	REVISIONS									
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED							
D	Convert to military drawing format. Add vendor CAGE number 50088 to drawing. Changed code identification number to 67268.	87-11-12	R. P. Evans							
E	Add vendor CAGE code 3V146. Update boilerplate to MIL-PRF-38535 requirements. Add QD device type criteria LTG	03-08-26	Thomas M. Hess							
F	Correct marking requirements in 3.5. Update boilerplate in accordance with MIL-PRF-38535 requirements. Editorial change throughout PHN	05-02-17	Thomas M. Hess							
G	Correct terminal names for terminal number 17 and 18 in case outline Z PHN	06-08-16	Thomas M. Hess							

THE ORIGINAL FIRST PAGE OF THIS DRAWING HAS BEEN REPLACED.

CURRENT CAGE CODE 67268

REV																				
SHEET																				
REV																				
SHEET																				
REV STATUS				REV G E F			F	Е	Е	Е	F	G	F	F	F	F				
OF SHEETS	OF SHEETS SHEET 1 2 3			4	5	6	7	8	9	10	11	12	13							
PMIC N/A				PRE	PARE) BY														
				James E. Jamison DEFENSE SUPPLY CENTER COLUM COLUMBUS, OHIO 43218-3990				UMB 990	US											
STANDARD		CHECKED BY							http	://ww	w.ds	cc.dla	a.mil							
MICRO DRA		cuit G		D. A.	Di Ce	nzo														
	APPROVED BY																			
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS			Robert P. Evans				MICROCIRCUIT, DIGITAL, BIPOLAR, MICROPROGRAM CONTROLLER,													
AND AGENCIES OF THE		DRAWING APPROVAL DATE				MO	NOL	ITHI	C SI	LICC	N									
	79-03-14																			
AMS	SC N/A		REVISION LEVEL		SI	ZE	CA	GE CO	DE			78	017							
										ŀ	1		67268	•			70			
				G				SHEI	ΞT		1	OF	13							

1. SCOPE	
----------	--

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.	
---	--

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Switching and timing waveforms</u>. The switching and timing waveforms shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

STANDARD MICROCIRCUIT DRAWING	SIZE A		78017
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		F	3

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		78017
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		F	4

		TABLE I. <u>Electr</u>	ical per	formance charac	<u>xteristics</u> .				
Test	Symbol	Cor	nditions	<u>1</u> /	Device	Group A	Li	imits	
	-				type	subgroups	Min	Max	Unit
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, \text{ I}_{OH} = -1.6 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$		All	1, 2, 3	2.4		V	
Low level output voltage	V _{OL}	$V_{CC} = 4.5 V$ $V_{IN} = V_{IH} \text{ or }$ V_{IL}	Y _{0 -1} PL, V FUL	$\frac{1}{1, I_{OL}} = 12 \text{ mA}$ $\sqrt{ECT}, \overline{MAP},$ $\overline{L}, I_{OL} = 8 \text{ mA}$	All	1, 2, 3		0.5	V
Input clamp voltage	V _{IC}	$V_{CC} = 4.5 \text{ V}, \text{ I}_{IN} =$	= -18 m	A	All	1, 2, 3		-1.5	V
Low level input current	IIL	$V_{CC} = 5.5 V$	D _{0 - 1}	11	All	1, 2, 3		-0.87	mA
		$V_{IN} = 0.5 V$	CI, C	CEN	All			-0.54	
			I _{0 – 3} ,	OE, RLD	All			-0.72	
			ĊC		All			-1.31	
			CP		All			-2.14	
High level input current	I _{IH}	$V_{CC} = 5.5 V$	D _{0 - 4}	11	All	1, 2, 3		80	μA
		$V_{IN} = 2.7 V$	CI, C	CEN	All			30	
			I _{0 – 3} ,	OE, RLD	All			40	
			\overline{CC}		All			50	
			СР		All			100	
Input current at maximum input voltage	I	V _{CC} = 5.5 V, V _{IN} = 5.5 V			All	1, 2, 3		1.0	mA
Output short circuit current <u>2</u> /	I _{OS}	V _{CC} = 5.5 V			All	1, 2, 3	-30	-85	mA
Off-state output current, low level voltage applied	I _{OZL}	$\frac{V_{CC}}{OE} = 5.5 \text{ V}, V_{OUT} = 0.5 \text{ V}$ $\overline{OE} = 2.4 \text{ V}$			All	1, 2, 3		-50	μΑ
Off-state output current, high level voltage applied	I _{OZH}	$V_{CC} = 5.5 \text{ V}, \overline{\text{OE}} = V_{OUT} = 2.4 \text{ V}$		All	1, 2, 3		50	μΑ	
Supply current	I _{CC}	$V_{CC} = 5.5 V$	$T_{\rm C} =$	+25°C	All	1, 2, 3		340	mA
			$T_{c} =$	-55°C	All			340	-
			т. –					280	
Functional test	1	See / 3 1c	<u> </u>	+125 0		78		200	<u> </u>
Direct input to register/	+	$C_{\rm r} = nE_{\rm r}^{2}$				0 10 11		28	ne
Direct input to register/	^L DR	$C_L = p_{\Gamma} \underline{s}_{i}$			02	9, 10, 11		16	115
Direct input to	<u>+ </u>	-			02	0 40 44		01	<u> </u>
Direct input to	t _{DPC}				01	9, 10, 11		62	ns
counter setup time					02			30	
Instruction setup time	t	1			01	9, 10, 11		110	ns
	1				02	-, -,		38	
Condition code setup	1 201	1			01	9, 10, 11		86	ns
time	tCCI				02	0, 10, 11		35	
See footnotes at end of tal	ble.								
ST	ANDARD)		SIZE A	1			7801	7
		AWING							
DEI LINGE GUFFI				1		JN LEVEL	SI	HEEL	

