	R1	S1	Е	S2	R2	V _{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
		no.																		_						
Truth	3014	78	L	Н	L	H	5.0V	Ŀ	H	GND	<u> </u>	Н	Ŀ	H		Ŀ	H	5.0V	All]						
table test	"	79 80	H	H L	H	l ŀ	"	L H	L L	"	L H	Н	H	Ļ		H	Ļ	"	outputs							
lesi	"	81	Н	Ŀ		-	"		-	"	H	L .		L			L	"	44	≻	See	11/ and	1 <u>12</u> /			
	"	82	l ;;	H	H	н	"	Ĺ	н	"	Ľ	H	H	Ь			H	"	"							
	"	83	H	Ë	Н.	L.	"	H	Н	**	н	L	H	l ï		Ϊ́н	H	"	"	レノ						
															1			1		Subgr	9 quo	Subara	oup 10	Subgro	oup 11	
																				T _A = 3		$T_A = 1$		T _A = -		
																				Min	Max	Min	Max	Min	Max	
t _{PHL}	3003	84		OUT	IN		5.0V			GND								5.0V	R1 to Q1	10	320	14	370	10	270	ns
R	Fig.	85					"		IN	"	OUT							**	R2 to Q2	"	"	"	"	"	"	**
	15	86					"			"		OUT	IN					"	R3 to Q3	"	"	"	"	"	"	"
		87	OUT				"			"							IN	"	R4 to Q4	"						"
t_{PLH}	"	88		OUT		IN		18.1			OUT.								S1 to Q1	10	200	14	245	9	185	"
	"	89 90					"	IN		"	OUT	OUT		IN				"	S2 to Q2 S3 to Q3	"	"	"	"	"	"	"
	"	90	OUT				"			"		001		IIN		IN		**	S4 to Q4	"	"	"	"	66	**	"
t _{PZH}	Fig.	92	001	OUT	GND	5.0V	IN	GND	GND	"			GND	GND		GND	GND	"	E to Q1		230		340		230	"
*PZIT	16	02			0.12	0.01		0.12	0.12				0.12	0.12		0.12	0.12		_ 10 Q.		200		0.0			
t _{PHZ}	"	93			66	GND	"	5.0V	"	"	OUT		"	GND		"	"	**	E to Q2		"		"		"	tt.
	"	94			**	"	"	GND	"	"		OUT	"	5.0V		"	"	"	E to Q3		"		"		"	"
	"	95	OUT		"	"	"	"	"	"			"	GND		5.0V	"	"	E to Q4		u		"		"	"
t _{PZL}	"	96		OUT	5.0V	"	"	"		"			"	"		GND	"		E to Q1		180		240		180	"
t _{PLZ}		97			GND "	"	"	"	5.0V	"	OUT	OUT		"		"	"	"	E to Q2		"		"		"	"
	"	98 99	OUT		"	"	"	"	GND GND	"		OUT	5.0V GND	"		"	5.0V	"	E to Q3 E to Q4		"		"		"	"
t	3004	100	001	OUT		IN	5.0V		GIND	"			טווט	-		-	5.07	"	Q1	10	200	14	245	9	185	"
t _{THL}	Fig.	101		301		IIN	3.0 v	IN		"	OUT							"	Q2	"	200	"	243	9	100	"
	15	102					"			"		OUT		IN				"	Q3	"	"	"	"	"	"	"
	"	103	OUT				"			"						IN		**	Q4	"	"	"	"	66	**	"
t _{TLH}	u	104		OUT		IN	"			"								"	Q1	10	300	18	360	10	250	"
1	"	105					"	IN		"	OUT							"	Q2	"	"	"	"	"	"	"
	"	106					"			**		OUT		IN				"	Q3	"	"	"	**	"	"	**
	"	107	OUT				"			"	l					IN		"	Q4	"	"	"	"	"	"	"

See footnotes on next page.

TABLE III. Group A inspection for device type 03 – Continued.

- $\underline{1}'$ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 19 thru 24 shall be run in sequence.
- $I_{OH} = -0.175 \text{ mA}$ at 25°C, -0.12 mA at 125°C, -0.22 mA at -55°C.
- $4/V_{IH1} = 3.8 \text{ V at } 25^{\circ}\text{C}, 3.6 \text{ V at } 125^{\circ}\text{C}, 3.95 \text{ V at } -55^{\circ}\text{C}.$
- 5/ $V_{IH2} = 9.5 \text{ V}$ at 25°C, 9.25 V at 125°C, 9.75 V at -55°C.
- 6/ $I_{OL} = 0.20$ mA at 25°C, 0.14 mA at 125°C, 0.25 mA at -55°C.
- $7/V_{IL1} = 1.10 \text{ V at } 25^{\circ}\text{C}, 0.8 \text{ V at } 125^{\circ}\text{C}, 1.35 \text{ V at } -55^{\circ}\text{C}.$
- 8/ $V_{IL2} = 2.8 \text{ V}$ at 25°C, 2.55 V at 125°C, 3.0 V at -55°C.
- 9/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 10/ See 4.4.1c.
- $\underline{11}$ / Test numbers 78 thru 83 shall be run in sequence and the functional tests shall be performed with V_{IH} and V_{DD} ≤ 5.0 V and ≥ 15.0 V.
- $\underline{12}$ / L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.

TABLE III. Group A inspection for device type 51.

Symbol	MIL-	Cases						Te	rminal co	onditions	1/						Measured			Test	limits			Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr		Subgi T _A = 1	roup 2	Subgi T _A = ·	oup 3	1
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	ļ
V _{IC(pos)}		no.						1mA								GND	SET1		1.5					V
. ,		2				1mA	1mA									"	RS1 D1		"					"
		4			1mA		IIIIA									"	CLK1		"					"
		5 6								1mA		1mA				"	SET2 RS2		"					"
		7									1mA	IIIIA				"	D2		"					"
		8 9						4 :== A	CND				1mA			"	CLK2		"					"
V _{IC(neg)}		10				-1mA		-1mA	GND "								SET1 RS1		-6 "					"
		11			4 0		-1mA		"								D1		"					"
		12 13			-1mA				"	-1mA							CLK1 SET2		"					"
		14							"			-1mA					RS2		"					"
		15 16							"		-1mA		-1mA				D2 CLK2		"					"
Iss	3005	17			18.0V	GND	GND	GND	"	GND "	GND	GND	GND			18.0V	None		25		-2.5			μА
<u>2</u> /	"	18 19			GND 18.0V	"	"	"	"	"	"	"	"			"	None None		"		"			"
	"	20			18.0V	"	18.0V	"	"	"	"	"	"			"	V_{SS}		"		"			"
	"	21 22			GND 18.0V	"	"	"	"	"	"	"	"			"	V _{SS} None		"		"			"
	"	23			18.0V	££	GND	££	"	"	"	"	"			"	None		"		í,			"
	"	24 25			GND 18.0V	"	"	"	"	"	"	"	"			"	V _{SS} None		"		"			"
	"	26			18.0V	18.0V	18.0V	18.0V	"	"	"	"	"			"	V _{SS}		"		í,			"
	"	27 28			GND "	18.0V GND	18.0V GND	18.0V GND	"	"	"	"	" 18.0V			"	V _{SS} None		"		"			"
	"	29			44	"	"	"	"	44	"	"	GND			"	None		"		"			"
	"	30 31			"	"	"	"	"	"	" 18.0V	"	18.0V 18.0V			"	None V _{ss}		"		"			"
	"	32			"	"	"	"	"	"	"	"	GND			"	Vss		"		"			"
	"	33 34			"	"	"	"	"	"	" GND	"	18.0V 18.0V			"	None None		"		"			"
	"	35			"	es.	"	es.	"	"	GND "	"	GND			"	V _{SS}		"		"			"
	"	36 37			"	"	"	"	"	" 18.0V	" 18.0V	" 18.0V	18.0V 18.0V			"	None		"		"			"
	"	38			"	es.	"	es.	"	18.0V	18.0V	18.0V	GND			"	V _{SS} V _{SS}		"		"			"
V_{OH5}	3006	39			"	" 45 0\/	"	15.0V	"	GND	GND	GND	"			15.0V	<u>Q1</u>	14.95		14.95		14.95		V
	"	40 41			"	15.0V GND	"	GND "	"	GND 15.0V	"	"	"			"	Q1 <u>Q2</u>	"		"		"		"
	"	42			"	GND	"	"	"	GND	"	15.0V	"			"	Q2	"		"		í,		"
V_{OL5}	3007	43 44			"	15.0V GND	"	" 15.0V	"	"	"	GND GND	"			"	<u>Q</u> 1 Q1		0.05		0.05		0.05	"
	"	45			"	"	"	GND	"	"	"	15.0V	"			"	Q2 Q2		"		"		"	"
V _{OH6}	3006	46 47			" <u>3</u> /	"	"	GND <u>3</u> /	"	15.0V GND	"	GND "	"			"		14.95	"	14.95	"	14.95	"	"
V _{OL6}	3007	48			3/	"	"	3/	66	GND	"	"	"			"	Q1 Q1	17.00	0.05	17.33	0.05	17.33	0.05	ű

