
								ł	REVISI	ONS										
LTR					[DESCR	RIPTIO	N					DATE (YR-MO-DA)			APPROVED				
С		onvert drawing to new boilerplate. Corrected vendor simil endor CAGE 34335. Editorial changes throughout.								r part n	umber	for	90-02-06				W. Heckman		I	
D	-			dance w							00-07-07		Monica L. Poelking		ing					
E					n D and updated boilerplate and editoria vendor CAGE CODE 3V146. – LTG						jes			00-0)9-27		Monica L. Poelking		ling	
F	Corre MIL-I	ect mar PRF-38	king requirements in 3.5. Update boilerplate in act S535 requirements. Editorial changes throughout.						accorda t PH	ance wi IN.	th		05-0)2-24		1	Thomas M. Hess		SS	
G	1.2.2	ect cas Corre Y to SF	ect the	ne Z ter figure 2 CFS.	minal c 2 case :	ount ar Z termi	nd deso nal des	criptive scription	design n for loc	ator in cation (paragra C11 fro	aph m		07-0	08-16		1	Thomas	s M. He	SS
REV	1		ŀ	I			i	1	1		1	1	I	1	1	1	1	1	ł	1
REV																				
SHEET	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F
SHEET REV	E 15	E 16	E 17	F 18	F 19	F 20	F 21	F 22	F 23	F 24	F 25	F 26	F 27	F 28	F 29	F 30	F 31	F 32	F 33	F 34
SHEET	E 15	E 16	E 17	F 18 REV	19	F 20	F 21 G	F 22 G	F 23 F	F 24 F	F 25 E	F 26 E	F 27 E	F 28 E	F 29 E	F 30 E	F 31 E	F 32 E	F 33 E	F 34 G
SHEET REV SHEET				18	19		21	22	23	24	25	26	27	28	29	30	31	32	33	34
SHEET REV SHEET REV STATUS				18 REV SHE	19	20	21 G	22 G	23 F	24 F	25 E	26 E	27 E	28 E	29 E	30 E	31 E	32 E	33 E	34 G
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	15	16		18 REV SHE	19 / ET PARED	20 D BY	21 G	22 G 2	23 F	24 F	25 E 5	26 E 6 EFEN	27 E 7 SE SI	28 E 8	29 E 9	30 E 10	31 E 11	32 E 12	33 E 13	34 G
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI	15 NDAF	16 RD		18 REV SHE PRE	19 / ET PARED	20 D BY Jeffery	21 G 1	22 G 2	23 F	24 F	25 E 5	26 E 6 EFEN	27 E 7 SE SI	28 E 8 UPPL	29 E 9 Y CE , OHI	30 E 10 NTEF O 432	31 E 11 R COL 218-3	32 E 12	33 E 13	34 G
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC	15 NDAF DCIR(16 RD CUIT		18 REV SHE PRE	19 / EET PARED	20 D BY Jeffery BY	21 G 1	22 G 2	23 F	24 F	25 E 5	26 E 6 EFEN	27 E 7 SE SI	28 E 8 UPPL	29 E 9 Y CE , OHI	30 E 10	31 E 11 R COL 218-3	32 E 12	33 E 13	34 G
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC	15 NDAF	16 RD CUIT		18 REV SHE PRE CHE	19 / EET PARED	20 D BY Jeffery BY Tim H	21 G 1 Tunsta	22 G 2	23 F	24 F	25 E 5	26 E 6 EFEN	27 E 7 SE SI	28 E 8 UPPL	29 E 9 Y CE , OHI	30 E 10 NTEF O 432	31 E 11 R COL 218-3	32 E 12	33 E 13	34 G