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

Е

t_{CCENI} t_{CI} t_{RLD} t_{DY} t_{IY} t_{CC2} $\overline{CCEN2}$ t_{CP}	C _L = 50 pF	<u>3/</u> I = 8, 9, 15 <u>4</u> /	type 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01	subgroups 9, 10, 11 9, 10, 11	Min	Max 86 35 58 18 42 20 25 75 40 48 36 50	ns ns ns ns ns
$t \overline{CCEN1}$ t_{CI} t_{RLD} t_{DY} t_{IY} $t \overline{CC2}$ $\overline{CCEN2}$ t_{CP}	C _L = 50 pF	<u>3/</u> I = 8, 9, 15 <u>4</u> /	01 02 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11		86 35 58 18 42 20 25 75 40 48 36 50	ns ns ns ns ns
$\frac{t_{CENI}}{t_{CI}}$ $\frac{t_{RLD}}{t_{DY}}$ $\frac{t_{IY}}{t_{CC2}}$ $\overline{CCEN2}$ $\frac{t_{CP}}{t_{CP}}$	-	_ I = 8, 9, 15 <u>4</u> /	02 01 02 01 02 All 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		35 58 18 42 20 25 75 40 48 36 50	ns ns ns ns
$\frac{t_{CI}}{t_{RLD}}$ $\frac{t_{DY}}{t_{IY}}$ $\frac{t_{CC2}}{\overline{CCEN2}}$ $\frac{t_{CP}}{\overline{C}}$	-	I = 8, 9, 15 <u>4</u> /	01 02 01 02 All 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		58 18 42 20 25 75 40 48 36 50	ns ns ns ns
$\frac{t_{RLD}}{t_{DY}}$ $\frac{t_{IY}}{t_{CC2}}$ $\overline{CCEN2}$ $\frac{t_{CP}}{t_{CP}}$	-	I = 8, 9, 15 <u>4</u> /	02 01 02 All 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		18 42 20 25 75 40 48 36 50	ns ns ns
t_{DY} t_{DY} t_{IY} t_{CC2} $\overline{CCEN2}$ t_{CP}	-	I = 8, 9, 15 <u>4</u> /	01 02 All 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		42 20 25 75 40 48 36 50	ns ns ns ns
t _{DY} t _{IY} t <u>CC2</u> <u>CCEN2</u> t _{CP}	-	I = 8, 9, 15 <u>4</u> /	02 All 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		20 25 75 40 48 36 50	ns ns ns
t_{DY} t_{IY} $t \overline{CC2}$ $\overline{CCEN2}$ t_{CP}	-	I = 8, 9, 15 <u>4</u> /	All 01 02 01 02 01 02 01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11		25 75 40 48 36 50	ns ns ns
t _{IY} t CC2 CCEN2 t _{CP}	-	I = 8, 9, 15 <u>4</u> /	01 02 01 02 01 02 01 02 01	9, 10, 11 9, 10, 11 9, 10, 11		75 40 48 36 50	ns
t CC2	-	I = 8, 9, 15 <u>4</u> /	02 01 02 01 02 01 02 01	9, 10, 11		40 48 36 50	ns
	-	I = 8, 9, 15 <u>4</u> /	01 02 01 02 01 01	9, 10, 11		48 36 50	ns
	-	I = 8, 9, 15 <u>4</u> /	02 01 02 01	9, 10, 11		36 50	
CCEN2		I = 8, 9, 15 <u>4</u> /	01 02 01	9, 10, 11		50	+
t _{CP}	_	I = 8, 9, 15 <u>4</u> /	02 01	0 10 11		+ ,	ns
t _{CP}		I = 8, 9, 15 <u>4</u> /	01	0 10 11	· · · · · · · · · · · · · · · · · · ·	36	I
~				9, 10, 11		130	ns
						106	l
			02	1		46	I
	1	All other I	01	1		61	I
			02			46	l
t _{OE}	1	Enable	01	9, 10, 11		40	ns
-			02			25	I
		Disable	01			30	I
			02			30	i
t _{CLKL}	C _L = 50 pF	<u>6</u> /	01	9, 10, 11	58		ns
			02		25		I
t _{CLKH}	C _L = 50 pF	<u>6</u> /	01	9, 10, 11	42		ns
		-	02	· ·	25		I
t _{IPVM}	C _L = 50 pF	3/	01	9, 10, 11	<u> </u>	58	ns
		-	02			35	l
t _{CPF}	1		01	9, 10, 11	<u> </u>	67	ns
			02	· · ·		35	I
t _{HRLD}	1		01	9, 10, 11		6	ns
•			02	· · ·		0	I
t _{HDR}	1		01	9, 10, 11		6	ns
			02	· · ·		0	I
t _{HDPC}	1		01	9, 10, 11		4	ns
			02			0	<u> </u>
	t _{IPVM} t _{CPF} t _{HRLD} t _{HDR} t _{HDPC}	t _{IPVM} C _L = 50 pF t _{CPF} t _{HRLD} t _{HDPC}	t _{IPVM} C _L = 50 pF <u>3</u> / t _{CPF}	t _{IPVM} C _L = 50 pF <u>3</u> / 01 t _{CPF} 01 02 t _{HRLD} 01 02 t _{HDPC} 01 02 t _{HDPC} 01 02	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t_{IPVM} $C_L = 50 \text{ pF}$ $3/$ 01 $9, 10, 11$ 02 t_{CPF} 01 $9, 10, 11$ 02 01 $9, 10, 11$ 02 t_{HRLD} 01 $9, 10, 11$ 02 01 $9, 10, 11$ 02 t_{HDR} 01 $9, 10, 11$ 02 01 $9, 10, 11$ 02 t_{HDPC} 01 $9, 10, 11$ 02 01 $9, 10, 11$ 02 t_{HDPC} 01 $9, 10, 11$ 02 01 $01, 11$ 02 ARD SIZE A A A A A A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