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						To	rminal c	onditions	. 1/						Measured			Test	limite			Unit
Symbol	STD-	A,C,D,	Q1	Q1	OLICA	DC4	D4					DOC	01.10		00		terminal	Subgr	oup 1	Subgr		Subgr	oup 3	01111
	883	T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V_{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}		$T_A = 1$		$T_A = 1$		$T_A = -$		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	1
		no.																					L	<u> </u>
V _{OH6}	3006	49			GND	GND	GND	GND	GND	<u>3</u> /	GND	GND	<u>3</u> /			15.0V	Q2	14.95		14.95		14.95		V
V_{OL6}	3007	50			GND	"	GND	GND	"	<u>3</u> /	"	"	<u>3</u> /			"	Q2		0.05		0.05		0.05	"
V_{OL6}	3007	51			<u>3</u> /	"	15.0V	<u>3</u> /	"	GND	44	**	GND			"	Q1		0.05		0.05		0.05	"
V _{OH6}	3006	52			<u>3</u> /	"	15.0V	<u>3</u> /	"	GND	44	"	GND			"	Q1	14.95		14.95		14.95		"
V_{OL6}	3007	53			GND	"	GND	GND	"	<u>3</u> /	15.0V	**	<u>3</u> /			"	Q2		0.05		0.05		0.05	"
V _{OH6}	3006	54			GND	"	GND	GND	"	<u>3</u> /	15.0V	"	<u>3</u> /			"	Q2	14.95		14.95		14.95		"
V _{ICL1}		55			<u>4</u> / 4/	"	<u>4</u> / 4/	<u>4</u> / 4/	"	GND	GND	"	GND			"	CLK1		<u>4</u> /		<u>4</u> /		<u>4</u> /	"
		56				"			"	GND	GND	"	GND			"	CLK1	<u>4</u> /		<u>4</u> /		<u>4</u> /		"
V _{ICL2}		57 58			GND "	"	GND GND	GND GND	"	<u>4</u> / 4/	<u>4</u> / 4/	"	<u>4</u> / 4/			"	CLK2 CLK2	4/	<u>4</u> /	4/	<u>4</u> /	4/	<u>4</u> /	"
V _{IH1}		59			"	1.5V	1.5V	3.5V	"	GND	GND	"	GND			5.0V		4.5		4.5		4.5	 	"
• 101		60			"	3.5V	1.5V	1.5V	"	"	"	"	"			"	<u>Q1</u> Q1	"		"		"		"
		61			<u>5</u> / <u>5</u> /	1.5V	3.5V	"	"	"	66	"	"			"	<u>Q</u> 1 Q1	"		"		"		"
		62				1.5V	1.5V	"	"				"			"		"		"		"		"
		63 64			GND "	GND "	GND "	GND "	"	3.5V 1.5V	1.5V 1.5V	1.5V 3.5V	"			"	<u>Q2</u> Q2	"		"		"		"
		65			"	44	**	"	"	1.5 V	3.5V	1.5V	<u>5</u> /			**	Q2 Q2	**		"		"		"
		66			"	"	"	"	"	"	1.5V	1.5V	<u>5</u> /			"	Q2	"		"		"		"
V_{IH2}		67			"	3.0V	3.0V	7.0V	"	GND	GND	GND	GND			10.0V	<u>Q</u> 1	9.0		9.0		9.0		"
		68			"	7.0V	3.0V	3.0V	"	"	"	"	"			"	Q1	"		"		"		"
		69			<u>5</u> / <u>5</u> /	3.0V	7.0V	"	"	"	"	"	"			"	<u>Q1</u> Q1	"		"		"		"
		70 71			<u>5</u> / GND	3.0V GND	3.0V GND	GND	"	7.0V	3.0V	3.0V	"			"	Q1 Q2	"		"		"		"
		72			GIVD	"	GIVD	GIVD	"	3.0V	3.0V	7.0V	"			**	Q2	**		"		"		"
		73			"	"	**	"	"	"	7.0V	3.0V	5/			66	<u>Q2</u>	**		"		"		"
		74			"	"	"	"	"	"	3.0V	3.0V	<u>5</u> / <u>5</u> /			"	Q2	"		"		"		"
V_{IH3}		75 70			"	4.0V	4.0V	11.0V	"	GND "	GND	GND "	GND			15.0V	<u>Q1</u>	13.5		13.5		13.5		"
		76 77				11.0V 4.0V	4.0V 11.0V	4.0V	"	"	"	"	"			"	Q1 <u>Q1</u>	"		"		"		"
		77 78			<u>5</u> / <u>5</u> /	4.0V 4.0V	4.0V	"	"	"	44	"	"			"	Q1	"		"		"		"
		79			GND	GND	GND	GND	"	11.0V	4.0V	4.0V	"			"	Q2	"		"		"		"
		80			"	"	"	"	"	4.0V	4.0V	11.0V	"			"	Q2	"		"		"		"
		81			"	"	"	"	"	"	11.0V	4.0V	<u>5</u> /			"	<u>Q2</u>	"		"		"		"
		82			"	"	"	"	"	"	4.0V	4.0V	<u>5</u> /			"	Q2	"		"		"	<u> </u>	"

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Tei	minal c	onditions	s <u>1</u> /						Measured			Test I				Unit
	STD- 883	A,C,D, T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V_{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr $T_A = 2$		Subgr $T_A = 1$		Subgroup $T_A = -$		
	method	Test no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
V_{IL1}		83 84			GND GND	3.5V 1.5V	3.5V 3.5V	1.5V 3.5V	GND "	GND "	GND "	GND "	GND "			5.0V "	<u>Q1</u> Q1		0.5		0.5		0.5	٧
		85 86			<u>5</u> / <u>5</u> /	"	1.5V 3.5V	1.5V 1.5V	"	"	"	"	"			"	<u>Q1</u> Q1		"		"		"	"
		87 88			GND "	GND "	GND "	GND "	"	1.5V 3.5V	3.5V 3.5V	3.5V 1.5V	"			"	Q2 Q2		"		"		"	"
		89 90			"	"	"	"	"	1.5V 1.5V	1.5V 3.5V	"	<u>5</u> / <u>5</u> /			"	<u>Q2</u> Q2		"		"		"	"
V_{IL2}		91 92			££	7.0V 3.0V	7.0V 7.0V	3.0V 7.0V	"	GND "	GND "	GND "	GND "			10.0V	<u>Q1</u> Q1		1.0		1.0		1.0	"
		93 94			<u>5</u> / <u>5</u> /	"	3.0V 7.0V	3.0V 3.0V	"	"	"	**	"			"	<u>Q1</u> Q1		"		"		"	"
		95 96			GND "	GND "	GND "	GND "	"	3.0V 7.0V	7.0V 7.0V	7.0V 3.0V	"			"	Q2 Q2		"		"		"	"
		97 98			"	"	"	"	"	3.0V 3.0V	3.0V 7.0V	"	<u>5</u> / <u>5</u> /			"	<u>Q2</u> Q2		"		"		"	"
V_{IL3}		99 100			"	11.0V 4.0V	11.0V 11.0V	4.0V 11.0V	"	GND "	GND "	GND "	GND "			15.0V	<u>Q1</u> Q1		1.5		1.5		1.5	"
		101 102 103			<u>5/</u> <u>5/</u> GND	" GND	4.0V 11.0V GND	4.0V 4.0V GND	"	4.0V	" 11.0V	" 11.0V	"			"	<u>Q1</u> Q1 Q2		"		"		"	"
		104 105 106			" "	" "	" "	" "	"	4.0V 11.0V 4.0V 4.0V	11.0V 11.0V 4.0V 11.0V	4.0V "	" <u>5</u> / 5/			"	Q2 Q2 Q2 Q2		"		"		"	"
I _{OL1}		107 108	0.4V	0.4V	"	5.0V GND	"	5.0V	"	GND "	GND "	GND GND	GND "		0.41/	5.0V "	<u>Q1</u> Q1	0.51		0.36		0.64		mA "
		109 110			"	"	"	GND "	"	5.0V	"	5.0V GND	"	0.4V	0.4V	"	<u>Q2</u> Q2	"		"		"		"
I _{OL2}		111 112 113	1.5V	1.5V	"	15.0V GND "	"	15.0V GND "	"	GND "	"	" 15.0V GND	"	4 EV	1.5V	15.0V "	ପ୍ରାପ୍ତ ପ୍ରାଧ	3.4		2.4		4.2		"
I _{OH1}		114 115 116	4.6V	4.6V	"	" 5.0V	"	5.0V GND	"	15.0V GND "	"	"	"	1.5V		5.0V	Q1 Q1	-0.51		-0.36		-0.64		"
		117 118		1.07	"	GND "	"	"	"	5.0V GND	"	" 5.0V	"	4.6V	4.6V	"	Q2 Q2	"		"		"		"
I _{OH2}		119 120	13.5V	13.5V	"	" 15.0V	"	15.0V GND	"	"	"	GND "	"			15.0V	<u>Q1</u> Q1	-3.4		-2.4		-4.2		"
		121 122			££	GND "	"	"	u	15.0V GND	"	" 15.0V	"	13.5V	13.5V	"	<u>Q2</u> Q2	"		"		"		"
I _{IH1} <u>6</u> /	3010	123			18.0V	18.0V	18.0V	18.0V	ű	18.0V	18.0V	18.0V	18.0V			18.0V	All inputs together		800.0					nA