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR US	15 NDAF DCIRC AWIN	16 RD CUIT G VAILAI	17	18 REV SHE PRE CHE	19 // PAREE CKED	20 D BY Jeffery BY Tim F D BY	21 G 1 Tunsta	22 G 2	23 F	24 F 4	25 E 5	26 E 6 EFEN C(27 E 7 SE SI DLUM <u>http</u>	28 E 8 UPPL IBUS	29 E 9 .Y CE , OHI ww.ds	30 E 10 NTEF O 432	31 E 11 COL 218-3 a.mil	32 E 12 UMB 990	33 E 13	34 G 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR US	15 NDAF DCIRC AWIN NG IS A SE BY A RTMEN	16 RD CUIT G VAILAI ALL ITS	17 BLE	18 REV SHE PRE CHE	19 / PAREE CKED PROVE Wil	20 D BY Jeffery BY Tim F D BY	21 G 1 Tunsta I. Noh	22 G 2 II	23 F	24 F 4 MIC MIC	25 E 5 DI	26 E 6 EFEN CO	27 E 7 SE SI DLUM http UIT, I CESS	28 E 8 UPPL BUS 5://ww	29 E 9 .Y CE , OHIO ww.ds	30 E 10 SNTEF O 432 Scc.dl	31 E 11 COL 218-3 a.mil	32 E 12 JUMB 990	33 E 13 SUS	34 G 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN FOR US DEPAN	15 NDAF DCIRC AWIN NG IS A SE BY RTMEN NCIES (16 RD CUIT G VAILAI ALL ITS DF THE	BLE	18 REV SHE PRE CHE	19 / PAREE CKED PROVE Wil	20 D BY Jeffery BY Tim H D BY Iliam K.	21 G 1 Tunsta	22 G 2 II	23 F	24 F 4 MIC MIC	25 E 5 DI	26 E 6 EFEN CO	27 E 7 SE SI DLUM <u>http</u>	28 E 8 UPPL BUS 5://ww	29 E 9 .Y CE , OHIO ww.ds	30 E 10 SNTEF O 432 Scc.dl	31 E 11 COL 218-3 a.mil	32 E 12 UMB 990	33 E 13 SUS	34 G 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR U DEPAR AND AGEN DEPARTMEN	15 NDAF DCIRC AWIN NG IS A SE BY RTMEN NCIES (16 RD CUIT G VAILAI ITS DF THE DEFEN	BLE	18 REV SHE PRE CHE APP	19 / PAREE CKED PROVE Wil	20 D BY Jeffery BY Tim H D BY Iliam K. APPR(85-1	21 G Tunsta I. Noh . Heckn DVAL D	22 G 2 II	23 F	24 F 4 MIC MIC MO	25 E 5 DI	26 E E F E F E R O C C C C C C C C C C C C C C C C C C	27 E 7 SE SI DLUM http UIT, [CESS C SILI	28 E 8 IBUS DIGIT OR, ICON	29 E 9 .Y CE , OHIO ww.ds	30 E 10 SNTEF O 432 Scc.dl	31 E 11 218-33 a.mil	32 E 12 JUMB 990	33 E 13 SUS	34 G 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR U DEPAR AND AGEN DEPARTMEN	15 NDAF DCIRC AWIN NG IS A SE BY SE BY NT OF I	16 RD CUIT G VAILAI ITS DF THE DEFEN	BLE	18 REV SHE PRE CHE APP	19 / EET PAREE CKED PROVE Wil	20 D BY Jeffery BY Tim F D BY lliam K. APPR(85-1 LEVEL	21 G Tunsta I. Noh . Heckn DVAL D	22 G 2 II	23 F	24 F 4 MIC MIC MO	25 E 5 DI	26 E E F E F E R O C C C C C C C C C C C C C C C C C C	27 E 7 SE SI DLUM http UIT, I CESS C SILI	28 E 8 IBUS DIGIT OR, ICON	29 E 9 .Y CE , OHIO ww.ds	30 E 10 SNTEF O 432 Scc.dl	31 E 11 218-33 a.mil	32 E 12 UMB 990	33 E 13 SUS	34 G 14