Α		70017
	REVISION LEVEL E	SHEET 6

TABLE I.	Electrical performance characteristics - Continued.	
----------	---	--

Test	Symbol	Conditions	Device type	Group A subgroups	Lirr	nits	Unit
					Min	Max	
Instruction hold time 7/	t _{HI}	C _L = 50 pF <u>3</u> /	01	9, 10, 11		0	ns
			02			0	
Condition code hold time	tHCCI		01	9, 10, 11		0	ns
<u>7/</u>	11001		02			0	
Condition code enable			01	9, 10, 11		0	ns
hold time <u>7/</u>	HOOLIN		02			0	
Carry-in hold time 7/	tHCI		01	9, 10, 11		5	ns
			02			0	

 $\frac{1}{2}$ Unless otherwise specified, T_c = -55°C to +125°C and V_{cc} = 4.5 V dc to 5.5 V dc. $\frac{2}{2}$ Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. $\frac{3}{2}$ See figure 3. $\frac{4}{2}$ For device type 01 only, these instructions are conditional on the counter. Use the shorter specified delay time if the

previous instruction could produce no change in the counter or could only decrement the counter. Use the longer delays from CP to outputs if the instruction prior to the clock was 4 or 12 or RLD was low.

5/ Enable/disable: Disable times measured to 0.5 V change on the output voltage level with C_L = 5.0 pF

 $\underline{6}$ Clock periods for other instructions are determined by external conditions. $\underline{7}$ Guaranteed by design, if not tested.