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL- STD-	Cases						Ter	rminal c	onditions	: 1/						Measured			Test I	limits			Unit
	310-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	V _{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subg	roup 1	Subgi	roup 2	Subgro	oup 3	0
	883	T,X,Y	QΊ]		25°C	$T_A = 1$	125°C	$T_A = -$	55°C	
r	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
I _{IH2}	3010	no. 124			18.0V	18.0V	18.0V	18.0V	GND	18.0V	18.0V	18.0V	18.0V			18.0V	CLK1		100.0		100.0			nA
-1112	"	125			"	"	"	"	"	44	"	**	"			"	RS1		"		"			44
	"	126			"	"	"	"	"	"	"	"	"			"	D1		"		"			"
	"	127 128			"	"	"	"	"	"	"	"	"				SET1 SET2		"		"			"
	"	128			"	"	"	"	"	"	"	"	"			"	D2		**		"			"
	"	130			"	"	"	"	"	44	"	**	44			44	RS2		"		"			"
	u	131			íí.	"	"	íí.	"	"	u	"	"			"	CLK2		"		íí.			"
I _{IL1} 6/	3009	132			GND	GND	GND	GND	"	GND	GND	GND	GND			"	All inputs		-800.0					"
I _{IL2}	"	133			"	**	"	"	"	"	"	**	66			"	together CLK1		-100.0		-100.0			"
'IL2	"	134			"	"	"	"	"	"	"	"	"			"	RS1		"		"			"
	"	135			"	"	"	"	"	"	"	"	"			"	D1		"		"			"
	"	136			"	"	"	"	"	"	"	"	"			"	SET1		"		"			"
	"	137 138			"	"	"	"	"	"	"	"	"			"	SET2 D2		"		"			"
	"	139			"	"	"	"	"	"	"	"	"			"	RS2		**		"			"
	"	140			"	**	"	"	"	"	"	**	44			44	CLK2		"		"			"
																•			roup 4					
																			25°C					
Ci	3012	141			<u>7</u> /				GND				l 1		1	GND	CLK1	Min	Max 12					nE
O _i	3012	142			<u> 1</u>	7/			GIND "							"	RS1		"					pF "
	"	143				_	<u>7</u> /		"							"	D1		"					"
	"	144						<u>7</u> /	"	_,						"	SET1		"					"
	"	145 146							"	<u>7</u> /	7/					"	SET2 D2		"					"
	"	146							**		<u>7</u> /	<u>7</u> /				"	RS2		"					"
	"	148							"			1	<u>7</u> /			"	CLK2		"					"
																			roup 7		Subgro			
																		I _A =	25°C Max	$T_A = T_A$	125°C Max	T _A = -	Max	-
Truth	3014	149			5.0V	GND	GND	GND	GND	GND	GND	GND	5.0V			5.0V	None	- IVIIII	IVIAX	IVIIII	IVIAX	IVIIII	IVIAX	
table	"	150			GND	"	"	"	"	44	"	"	GND			"	None	l)						
test	"	151	L "	Н	5.0V	"	"	"	"	"	"	"	5.0V	H	L	"	All							
	"	152 153	"	"	5.0V GND	"	5.0V	"	"	"	5.0V	"	5.0V GND	"	"	"	outputs							
	"	153	Н	L	5.0V	"	"	"	"	"	"	"	5.0V	L	Н	"	"							
	"	155	Ľ	H	5.0V	5.0V	"	"	"	"	"	5.0V	5.0V	H	Ë	"	"							
	"	156	"	"	GND	"	44	"	"	"	"	"	GND	"	"	"	"	(
	"	157	"	"	5.0V	CND.	OND.	" 5 0) /	"	" 5 0\/	" CND	" CND	5.0V	"	"	"	"	>	Se	ee notes	8/ and 9	<u>)</u> /		
	"	158 159	H	L "	5.0V GND	GND "	GND "	5.0V "	"	5.0V	GND "	GND "	5.0V GND	L "	H "	"	"							
	"	160	**	"	5.0V	"	"	"	"	"	"	"	5.0V	"	"	"	"							
	"	161	"	"	5.0V	"	"	GND	"	GND	"	"	5.0V	"	"	"	"							
	"	162	"	"	GND	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	163	L	H	5.0V	5.0V	"		"		"		5.0V	H	L	"	"							
	"	164 165	H "	"	5.0V GND	5.07	"	5.0V "	"	5.0V "	"	5.0V "	5.0V GND	"	H "	"	"							
	"	166	"	"	5.0V	"	"	"	"	"	"	"	5.0V	"	"	"	"	l ノ						

TABLE III. Group A inspection for device type 51 – Continued.

0 1 1	1411	0									47										12 24			L reserve
Symbol	MIL- STD-	Cases A,C,D,			1		1	1		ondition:		1					Measured terminal	Subgr		Subgro	limits	Subgro	11	Unit
	883	T,X,Y	Q1	Q1	CLK1	RS1	D1	SET1	V_{SS}	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terriiriai	$T_{A} = 1$		$T_A = 1$		$T_A = -4$		
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14	•	Min	Max	Min	Max	Min	Max	
		no.	·	_				Ŭ	'			10							Max		Wax		Widx	
t _{PHL}	3003	167	OUT		IN				GND							5.0V	CLK1 to Q1	13	500	18	750	13	500	ns
	(Fig. 6)	168		OUT	IN				"							"	CLK1 to Q1	"	"	"	"	"	"	"
	"	169							"				IN	O. I.T.	OUT	"	CLK2 to Q2	"	"	"	"	"	"	"
_	3003	170							-				IN	OUT		-	CLK2 to Q2		-			-		-
t _{PHL} R or S	(Fig. 7)	171		OUT		IN		IN	"							"	SET1 to Q1	13	550	18	825	13	550	"
10.0	(119.7)	172	OUT							IN				OUT		"	RS1 to Q1	"			"	"	"	"
	"	173 174							"			IN			OUT	"	SET2 to Q2 RS2 to Q2	"	"	"	"	"	"	"
t _{Pl H}	3003	175	OUT		IN				"							"	CLK1 to Q1	"	"	"	"	"	"	"
YPLH	(Fig. 6)	176		OUT	IN				"							"	CLK1 to Q1	"	"	"	"	"	"	"
	` " '	177							44				IN		OUT	"	CLK2 to Q2	44	"	"	"	44	"	44
	"	178							"				IN	OUT		"	CLK2 to Q2	"	"	"	**	"	**	44
t _{PLH}	3003	179	OUT	O. 17				IN	"							"	SET1 to Q1	13	420	18	630	13	420	"
R or S	(Fig. 7)	180 181		OUT		IN			"	IN					OUT	"	RS1 to Q1 SET2 to Q2	"	"	"	"	"	"	"
	"	182							"	IIN		IN		OUT	001	"	RS2 to Q2	"	"	"	"	"	"	"
t _{THL}	3004	183	OUT		IN				44							"	Q1	10	300	14	450	10	300	"
	(Fig. 6)	184		OUT	IN				"							"	Q1	"	"	"	"	"	"	"
	"	185							"				IN		OUT	"	<u>Q2</u>	44	"	44	"	"	"	"
	"	186							"				IN	OUT		"	Q2	"	"	"	"		**	"
t _{TLH}	"	187		OUT	IN				"							"	Q1	10	350	14	525	10	350	"
	"	188	OUT		IN				"					O. I.T.		"	<u>Q1</u>	"	"	"	"	"	"	"
	"	189 190							"				IN IN	OUT	OUT	"	Q2 Q2	"	"	"	"	"	"	"
f _{CL(MAX)}	(Fig. 6)	190	OUT		IN				"				IIN		501	ii.	CLK1		0.67		1.0		0.67	μS
10/	(1.19.0)	192	001		"`				"				IN		OUT	"	CLK2		0.67		1.0		0.67	μ3
t _{TLHCL}	"	193	OUT		IN	1			**							"	CLK1	15		15		10		"
(max)	**	194							44				IN		OUT	"	CLK2	15		15		10		44
<u>11</u> /																	2116							
t _p	"	195	OUT		IN				"				IN		OUT	"	CLK1 CLK2		300		450		300	ns "
<u>12</u> /	(Fig.8)	196 197			IN		IN		"				IIN		OUT	"	D1 to CLK1		300 165		450 225		300 165	"
t _{SHL}	(Fig.o)	197			IIN		IIN		"		IN		IN			"	D1 to CLK1		"		225		"	"
t _{SLH}	"	199			IN		IN		44							"	D1 to CLK1		"		"		"	"
t _{SLH}	"	200							"		IN		IN			"	D2 to CLK2		"		"		"	"

TABLE III. Group A inspection for device type 51 – Continued.

Symbol	MIL-	Cases						Tei	minal c	onditions	s <u>1</u> /						Measured			Test	limits			Unit
	STD-	A,C,D,	Q1	Q1	CLK1	RS1	D1	SET1	Vss	SET2	D2	RS2	CLK2	Q2	Q2	V_{DD}	terminal	Subgr		Subgro		Subgro		i l
	883	T,X,Y								_								$T_A =$	25°C	$T_A = 1$	25°C	$T_A = -$	55°C	
	method	Test	1	2	3	4	5	6	7	8	9	10	11	12	13	14		Min	Max	Min	Max	Min	Max	
		no.																						İ
t _{HHL}	(Fig. 9)	201			IN		IN		GND							5.0V	D1 to CLK1		150		225		150	ns
t _{HHL}		202							"		IN		IN			"	D2 to CLK2		"		"		"	"
t _{HLH}	"	203			IN		IN		"							"	D1 to CLK1		"		"		"	"
t _{HLH}	66	204							"		IN		IN			"	D2 to CLK2		"		"		"	"

- 1/ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: V_{IC(pos)} tests, the V_{SS} terminal shall be open; V_{IC(neg)} tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminals shall be open.
- 2/ Test numbers 17 thru 38 shall be run in sequence.
- 3/ For input conditions, see figure 6.
- 4/ For input conditions, see figure 7.
- 5/ Apply a clock pulse
- 6/ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- <u>7</u>/ See 4.4.1c.
- 8/ Test numbers 144 thru 166 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 18.0 V.
- 9/ L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- 10/ The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 11/ Pulse repetition period = 100 μs, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 12/ The minimum clock pulse width (tp) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