1.	SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL OTD 100F		Interface Standard Flastrania Component Coop

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Functional block diagram</u>. The functional block diagram shall be as specified on figure 3.

3.2.4 <u>Timing waveforms</u>. The timing waveforms shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		F	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 4

		TABLE I. Electrical performance	e characterist	tics.			
Test	Symbol	$\begin{array}{l} \mbox{Conditions} \underline{1}/ \\ \mbox{-}55^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{C}} \leq \mbox{+}125^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} = 5.0 \mbox{ V} \pm 5\% \end{array}$	Device type	Group A subgroups	Limits		Unit
		unless otherwise specified			Min	Max	
Low-level input voltage	V _{IL}		01, 02	1,2,3	-0.5	+0.8	V
High-level input voltage (All except X1) and (RES)	V _{IH1}		01, 02	1,2,3	2.0	V _{CC} +0.5	V
High-level input voltage at (RES)	V _{IH2}		01, 02	1,2,3	3.0	V _{CC} +0.5	V
Low-level output voltage	V _{OL}	$I_{OL} = 2.5 \text{ mA for } \overline{S0} - \overline{S2}$ $I_{OL} = 2.0 \text{ mA for all}$ other outputs	01, 02	1,2,3		0.45	V
High-level output voltage	V _{OH}	I _{OH} = -400 μA	01, 02	1,2,3	2.4		V
Power supply current	I _{CC}	V _{CC} = 5.25 V	01, 02	1,2,3		600	mA
Input leakage current	IIL	$0 V < V_{IN} < V_{CC}$	01, 02	1,2,3		±10	μA
Output leakage current	I _{OL}	0.45V < V _{OUT} < V _{CC}	01, 02	1,2,3		±10	μA
Low-level clock output voltage	V _{CLO}	I _{OUT} = 4.0 mA	01, 02	1,2,3		0.6	V
High-level clock output voltage	V _{CHO}	I _{OUT} = -200 μA	01, 02	1,2,3	4.0		V
Low-level clock input voltage	V _{CL1}		01, 02	1,2,3	-0.5	+0.6	V
High-level clock input voltage	V _{CH1}		01, 02	1,2,3	3.9	V _{cc}	V
						+1.0	
Functional tests		See 4.3.1d	01, 02	7,8			
Input capacitance	C _{IN}	See 4.3.1c	01, 02	4		10	pF
I/O capacitance	C _{IO}	See 4.3.1c	01, 02	4		20	pF

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	5

	TABLE	I. Electrical performance chai	racteristics -	Continued.			
Test	Symbol	Conditions <u>1</u> / -55°C ≤ T _C ≤+125°C	Device type	Group A subgroups	Limits		Unit
1651	Symbol	$V_{CC} = 5.0 \text{ V} \pm 5\%$ unless otherwise specified	туре	subgroups	Min	Max	
Data in setup (A/D)	t _{DVCL}	$C_L = 20$ to 200 pF, all	01,02	9,10,11	20		ns
Data in hold (A/D)	t _{CLDX}	outputs	01,02	9,10,11	10		ns
Asynchronous ready (ALREADY) active setup time	t _{ARYHCH}		01,02	9,10,11	20		ns
AREADY inactive setup time	t _{ARYLCL}		01,02	9,10,11	38		ns
AREADY hold time	t _{CHARYX}		01,02	9,10,11	15		ns
Synchronous ready (SREADY) transition setup time	t _{SRYCL}		01,02	9,10,11	35		ns
SREADY transition hold time	t _{CLSRY}		01,02	9,10,11	15		ns
Hold setup <u>2</u> /	t _{HVCL}		01,02	9,10,11	25		ns
INTR, NMI, TEST , TIMERIN setup <u>2</u> /	t _{INVCH}		01,02	9,10,11	25		ns
DRQ0, DRQ1, setup	t _{INVCL}		01,02	9,10,11	25		ns
Address valid delay	t _{CLAV}		01	9,10,11	5	59	ns
			02	9,10,11	5	63	ns
Address hold	t _{CLAX}		01	9,10,11	5		ns
			02	9,10,11	5		ns
Address float delay	t _{CLAZ}		01	9,10,11	t _{CLAX}	35	ns
			02	9,10,11	t _{CLAX}	44	ns
Address valid to clock high	t _{AVCH}		01,02	9,10,11	10		ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 6

	TABLE	I. Electrical performance charac	<u>teristics</u> - C	continued.			
Test	Symbol	Conditions <u>1</u> / -55°C ≤ T _C ≤+125°C	Device	Group A subgroups	Limits		Unit
TEST	Symbol	$V_{CC} = 5.0 V \pm 5\%$ unless otherwise specified	type	subgroups	Min	Max	
Command lines float	t _{CHCZ}	$C_L = 20$ to 200 pF, all	01	9,10,11		45	ns
delay		outputs	02	9,10,11		56	ns
Command lines valid	t _{CHCV}		01	9,10,11		55	ns
delay (after float)			02	9,10,11		76	ns
ALE width	t _{LHLL}		01,02	9,10,11	t _{CLCL} -35		ns
ALE active delay	+		01	9,10,11		35	ns
ALE active delay	t _{CHLH}		02	9,10,11		44	ns
ALE inactive delay	tauna		01	9,10,11		35	ns
	t _{CHLL}		02	9,10,11		44	ns
Address hold to ALE	t _{LLAX}		01	9,10,11	t _{CHCL} -25		ns
inactive			02	9,10,11	t _{CHCL} -30		ns
Data valid delay	t _{CLDV}		01	9,10,11	5	44	ns
			02	9,10,11	5	55	ns
Data hold time	t _{CLDOX}		01,02	9,10,11	5		ns
Data hold after WR	t _{WHDX}		01	9,10,11	t _{CLCL} -40		ns
			02	9,10,11	t _{CLCL} -50		ns
Control active delay 1	t _{CVCTV}		01	9,10,11	5	70	ns
			02	9,10,11	5	87	ns
Control active delay 2	t _{CHCTV}		01	9,10,11	5	73	ns
			02	9,10,11	5	76	ns
DEN inactive delay	t _{CVDEX}		01	9,10,11	10	70	ns
(non-write cycle)			02	9,10,11	10	87	ns