STANDARD MICROCIRCUIT DRAWING	SIZE A		78017
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		E	7

Case Z

	Millimeters		Inches		
Symbol	Min	Max	Min	Max	Notes
А	1.78	2.92	.070	.115	
b	0.43	0.58	.017	.023	5
С	0.15	0.30	.006	.012	5
D	26.16	27.69	1.030	1.090	
E	15.24	16.76	.600	.660	
E ₁		17.53		.690	3
е	1.14	1.40	.045	.055	4, 6
L	6.35	9.40	.250	.370	
L ₁	33.02	34.80	1.280	1.370	
R	0.51	1.14	.020	.060	2
S	1.02		.005		7

NOTES:

- 1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one and shall be within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. Dimension R shall be measured at the point of exit of the lead from the body.
- 3. This dimension allows for off-center lid, meniscus and glass overrun.
- 4. The basic pin spacing is .050 (1.27 mm) between centerlines. Each pin centerline shall be located within ±.005 (0.13 mm) of its exact logitudinal position relative to pins 1 and 42.
- All leads increase maximum limit by .003 (0.08 mm) measured at the center of the flat, when lead finish A is applied.
 Forty spaces.
- 7. Applies to all four corners (leads number 1, 21, 22, and 42).
- 8. Optional configuration. If this configuration is used, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.

FIGURE 1. Case outline.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		78017
		REVISION LEVEL F	SHEET 8

Device type	e All			Device type	All		
Case outline	Case Q Q			Case outline	Z		
Terminal number	Terminal name	Terminal number	Terminal name	Terminal number	Terminal name	Terminal number	Terminal name
1	Y ₄	21	D ₈	1	VECT	22	Y ₁₀
2	D ₄	22	Y ₈	2	PL	23	NC
3	Y_5	23	D ₉	3	MAP	24	D ₁₁
4	D ₅	24	Y ₉	4	l ₃	25	Y ₁₁
5	VECT	25	D ₁₀	5	l ₂	26	ŌĒ
6	PL	26	Y ₁₀	6	V _{cc}	27	GND
7	MAP	27	D ₁₁	7	I ₁	28	СР
8	l ₃	28	Y ₁₁	8	I ₀	29	CI
9	l ₂	29	ŌĒ	9		30	Y ₀
10	V _{cc}	30	GND	10		31	D ₀
11	I ₁	31	СР	11	RLD	32	NC
12	Ι _ο	32	CI	12	FULL	33	Y ₁
13	CCEN	33	Y ₀	13	D_6	34	D ₁
14		34	D ₀	14	Y ₆	35	Y ₂
15	RLD	35	Y ₁	15	D ₇	36	D ₂
16	FULL	36	D ₁	16	Y ₇	37	Y ₃
17	D ₆	37	Y ₂	17	D ₈	38	D ₃
18	Y ₆	38	D ₂	18	Y ₈	39	Y ₄
19	D ₇	39	Y ₃	19	D ₉	40	D ₄
20	Y ₇	40	D ₃	20	Y ₉	41	Y ₅
				21	D ₁₀	42	D ₅

FIGURE 2. Terminal connections.

STANDARD			
MICROCIRCUIT DRAWING			
DEFENSE SUPPLY CENTER COLUMBUS			
COLUMBUS, OHIO 43218-3990			

	SIZE A		78017
US		REVISION LEVEL G	SHEET 9

DEVICE TYPE 01

DEVICE TYPE 02

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with	
	MIL-STD-883, method 5005, table I)	
Interim electrical parameters	1	
(method 5004)		
Final electrical test parameters	1*, 2, 3, 7, 8, 9	
(method 5004)		
Group A test requirements	1, 2, 3, 8, 9, 10**, 11**	
(method 5005)		
Groups C and D end-point electrical	1, 2, 3	
parameters (method 5005)		

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

- 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 shall include verification of the functionality of the device.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		78017
		REVISION LEVEL F	SHEET 12

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 Pin names.

Abbreviation	Name	Abbreviation	Name
D ₀ thru D ₁₁	Direct input	V _{cc}	+5 Volt
I_0 thru I_3	Instruction	GND	Ground
	Condition code	Y_0 thru Y_{11}	Microprogram address
CCEN	Condition code enable	FULL	Full
CI	Carry-in	PL	Pipeline address enable
RLD	Register load	MAP	Map address enable
OE	Output enable	VECT	Vector address enable
CP	Clock pulse		

6.7 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

78017

13

SHEET

STANDARD
MICROCIRCUIT DRAWINGSIZE
ADEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990REVISION LEVEL
F

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 06-08-16

Approved sources of supply for SMD 78017 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
7801701ZX	<u>3</u> /	AM2910FMB
		AM2910DMB
7801701QX	<u>3</u> /	TS2910MCB/C
		TS2910MJB/C
7801701QA	3V146	2910/BQA
7801701ZA	3V146	2910/BZA
7801701ZC	3V146	2910/BZC
7801702QA	3V146	2910A/BQA
7801702ZA	3V146	2910A/BZA
7801702ZC	3V146	2910A/BZC

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- $\underline{3}$ / Not available from an approved source of supply.

Vendor CAGE <u>number</u>

3V146

Vendor name and address

Rochester Electronics Inc. 16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.