TABLE III. Group A inspection for device type 52.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
,	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 1	Subgi	roup 2	Subg		1
	883	Z																		$T_A = 1$		$T_A = 1$			-55°C	
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	Vss	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
V _{IC(pos)}		1							1mA									GND	SET2		1.5					V
• IC(pos)		2				1mA												"	RS2		"					"
		3						1mA										44	J2		**					"
		4					1mA											"	K2		"					"
		5			1mA													44	CLK2		**					"
		6									1mA							"	SET1		"					"
		7												1mA				"	RS1		"					**
		8										1mA						"	J1		"					"
		9											1mA		4 4			"	K1		"					"
\/		10 11							-1mA	GND					1mA			ļ	CLK1 SET2		-6					"
$V_{IC(neg)}$		12				-1mA			-111114	GIVD									RS2		-0					"
		13						-1mA		"									J2		**					"
		14					-1mA			"									K2		**					"
		15			-1mA					"									CLK2		"					"
		16								"	-1mA								SET1		"					"
		17								"				-1mA					RS1		**					"
		18								"		-1mA							J1		"					"
		19 20								"			-1mA		-1mA				K1 CLK1		"					"
I _{SS} <u>2</u> /		21			GND	18.0V	18.0V	18.0V	GND	"	GND	GND	GND	GND	GND			18.0V	V _{SS}		-0.25		-2.5			μА
00 =		22			18.0V	18.0V	"	"	"	"	"	"	"	"	"			44	None		**		"			"
		23			18.0V	GND	"	"	"	"	"	"	"	"	"			"	V_{SS}		"		"			"
		24			GND	"	"	"	"	"	"	"	"	"	**			"	None		"		"			"
		25			18.0V	"			"	"	"	"	"	"	"			"	V _{SS}		"		"			**
		26			"		GND "	GND "		"	"	"	"	"	"			"	V _{SS}		"		"			"
		27				18.0V	"	"	18.0V	"	"				"				Vss							"
		28 29			GND "	GND "	"	"	GND "	"	"	18.0V	18.0V	18.0V 18.0V	18.0V			"	V _{SS} None		66		**			"
		30			"	"	"	"	"	"	"	"	**	GND	18.0V			"	V _{SS}		**		"			**
		31			"	"	"	"	"	"	"	"	"	GIVD	GND			"	None		"		"			"
		32			"	"	"	"	"	"	"	"	"	"	18.0V			"	V _{SS}		"		"			"
		33			"	"	"	"	"	"	"	GND	GND	"	"			"	V _{SS}		"		"			"
		34			"	"	"	"	"	"	18.0V	"	"	18.0V	"			"	V_{SS}		"		"			íí.
V _{OH5}	3006	35			"		"	"	15.0V	"	GND	"	"	GND	GND			15.0V	<u>Q2</u> Q2	14.95		14.95		14.95		٧
	"	36			"	15.0V	"	"	GND	"	GND	"	"	"	"			"	Q2	"		"		"		"
	"	37 38			"	GND GND	"	"	"	"	15.0V GND	"	"	15.0V	"			"	<u>Q1</u> Q1	"		"		"		"
V _{OL.5}	3007	39			"	15.0V	"	"	tt.	"	"	"	"	GND				44	Q2		0.05		0.05		0.05	"
V OL.5	"	40			"	GND	"	"	15.0V	"	"	"	"	GND	"			**	Q2		"		"		"	"
	"	41			"	"	"	"	GND	"	"	"	"	15.0V	"			"	Q1		"		"		"	"
	"	42			"	"	"	"	GND	"	15.0V	"	"	GND	u			íí.	Q1		"		"		er .	"
V _{OH6}	3006	43			<u>3</u> /	"	15.0V	"	<u>3</u> /	"	GND	"	"	"	"			"	Q2	14.95		14.95		14.95		"
V_{OL6}	3007	44			<u>3</u> /		15.0V	"	<u>3</u> /	"	GND	"							Q2		0.05		0.05		0.05	"
V_{OH6}	3006	45	l	l	GND	"	GND	"	GND	"	3/	l	15.0V	"	3/	l		44	Q1	14.95		14.95	l	14.95		"

MIL-M-38510/51

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Terr	ninal co	nditions	: 1/							Measured			Test	limits			Unit
	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1	Subgi	roup 2	Subgr		
	883 test	Z Test																		T _A =	25°C Max	$T_A = 1$ Min	125°C Max	T _A = -	55°C Max	
	method	no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		IVIII		IVIII		IVIII		
V_{OL6}	3007	46			GND	GND	GND	GND	GND	GND	<u>3</u> /	GND	15.0V	GND "	<u>3</u> /			15.0V	<u>Q1</u>		0.05		0.05		0.05	V
V _{OH6}	3007 3006	47 48			<u>3</u> /	"	"	15.0V 15.0V	<u>3</u> / 3/	"	GND GND	"	GND "	"	GND GND				Q2 Q2	14.95	0.05	14.95	0.05	14.95	0.05	"
					_	"	"			"			"	"					Q2 Q1	14.95		14.95		14.95		"
V _{OL6}	3007	49 50			GND GND	"	"	GND GND	GND GND	"	<u>3</u> /	15.0V	"	"	<u>3</u> /			"	Q1 Q1	44.05	0.05	44.05	0.05	44.05	0.05	
V _{OH6}	3006	51			4/	<u>4</u> /	<u>4</u> /	4/	GND "	"	<u>3</u> / GND	15.0V GND			<u>3</u> /			"	CLK2	14.95	4/	14.95	4/	14.95	4/	"
V _{ICL3}		52			4/	4/	4/	4/	"	**	GIVD	GND						**	CLK2	4/	=/	4/	=/	4/	±/	"
V _{ICL4}		53			GND	GND	GND	GND	"	"	"	4/	<u>4</u> /	<u>4</u> /	<u>4</u> /			**	CLK1		4/		4/		4/	"
V_{ICL4}		54			"	GND	"	"	"	"	"	<u>4</u> /	<u>4</u> /	4/	4/			"	CLK1	<u>4</u> /		<u>4</u> /		<u>4</u> /		"
V_{IH1}		55			"	1.5V	"	"	3.5V	"	"	GND	GND	GND	GND			5.0V	<u>Q2</u> Q2	4.5		4.5		4.5		"
		56 57				3.5V 1.5V	1.5V	3.5V	1.5V	"	"	"	"	"	"			"	Q2 Q2	"		"		"		"
		58			<u>5</u> / <u>5</u> /	1.5V	3.5V	1.5V	"	**	"	"	**	**	**			**	<u>Q2</u> Q2	66		44		66		"
		59			GND	GND	GND	GND	GND	"	3.5V	"	**	1.5V	**			**	Q1 Q1	"		**		66		"
		60			"	"	"	"	"	"	1.5V	"	"	3.5V	"			"		"		"		"		"
		61 62			"	"	"	"	"	"	"	3.5V 1.5V	1.5V 3.5V	1.5V 1.5V	<u>5</u> / 5/			"	<u>Q1</u> Q1	"		"		"		"
V _{IH2}		63			"	3.0V	"	"	7.0V	"	GND	GND	GND	GND	GND			10.0V	Q1 O2	9.0		9.0		9.0		"
V IH2		64			**	7.0V	**	"	3.0V	"	"	"	"	"	"			"	<u>Q2</u> Q2	"		"		"		"
		65			<u>5</u> /	3.0V	3.0V	7.0V	"	"	"	"	"	**	"			"	<u>Q2</u> Q2	"		"		"		"
		66			<u>5</u> /	3.0V	7.0V	3.0V	"	"		"	"		"			"	Q2	"		"		**		"
		67 68			GND "	GND "	GND "	GND "	GND "	"	7.0V 3.0V	"	"	3.0V 7.0V	"			"	<u>Q1</u> Q1	"		"		"		"
		69			"	**	**	"	"	"	3.00	7.0V	3.0V	3.0V	<u>5</u> /			"	Q1	"		"		**		"
		70			"	"	**	"	"	"	"	3.0V	7.0V	3.0V	<u>5</u> /			**	Q1	**		**		66		"
V _{IH3}		71			"	4.0V	66	"	11.0V	"	GND	GND	GND	GND	GND			15.0V	<u>Q2</u> Q2	13.5		13.5		13.5		"
		72				11.0V	"	"	4.0V	"	"	"	"	"	"			"	Q2	"		"		"		"
		73 74			<u>5</u> / <u>5</u> /	4.0V 4.0V	4.0V 11.0V	11.0V 4.0V	"	"	"	"	"	"	"			"	<u>Q2</u> Q2	"		"				"
		7 4 75			GND	GND	GND	GND	GND	"	11.0V	"	"	4.0V	"			"	Q2 Q1	"		"		"		"
		76			"	"	"	"	"	**	4.0V	"	**	11.0V	"			**	<u>Q1</u> Q1	**		"		**		"
		77			"	"	"	"	"	"	"	11.0V	4.0V	4.0V	<u>5</u> /			"	<u>Q1</u> Q1	"		"		"		"
		78			"	"	"	"	"	"	"	4.0V	11.0V	4.0V	<u>5</u> /				Q1	"		"		66		"
V_{IL1}		79 80			"	3.5V 1.5V	"	"	1.5V 3.5V	"	GND "	GND "	GND "	GND "	GND "			5.0V	<u>Q2</u> Q2		0.05		0.05		0.05	"
		80 81			<u>5</u> /	1.5 V	3.5V	1.5V	3.5V 1.5V	"	"	"	"	"	"			"	Q2 Q2		"		"		"	"
		82			<u>5</u> /	"	1.5V	3.5V	1.5V	"	"	"	"	"	"			"	<u>Q2</u> Q2		"		"		"	"
		83			GND	GND	GND	GND	GND	"	1.5V	íí.	"	3.5V	**			"	Q1 Q1		"		"		"	"
		84			"	"	"	"	"	"	3.5V	4 5) /		1.5V				"			"		"		"	"
		85 86			"	"	"	"	"	"	1.5V 1.5V	1.5V 3.5V	3.5V 1.5V	"	<u>5</u> / 5/			"	<u>Q1</u> Q1		"		"		"	"
<u></u>		86		<u> </u>		L			-	-	1.57	3.5V	1.57	-	<u>5</u> /	<u> </u>	ļ	<u> </u>	ŲΊ	<u> </u>	ļ	ļ	<u> </u>	ļ		

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Ter	minal co	ondition	s 1/							Measured			Test	limits			Unit
	STD- 883	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 1 25°C	Subg	roup 2 125°C	Subgr		
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V _{DD}		Min	Max	Min	Max	Min	Max	
V_{IL2}		87			GND	7.0V	GND	GND	3.0V	GND	GND	GND	GND	GND	GND			10.0V	<u>Q2</u> Q2		1.0		1.0		1.0	V
		88 89			GND <u>5</u> /	3.0V	GND 7.0V	GND 3.0V	7.0V 3.0V	"	"	"	"	"	"			"	Q2		"		"		"	"
		90			<u>5</u> /	"	3.0V	7.0V	3.0V	"	"	"	"	"	"			"	Q2		"		"		"	"
		91 92			GND "	GND "	GND "	GND "	GND "	"	3.0V 7.0V	"	"	7.0V 3.0V	"			"	<u>Q1</u> Q1		"		"		"	"
		93			"	"	"	"	"	"	3.0V	3.0V	7.0V	"	<u>5</u> /			"	Q1		"		44		"	"
V		94			"	"	"	"	4.0V	"	3.0V GND	7.0V GND	3.0V	" "	<u>5</u> /			" 45.0\/	Q1		4 5		" 1.E		4.5	"
V _{IL3}		95 96			"	11.0V 4.0V	"	"	4.0V 11.0V	"	GIND "	GIND "	GND "	GND "	GND "			15.0V "	Q2 Q2		1.5		1.5		1.5	"
		97			<u>5</u> /	"	11.0V	4.0V	4.0V	"	"	"	"	"	"			"	<u>Q2</u> Q2		"		"		"	"
		98 99			<u>5</u> / GND	GND	4.0V GND	11.0V GND	4.0V GND	"	4.0V	"	"	11.0V	"			"	Q2 Q1		"		"		"	"
		100			"	"	"	"	**	"	11.0V	"	"	4.0V	"			"	Q1		"		"		"	"
		101 102			"	"	"	"	"	"	4.0V 4.0V	4.0V 11.0V	11.0V 4.0V	"	<u>5</u> / 5/			"	<u>Q1</u> Q1		"		"		"	"
I _{OL1}		103	0.4V		"	5.0V	"	"	"	"	GND	GND	GND	GND	GND			5.0V	Q2 Q2	0.51		0.36		0.64		mA
		104		0.4V	"	GND "	"	"	5.0V	"	"	"	"	GND	"		0.41/	"	Q2	"		"		"		"
		105 106			"	"	"	"	GND "	"	5.0V	"	"	5.0V GND	"	0.4V	0.4V	"	<u>Q1</u> Q1	"		"		"		"
I _{OL2}		107	1.5V		"	15.0V	"	"	"	"	GND "	"	"	"	"			15.0V	Q2	3.4		2.4		4.2		"
		108 109		1.5V	"	GND "	"	"	15.0V GND	"	"	"	"	" 15.0V	"		1.5V	"	Q2 Q1	"		"		"		"
		110			"	"	"	£\$	"	u	15.0V	"	"	GND	"	1.5V	1.01	"	<u>Q1</u> Q1	u		"		"		"
I _{OH1}		111 112	4.6V	4.6V	"	5.0V	"	"	5.0V GND	"	GND GND	"	"	"	"			5.0V	<u>Q2</u> Q2	-0.51		-0.36		-0.64		"
		113		4.60	"	GND	66	"	GND "	"	5.0V	"	"	"	"		4.6V	"	Q2 Q1	"		"		"		"
		114			"	"	"	"	"	"	GND "	"	"	5.0V	"	4.6V		"	Q1 Q1	"		"		"		"
I _{OH2}		115 116	13.5V	13.5V	"	" 15.0V	"	"	15.0V GND	"	"	"	"	GND "	"			15.0V	<u>Q2</u> Q2	-3.4		-2.4		-4.2		"
		117		10.01	"	GND	"	"	"	"	15.0V	"	"	"	"		13.5V	"	Q1	"		"		44		"
	3010	118 119			" 18.0V	GND 18.0V	" 18.0V	" 18.0V	" 18.0V	"	GND 18.0V	" 18.0V	" 18.0V	15.0V 18.0V	" 18.0V	13.5V		" 18.0V	Q1 All	"	1000.0	"		"		nA
I _{IH1} 6/	3010	119			10.00	10.00	16.00	10.00	10.00		10.00	10.00	10.00	10.00	10.00			10.00	inputs		1000.0					IIA
_	"	400			и	и			"	"	"	"	и		"			"	together		400.0		100.0			
I _{IH2}	"	120 121			"	"	"	"	"	"	"	"	"	"	"			"	CLK2 RS2		100.0		100.0			"
	"	122			"	"	"	"	"	"	"	"	"	"	"			"	K2		"		"			"
	"	123 124			"	"	"	"	"	"	"	"	"	"	"			"	J2 SET2		"		"			"
	u	125			"	"	**	66	"	"	"	"	"	**	"			"	SET2 SET1		"		"			"
	"	126			"	"	"	"	"	"	"	"	"	"	"			"	J1		"		"			"
	"	127 128			"	"	"	"	"	"	"	"	"	"	"			"	K1 RS1		"		"			"
	"	129			u	"	"	££	"	"	"	er.	u	"	u			"	CLK1		u		"			"

TABLE III. Group A inspection for device type 52 – Continued.

Symbol	MIL-	Cases							Tern	ninal co	nditions	1/							Measured			Test	limits			Unit
-	STD-	$E,\!F,\!N,$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subg	roup 1	Subg	roup 2	Subgr	oup 3	
	883	Z																		$T_A =$	25°C		125°C	$T_A = -$		_
	test method	Test	Q2	Q2	CLK2	RS2	K2	J2	SET2	V_{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
	3009	no. 130			GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND			18.0V	All		-1000	1				A
I _{IL1} 6/	3009	130			GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND			16.00	inputs		-1000					nA
<u> </u>																			together							
I _{IL2}	"	131			"	"	"	"	"	"	"	"	íí.	"	"			"	ČLK2		-100		-100			66
	"	132			"	"	"	"	"	"	"	"	"	"	"			"	RS2		"		"			"
	"	133			44	"		"	"	"	"	"	"	"	"			"	K2		"		"			"
	"	134 135			"	"	"	"	"	"	"	"	"	"	"			"	J2 SET2		"		"			"
	"	136			"	"	"	"	"	"	"	"	"	"	"			"	SET1		"		"			"
	"	137			"	"	"	"	"	"	"	"	"	"	"			"	J1		"		"			"
	"	138			"	"	"	"	"	"	"	"	"	"	"			"	K1		"		"			"
	"	139			"	"	"	"	"	"	"	"	"	"	"			"	RS1		"		"			"
	"	140			"	"	**	"	"	"	"	"	"	"	"			"	CLK1		"		ű			"
																				Subg	roup 4					
																				I _A =	25°C Max	-				
Ci	3012	141			<u>7</u> /	1				GND		1	1					GND	CLK2	IVIIII	12					pF
O ₁	"	142			<u>.,</u>	<u>7</u> /				"								"	RS2							Ρ,
	"	143				_	<u>7</u> /			"								**	K2		**					**
	"	144						<u>7</u> /		"								"	J2		"					**
	"	145							<u>7</u> /	"	7/							"	SET2 SET1		"					"
	"	146 147								"	<u>7</u> /	<u>7</u> /						**	J1		"					"
	"	148								"			<u>7</u> /					"	K1		"					**
	"	149								"			_	<u>7</u> /				"	RS1		"					**
	"	150								"					<u>7</u> /			"	CLK1		"					"
																					roup 7			roup 8		
																				I _A =	25°C		125°C	T _A = -		4
Truth	3014	151			5.0V	GND	5.0V	GND	GND	GND	GND	GND	5.0V	GND	5.0V		1	5.0V	None	IVIII	Max	Min	Max	Min	Max	
table	3014	152			GND	"	3.00	"	GIND "	GIND.	"	"	3.0 V	שווט	GND			3.07	None)						
test	"	153	L	Н	5.0V	"	"	"	"	"	"	"	"	"	5.0V	Н	L	"	All							
	"	154	"	"	5.0V	"	GND	"	"	"	"	"	GND	"	5.0V	"	44	"	outputs							
	"	155	"	"	GND	"	"	"	"	"	"	"	"	"	GND	"	"	"	"							
	"	156	"	"	5.0V	"	"		"	"	"		"	"	5.0V	"	"	"	"							
	"	157 158	"	"	5.0V GND	"	"	5.0V	"	"	"	5.0V	"	"	5.0V GND	"	"	"	"							
	"	159	Н	L	5.0V	"	"	**	"	"	"	"	"	**	5.0V	1	Н	"	"	(
	"	160	"	"	5.0V	"	"	GND	"	"	"	GND	"	"	5.0V	"	"	"	"	>	-	See 8/	and <u>9</u> /			
	"	161	"	"	GND	"	"	**	"	"	"	"	"	"	GND	"	"	"	"	(
	"	162	"	"	5.0V	"	"		"	"	"	"	"	"	5.0V	"	"	"	"							
	"	163	"	"	5.0V	"	5.0V	5.0V	"	"	"	5.0V	5.0V	"	5.0V	"	"	"	"							
	"	164 165	L L	H	GND 5.0V	"	"	"	"	"	"	"	"	"	GND 5.0V	н	L	"	"							
	"	166	Н	L	5.0V 5.0V	44	44	GND	5.0V	"	5.0V	GND	"	"	5.0V 5.0V	Ľ	H	44	"							
	"	167	H	Ĺ	GND	"	"	"	5.0V	"	5.0V	"	"	"	GND	Ĺ	H	"	"							
	"	168	Ĺ	Н	GND	5.0V	GND	"	GND	"	GND	"	GND	5.0V	GND	Н	L	"	"							
	"	169	L	Н	5.0V	5.0V	GND	"	GND	íí	GND	"	GND	5.0V	5.0V	Н	L	"	"	ノ						

Symbol	MIL-	Cases							Terr	ninal co	nditions	1/							Measured			Test				Unit
	STD- 883	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	roup 7		Subgr	oup 8		
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		T _A =	25°C	T _A = 1	25°C	T _A = -	55°C	
Truth	3014	170	Н	L	5.0V	GND	GND	GND	5.0V	GND	5.0V	GND	GND	GND	5.0V	L	Н	5.0V	All	7		l	ı.			
table test	"	171 172	"	"	5.0V GND	"	5.0V	"	GND "	"	GND "	"	5.0V	"	5.0V GND	"	"	"	outputs "							
lesi	"	173		Н	5.0V	**	44	"	**	"	**	**	**	**	5.0V	Н	L	"	"							
	"	174	"	"	5.0V	**	"	5.0V	**	"	"	5.0V	"	44	5.0V	"		**	"							
	"	175	"	44	GND	66	**	44	**	"	**	"	**	44	GND	"	"	"	"							
	"	176	H	L	5.0V	- 0) /	"	"	"	"	"	"	"		5.0V	L	H	"	"	\ \		See <u>8</u> /	and <u>9</u> /			
	"	177 178	L "	H	5.0V GND	5.0V	"	"	"	"	"	"	"	5.0V	5.0V GND	H	L "	"	"							
	"	179	"	"	5.0V	"	"	"	"	"	"	"	"	"	5.0V	"	"	"	"							
	"	180	Н	**	5.0V	**	GND	GND	5.0V	"	5.0V	GND	GND	**	5.0V	"	Н	"	"							
	"	181	"	66	GND	**	"	"	**	"	**	"	**	"	GND	"	"	"	"							
	"	182	**	"	5.0V	**	"	"	"	"	"	"	"	"	5.0V	,,	**	"	")				0 1		
																					roup 9 25°C	Subgroup $T_A = 1$		Subgroup $T_A = -$		
																				Min	Max	Min	Max	Min	Max	
t _{PHL}	3003	183	OUT		IN					GND								5.0V	CLK2 to Q2	13	575	18	865	13	575	ns
11112	Fig.	184		OUT	IN					"								"	CLK2 to Q2	"	"	"	"	"	"	"
	12	185								"					IN		OUT	"	CLK1 to Q1	"	"	"	"	"	"	"
4		186 187	OUT			INI				"					IN	OUT		"	CLK1 to Q1							"
R or S	3003 Fig.	187	001	OUT		IN			IN	"								"	RS2 to Q2 SET2 to Q2	13	600	18	900	13	600	"
1000	13	189		001						"				IN			OUT	"	RS1 to Q1	"	"	"	"	"	"	"
	"	190								"	IN					OUT		"	SET1 to Q1	"	"	"	**	"	"	"
t _{PLH}	3003	191	OUT		IN					"								"	CLK2 to Q2	13	625	18	940	13	625	"
	Fig.	192 193		OUT	IN					"					INI		OUT	"	CLK2 to Q2 CLK1 to Q1	"	"	"	"	"	"	"
	12	193								"					IN IN	OUT	001	**	CLK1 to Q1	"	"	"	"	"	"	"
t _{PLH}	3003	195	OUT						IN	ii.						301		"	SET2 to Q2	13	400	18	600	13	400	"
R or S	Fig.	196		OUT		IN				"								**	RS2 to Q2	"	"	**	**	"	"	"
	13	197								"	IN						OUT	"	SET1 to Q1	"	"	"	"	"	"	"
	2004	198	OUT		INI					"				IN		OUT		"	RS1 to Q1	40					-	"
t _{THL}	3004 Fig.	199 200	001	OUT	IN IN					"								"	<u>Q2</u> Q2	10	325	14	490	10	325	66
	119.	201		501	""					"					IN		OUT	**	Q1	"	"	"	"	"	"	"
	"	202								"					IN	OUT		"	<u>Q1</u> Q1	"	"	"	"	u	"	"
t _{TLH}	"	203	OUT		IN					"								"	<u>Q2</u>	"	"	"	"	"	"	"
	"	204		OUT	IN					"					INI		OUT	"	Q2	"	"	"	"	"	"	"
	"	205 206								"					IN IN	OUT	OUT	"	<u>Q1</u> Q1	"	"	"	"	"	"	"
f _{CL(max)}	"	207	OUT		IN					"					IIV	501		"	CLK2		1.0		1.4		1.0	μS
10/	"	208								"					IN		OUT	"	CLK1		1.0		1.4		1.0	"

S
Ň

TABLE III. Group A inspection for device type 52 - Continued.

Symbol	MIL-	Cases							Tern	ninal co	nditions	1/							Measured			Test	limits			Unit
	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal		roup 9 25°C		oup 10 125°C			
	test method	Test no.	Q2	Q2	CLK2	RS2	K2	J2	SET2	V _{SS}	SET1	J1	K1	RS1	CLK1	Q1	Q1	V_{DD}		Min	Max	Min	Max	Min	Max	
t _{TLHCL} 11/	Fig. 12	209 210	OUT		IN					GND "					IN		OUT	5.0V	CLK2 CLK1	15 15		15 15		10 10		μS μS
t _p	"	211 212	OUT		IN					"					IN		OUT	"	CLK2 CLK1		300 300		450 450		300 300	ns ns
t _{SHL}	Fig. 14	213 214	OUT OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		165		225		165	"
	"	215 216								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{SLH}	"	217 218	OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		"		"		"	"
	"	219 220								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{HLH}	"	221 222	OUT		IN IN		IN	IN		"								"	K2 to CLK2 J2 to CLK2		150		"		150	"
	"	223 224								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"
t _{HHL}	"	225 226	OUT		IN IN		IN	IN		"							_	"	K2 to CLK2 J2 to CLK2		"		"		"	"
	"	227 228								"		IN	IN		IN IN		OUT	"	K1 to CLK1 J1 to CLK1		"		"		"	"

- 1/ Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; I_{SS} tests, the output terminal shall be open.
- 2/ Test numbers 21 thru 34 shall be run in sequence.
- 3/ For input voltage conditions, see figure 10.
- 4/ For input voltage conditions, see figure 11.
- 5/ Apply a clock pulse
- $\underline{6}/$ The device manufacturer may, at his option, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- 7/ See 4.4.1c.

- 8/ Test numbers 151 thru 182 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 18.0 V.
- 9/ L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.
- $\underline{10}$ / The maximum clock frequency (f_{CL}) requirement is considered met if proper output state changes occur with the pulse repetition period set to that given in the limits column.
- 11/ Pulse repetition period = 100 μ s, 50 percent duty cycle. The maximum clock transition time (t_{TLHCL}) requirement is considered met if proper output state changes occur with the rise time set to that given in the limits column.
- 12/ The minimum clock pulse width (t_p) requirement is considered met if proper output state changes occur with the pulse width set to that given in the limits column.

TABLE III. Group A inspection for device type 53.

Symbol	MIL-	Cases							Ter	minal c	ondition	s 1/							Measured			Test	limits			Unit
-,	STD-	E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr	oup 1	Subg	roup 2		roup 3	
	883	Z																		T _A =			125°C		-55°C	
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	V_{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
$V_{IC(pos)}$		1			1mA													GND	R1		1.5					V
. ,		2				1mA												44	S1		"					"
		3					1mA											"	E		"					"
		4						1mA										"	S2		"					
		5							1mA				4 4					"	R2		"					
		6 7											1mA	1mA				44	R3 S3		"					"
		8												IIIIA		1mA		44	S4		"					"
		9														IIIIA	1mA	"	R4		"					"
V _{IC(neg)}		10			-1mA					GND							1111/1		R1		-6					"
· IC(IIeg)		11				-1mA				"									S1		"					"
		12					-1mA			"									E		"					"
		13						-1mA		"									S2		"					"
		14							-1mA	"									R2		"					"
		15								"			-1mA						R3		"					"
		16								"				-1mA		4 4			S3		"					
		17								"						-1mA	1 mm A		S4 R4		"					"
		18 19			GND	18.0V	18.0V	18.0V	GND	"			GND	18.0V		18.0V	-1mA GND	18V	V _{SS}		1.0		-2.5			
I _{SS} <u>2</u> /		20			GND	GND	10.00	GND	GND	"			GND	GND		GND	GND	10 V	v _{SS}		-1.0		-2.5			μA "
<u>2</u> /		21			18.0V	"	"	"	18.0V	"			18.0V	"		"	18.0V	"	"		"		"			"
		22			GND	"	"	"	GND	**			GND	"		"	GND	"	"		"		**			"
		23			18.0V	18.0V	"	18.0V	18.0V	"			18.0V	18.0V		18.0V	18.0V	"	"		"		"			"
		24			GND	GND	GND	GND	GND	"			GND	GND		GND	GND	"	"		"		"			"
V_{OH5}	3006	25			"	15.0V	15.0V	GND	"	"			"	"		"	"	15.0V	Q1	14.95		14.95		14.95		V
	66	26			"	GND	"	15.0V	**	"			"	"		"	**	"	Q2	**		**		"		"
	"	27			"	44	"	GND	**	"			"	15.0V		"	"	"	Q3	"		"		"		"
	"	28			"	"	"	GND	"	u			"	GND		15.0V	"	"	Q4	"		"		"		íí
V_{OL5}	3007	29			15.0V		"	15.0V	15.0V	"			15.0V	15.0V		"	15.0V	"	Q1		0.05		0.05		0.05	"
	"	30			"	15.0V	"	GND		"			"	15.0V		"	"	"	Q2		"		"		"	"
	"	31			"	"	"	15.0V	"	"			"	GND			"	"	Q3		"		"			"
\/		32 33			1.5V	3.5V	3.5V	15.0V GND	GND	"			GND	15.0V GND		GND "	GND	5.0V	Q4 Q1	4.5		4.5		4.5		"
V_{IH1}		33 34			3.5V	3.5V 3.5V	3.5 V	GND	GND	**			GIND	GIND		"	GIND "	5.00	Q1	4.5		4.5		4.5		"
		35			GND	GND	"	3.5V	1.5V	"			"	"		"	"	"	Q2	"		"		"		"
		36			"	"	"	3.5V	3.5V	"			"	"		"	"	"	Q2	"		"		"		"
		37			"	"	"	GND	GND	"			1.5V	3.5V		"	"	44	Q3	**		"		"		"
		38			"	"	"	"	66	"			3.5V	3.5V		"	"	"	Q3	"		"		"		"
		39			"	"	"	"	**	"			GND	GND		3.5V	1.5V	44	Q4	**		"		"		"
		40			"	"	"	**	"	"			"	"		3.5V	3.5V	"	Q4	"		"		"		"
V_{IH2}		41			3.0V	7.0V	7.0V	"	"	"			"	"		GND	GND	10.0V	Q1	9.0		9.0		9.0		"
		42			7.0V	7.0V	"			"			"	"		"	"	"	Q1	"		"		"		"
		43			GND	GND "	"	7.0V	3.0V	"			"	"			"	"	Q2	"		"				
		44			"	"	"	7.0V	7.0V	"						"	"	"	Q2			"				"
		45 46			"	"	"	GND "	GND "	"			3.0V 7.0V	7.0V 7.0V		"	"	"	Q3 Q3	"		"		"		"
		46 47			"	44	**	"	**	44			GND	GND		7.0V	3.0V	44	Q3 Q4	**		"		"		"
		48			"	"	"	"	"	"			"	GIVD		7.0V 7.0V	7.0V	"	Q4 Q4	"		"		"		"

MIL-M-38510/51F

TABLE III. Group A inspection for device type 53 – Continued.

Symbol	MIL-	Cases							Ter	minal c	ondition	s <u>1</u> /							Measured			Test	limits			Unit
		E,F,N,	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgr		Subgi		
	883 test	Z																		$T_A = 2$ Min		T _A = 1		T _A = -		
	method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	V_{SS}	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}			Max	Min	Max	Min	Max	
V_{IH3}		49			4.0V	11.0V	11.0V	GND	GND	GND			GND	GND "		GND	GND	15.0V	Q1	13.5		13.5		13.5		V
		50			11.0V	11.0V		GND	GND	"			"						Q1	"		"				
		51 52			GND "	GND "	"	11.0V 11.0V	4.0V 11.0V	"			"	"		"	"	"	Q2 Q2	"		"		"		"
		53			"	"	"	GND	GND	"			4.0V	11.0V		"	"	"	Q3	"		"		"		"
		54			"	"	**	"	"	44			11.0V	11.0V		**	44	44	Q3	"		"		"		"
		55			"	"	"	"	"	"			GND	GND		11.0V	4.0V	"	Q4	"		"		"		"
		56			"	"	"	"	"	"			"	"		11.0V	11.0V	"	Q4	"		"		"		"
V_{IL1}		57			3.5V	1.5V	3.5V	"		"			"	"		GND	GND	5.0V	Q1		0.5		0.5		0.5	"
		58			GND "	GND "	"	1.5V	3.5V	"									Q2				"		"	"
		59 60			"	"	"	GND "	GND "	"			3.5V GND	1.5V GND		1.5V	3.5V	"	Q3 Q4		"		"		"	"
V _{IL2}		61			7.0V	3.0V	7.0V	"	"	"			"	"		GND	GND	10.0V	Q1		1.0		1.0		1.0	"
¥ ILZ		62			GND	GND	"	3.0V	7.0V	"			"	"		"	"	"	Q2		"		"		"	"
		63			"	"	"	GND	GND	"			7.0V	3.0V		"	"	"	Q3		"		"		"	"
		64			"	66	££	"	"	**			GND	GND		3.0V	7.0V	"	Q4		"		"		"	"
V_{IL3}		65			11.0V	4.0V	11.0V	"	"	"			"	"		GND	GND	15.0V	Q1		1.5		1.5		1.5	"
		66			GND	GND	"	4.0V	11.0V	"			"	4 0) /		"	"	"	Q2		"		"		"	"
		67 68			"	"	"	GND "	GND "	"			11.0V GND	4.0V GND		4.0V	11.0V	"	Q3 Q4		"		"		"	"
I _{OL1}		69		0.4V	5.0V	"	5.0V	"					"	"		GND	GND	5.0V	Q4 Q1	0.51		0.36		0.64		mA
IOL1		70		0.41	GND	44	3.0 v	"	5.0V	**	0.4V		"	"		"	GIVD	3.0 V	Q2	0.51		"		"		""
		71			"	"	**	"	GND	"		0.4V	5.0V	"		"	"	"	Q3	"		"		"		"
		72	0.4V		"	"	66	"	"	"			GND	"		"	5.0V	"	Q4	"		"		"		**
I_{OL2}		73		1.5V	15.0V	"	15.0V	"	**	"			"	"		"	GND	15.0V	Q1	3.4		2.4		4.2		"
		74			GND "	"	"	"	15.0V	"	1.5V	4.5\/		"		"	"	"	Q2	"		"		"		"
		75 76	1.5V		"	"	"	"	GND "	"		1.5V	15.0V GND	"		"	15.0V	"	Q3 Q4	"		"		"		"
I _{OH1}		77	1.5 V	4.6V	"	5.0V	5.0V	"	"	"			"	"		"	GND	5.0V	Q1	-0.51		-0.36		-0.64		"
*OH1		78		7.0 V	"	GND	3.0 V	5.0V	"	"	4.6V		"	"		"	"	3.0 V	Q2	"		"		"		"
		79			"	"	**	GND	"	"	_	4.6V	"	5.0V		"	"	"	Q3	**		"		"		"
		80	4.6V		"	"	66	"	"	"			"	GND		5.0V	"	"	Q4	"		"		"		"
I_{OH2}		81		13.5V	"	15.0V	15.0V	"	"	"			"	"		GND	"	15.0V	Q1	-3.4		-2.4		-4.2		"
		82			"	GND	"	15.0V	"	"	13.5V	40 51 /	"	45.0\/		"	"	"	Q2	"		"		"		"
		83 84	13.5V		"	"	"	GND GND	"	"		13.5V	"	15.0V GND		15.0V	"	"	Q3 Q4	"		"		"		"
I	3010	85	13.51		18.0V	18.0V	18.0V	18.0V	18.0V	"			18.0V	18.0V		15.0V	18.0V	18.0V	All		9					nA
I _{IH1} <u>3</u> /	3010	65			10.00	10.00	10.00	10.00	10.00				10.00	10.00		10.00	10.00	10.00	inputs together		9					IIA

MIL-M-38510/51F

TABLE III. Group A inspection for device type 53 – Continued.

Symbol		Cases							Ter	minal co	ondition	s <u>1</u> /							Measured			Test	limits			Unit
	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr		Subgi		Subgr	oup 3	
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	
I _{IH2}	3010	86			18.0V	18.0V	18.0V	18.0V	18.0V	GND			18.0V	18.0V		18.0V	18.0V	18.0V	R1		1.0		45			nA
	"	87 88			"	"	"	"	"	"			"	"		"	"	"	S1 E		"		"			"
	"	89			"	"	"	44	"	"			"	"		"	"	"	S2		"		66			"
	"	90			"	"	"	"	"	"			"	"		"	"	"	R2		"		"			"
	"	91 92			"	"	"	"	"	"			"	"		"	"	"	R3 S3		"		"			"
	"	93			44	"	"	44	"	"			**	**		"	"	44	S4		44		**			"
	"	94			"	"	"	"	"	"			"	"		"	"	"	R4		"		"			"
I _{IL1} <u>3</u> /	3009	95			GND	GND	GND	GND	GND				GND	GND		GND	GND		All inputs together		-9					
I _{IL2}	**	96			"	"	"	"	u	"			íí.	"		u	"	"	R1		-1.0		-45			££
	"	97 98			"	"	"	"	"	"			"	"		"	"	"	S1 E		"		"			"
	"	99			"	"	"	"	"	"			"	"		"	"	"	S2		"		"			"
	"	100			"	"	"	"	"	"			"	"		"	"	"	R2		**		"			"
	"	101			"	"	"	"	"	"			"	"		"	"	"	R3 S3		"		"			"
	"	102 103			"	"	"	"	"	"			"	"		"	"	"	S3 S4		"		"			"
	"	104			"	"	"	"	"	"			"	"		"	"	"	R4		"		"			"
																				Subgr $T_A = 2$ Min						
Ci	3012	105			<u>4</u> /					GND								GND	R1	101111	12					pF
	"	106			_	<u>4</u> /				"								"	S1		"					"
	"	107 108					<u>4</u> /	<u>4</u> /		"								"	E S2		"					"
	"	109							<u>4</u> /	"								44	R2		44					"
	"	110							_	"			<u>4</u> /	.,				"	R3		"					"
	"	111 112								"				<u>4</u> /		<u>4</u> /		"	S3 S4		"					"
	"	113								"						=	<u>4</u> /	"	R4		"					"
																				Subgr			Subgr			
																				T _A = 2	25°C Max	$T_A = T_A$	125°C	T _A = -	-55°C Max	1
Truth	3014	114	L	Н	L	Н	5.0V	L	Н	GND	L	Н	L	Н		L	Н	5.0V	All	Min	IVIAX	IVIIN	Max	Min	iviax	
table	"	115	Ĺ	Н	L	L	"	L	L	"	L	Н	L	L		L	L	"	outputs							
test	"	116	Н	L	H	L	"	Н	L	"	Н	L	H	L		Н	L	"	"	}		٥., ٦	/ and 0/			
	"	117 118	H L	L H	L	L H	"	L L	L H	"	H L	L H	L H	L H		L	H	"	"			See <u>5</u>	/ and <u>6</u> /			
	"	119	Н	L	Н	L	"	H	Н	"	Н	L	Н	L		H	Н	"	"	J						

TABLE III. Group A inspection for device type 53 – Continued.

Symbol		Cases							Ter	minal co	nditions	<u>1</u> /							Measured			Test	limits			Unit
	STD- 883	E,F,N, Z	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	terminal	Subgr T _A =			oup 10 125°C		oup 11 -55°C	
	test method	Test no.	Q4	Q1	R1	S1	Е	S2	R2	Vss	Q2	Q3	R3	S3	NC	S4	R4	V_{DD}		Min	Max	Min	Max	Min	Max	Ì
t _{PHL} R	3003 Fig.	120 121		OUT	IN		5.0V "		IN	GND "	OUT							5.0V "	R1 to Q1 R2 to Q2	10 "	320	14	370	10	270	ns "
	15 "	122 123	OUT				"			"		OUT	IN				IN	"	R3 to Q3 R4 to Q4	"	"	"	"	u	"	"
t _{PLH}	"	124 125 126		OUT		IN	"	IN		"	OUT	OUT		IN				"	S1 to Q1 S2 to Q2 S3 to Q3	10 "	200	10	245	9	185	"
	"	127	OUT				"			44						IN		"	S4 to Q4	"	"	"	"	"	"	"
t _{PZH}	Fig. 16	128		OUT	GND	5.0V	IN	GND	GND	"			GND	GND		GND	GND	"	E to Q1		230		340		230	"
t _{PHZ}	"	129 130 131	OUT		ee ee	GND "	"	5.0V GND "	"	ee ee	OUT	OUT	66 66	GND 5.0V GND		" 5.0V	"	"	E to Q2 E to Q3 E to Q4		"		"		"	"
t _{PZI}	"	132		OUT	5.0V	"	"	££	"	u			"	"		GND	££	££	E to Q1		180		240		180	££
t _{PLZ}	"	133 134 135	OUT		GND "	"	"	"	5.0V GND GND	"	OUT	OUT	5.0V GND	"		"	" 5.0V	"	E to Q2 E to Q3 E to Q4		"		"		"	"
t _{THL}	3004 Fig. 15	136 137 138 139	OUT	OUT		IN	5.0V "	IN		"	OUT	OUT		IN		IN		"	Q1 Q2 Q3 Q4	10	200	14	245	10	185	"
t _{TLH}	"	140 141 142 143	OUT	OUT		IN	"	IN		"	OUT	OUT		IN		IN		"	Q1 Q2 Q3 Q4	10 "	300	18	360	10 "	250	"

- $\underline{1}$ / Pins not designated may be "high" level logic, "low" level logic, or open. Exceptions are as follows: $V_{IC(pos)}$ tests, the V_{SS} terminal shall be open; $V_{IC(neg)}$ tests, the V_{DD} terminal shall be open; V_{IS} tests, the output terminals shall be open.
- 2/ Test numbers 19 thru 24 shall be run in sequence.
- 3/ The device manufacturer may, at his options, measure I_{IL} and I_{IH} at 25°C for each individual input or measure all inputs together.
- <u>4</u>/ See 4.4.1c.
- 5/ Test numbers 114 thru 119 shall be run in sequence and the functional tests shall be performed with V_{IH} and $V_{DD} \le 5.0$ V and ≥ 18.0 V.
- $\underline{6}$ / L = V_{SS} + 0.5 V maximum and H = V_{DD} 0.5 V minimum.

- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
- 4.4.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.7 herein). RHA levels for device classes B and S shall be as specified in MIL-PRF-38535 and 4.5.4 herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit V_{SS} terminal. Currents given are conventional current and positive when flowing into the referenced terminal.
- 4.5.2 <u>Burn-in and life test cool down procedures</u>. When the burn-in and life tests are completed and prior to removal of bias voltages, the devices under test (DUT) shall be cooled to a temperature of 25° C $\pm 3^{\circ}$ C; then, electrical parameter endpoint measurements shall be performed.

Parameter 1/		Device	types	
	01, 02	03	51, 52	53
I _{SS}	±75 nA	±250 nA	±75 nA	±250 nA
V_{OL1}	±0.04 V	±0.04 V		
V _{OH1}	±0.08 V	±0.08 V		
I _{OL1}			±15%	±15%
I _{OH1}			±15%	±15%

TABLE IV. Delta limits at 25°C.

- 4.5.3 Quiescent supply current (I_{SS} test). When performing quiescent supply current measurements (I_{SS}), the meter shall be placed so that all currents flow through the meter.
- 4.5.4 <u>Radiation hardness assurance (RHA) testing</u>. The RHA testing shall be performed in accordance with test procedures and sampling specified in MIL-PRF-38535 and herein.
 - a. Before irradiation, selected samples shall be assembled in qualified packages and pass the governing electrical parameters (group A subgroup 1 at 25°C) and also be subjected to the threshold-voltage test in table VII in order to calculate the delta threshold (ΔV_T) after irradiation.
 - b. The devices shall be subjected to a total radiation dose as specified in MIL-PRF-38535 for the radiation hardness assurance level being tested, and meet the end-point electrical parameters as defined in table V at 25°C, after exposure. The start and completion of the end-point electrical parameter measurements shall not exceed 2 hours following irradiation.
 - c. Threshold-voltage test circuit conditions shall be as specified in table VII and on figure 17. In situ and remote testing, the tests shall be performed with the devices biased in accordance with table VI and the bias may be interrupted for up to 1 minute to remove devices to the remote bias fixture.
 - d. After irradiation, the devices shall pass the truth table test as specified in subgroup 7 in table III or if subgroup 7 is not required, then an equivalent truth table test shall be performed.

^{1/} Each of the above parameters shall be recorded before and after the required burn-in and life tests to determine delta (Δ).

TABLE V. Radiation hardened end-point electrical parameters at 25°C.

		V	/ _{DD}
Parameter	All device types	Devic	e types
		01, 02, 03	51, 52, 53
V_{TN}	0.3 V min	10 V	10 V
V_{TP}	2.8 V max	10 V	10 V
ΔV_T	1.4 V max	10 V	10 V
I_{SS}	100 x max limit	15 V	18 V
t_{PLH}	1.35 x max limit	5 V	5 V
t _{PHL}	1.35 x max limit	5 V	5 V

TABLE VI. Bias during exposure to radiation.

Device type	Pin connect	tions <u>1</u> /	
	V_{DD} = 10 V dc (through a 30 k Ω to	$V_{SS} = GND$	$V_{DD} = 10 \text{ V dc}$
	60 kΩ resistor)		
01, 51	3, 4, 5, 6, 8, 9, 10, 11	7	14
02, 52	3, 4, 5, 6, 7, 9, 10, 11, 12, 13	8	16
03, 53	3, 4, 5, 6, 7, 11, 12, 14, 15	8	16

^{1/} Pins not designated are open, or tied to 10 V dc through a 30 k Ω to 60 k Ω resistor.

5. PACKAGING

5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of material is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

FIGURE 17. Threshold-voltage test circuit.

TABLE VII. Threshold-voltage test circuit conditions.

Device	GND	10 V	V_{TN} m	easured at	GND	-10 V	V _{TP} me	asured at
			-20 μA supply	-10 μA supply			20 μA supply	10 μA supply
01, 51	3	14		4-11	3	4-11		14
02, 52	13	3-7, 9-12,		8	13	3-12		16
		16						
03, 53	5	16		3, 4, 6-8, 11, 12,	5	3, 4, 6-8, 11, 12,		16
				14, 15		14, 15		

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - Requirements for product assurance and radiation hardness assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements. (see 5.1)
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractors parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, P.O. Box 3990, Columbus, Ohio 43218-3990.
- 6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

C _I	Input terminal-to-GND capacitance.
GND	Ground zero voltage potential.
lss	Quiescent supply current.
T _A	Free air temperature.
V _{DD}	Positive supply voltage.
V _{SS}	Negative supply voltage.

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class S for National Aeronautics and Space Administration or class B for Department of Defense (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Data reporting</u>. When specified in the purchase order or contract, a copy of the following data, as applicable, will be supplied.
 - a. Attributes data for all screening tests (see 4.2) and variables data for all static burn-in, dynamic burn-in, and steady-state life tests (see 3.6).
 - b. A copy of each radiograph.
 - c. The technology conformance inspection (TCI) data (see 4.4).
 - d. Parameter distribution data on parameters evaluated during burn-in (see 3.6).
 - e. Final electrical parameters data (see 4.2d).
 - f. RHA delta limits.

6.8 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges, post irradiation performance or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	4013A
02	4027A
03	4043A
51	4013B
52	4027B
53	4043B

6.9 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

Custodians:

Army - CR

Navy - EC

Air Force - 11

DLA - CC

Preparing activity: DLA - CC

(Project 5962-2063)

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using ASSIST Online database at www.dodssp.daps.mil.