See footnotes at end of table.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 7

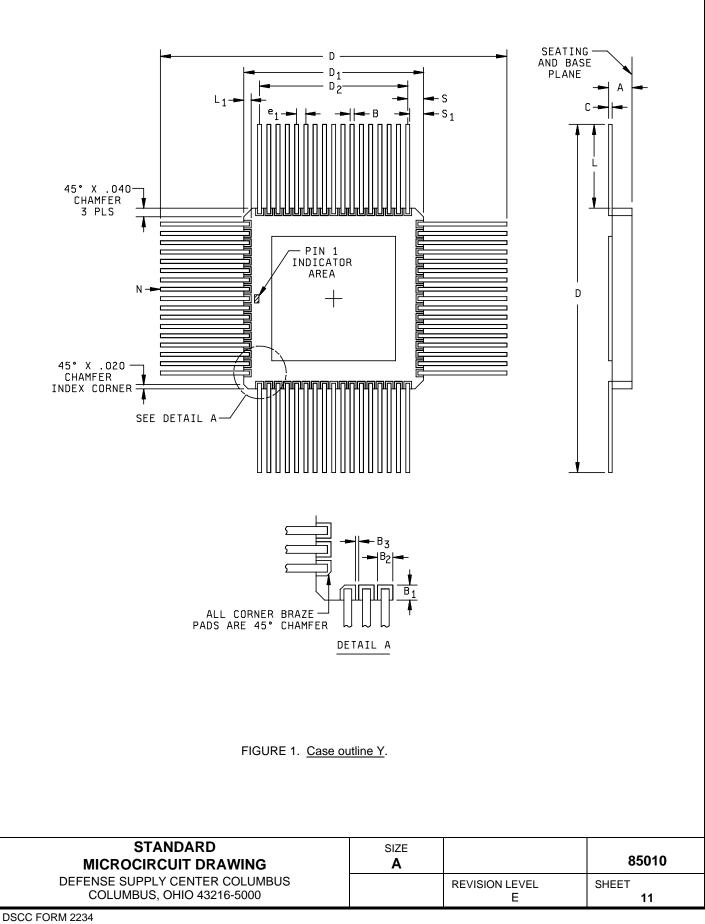
	TAI	BLE I. Electrical performance	characteristi	i <u>cs</u> - Continued.			
		Conditions <u>1</u> /	Device	Group A	Lin	nits	Unit
Test	Symbol	$\begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ V_{CC} = 5.0 \ V \pm 5\% \\ \text{unless otherwise specified} \end{array}$	type	subgroups	Min	Max	
Address float to RD active	t _{AZRL}	C _L = 20 to 200 pF, all outputs	01,02	9,10,11	0		ns
RD active delay	t _{CLRL}		01	9,10,11	10	70	ns
			02	9,10,11	10	87	ns
RD inactive delay	t _{CLRH}		01	9,10,11	10	55	ns
,			02	9,10,11	10	76	ns
\overline{RD} inactive to	t _{RHAV}		01	9,10,11	t _{CLCL} -40		ns
address active			02	9,10,11	t _{CLCL} -50		ns
HLDA valid delay	t _{CLHAV}		01,02	9,10,11	5	67	ns
RD width	t _{RLRH}		01,02	9,10,11	2t _{CLCL} -50		ns
WR width	t _{wLWH}		01,02	9,10,11	2t _{CLCL} -40		ns
Address valid to ALE	t _{AVAL}		01	9,10,11	t _{с∟сн} -25		ns
low			02	9,10,11	t _{с∟СН} -45		ns
Status active delay	t _{CHSV}		01	9,10,11	10	55	ns
			02	9,10,11	10	76	ns
Status inactive delay	t _{CLSH}		01	9,10,11	10	65	ns
			02	9,10,11	10	76	ns
Timer output delay	t_{CLTMV}	$C_L = 100 \text{ pF} \text{ maximum}$	01	9,10,11		60	ns
			02	9,10,11		75	ns
Control inactive delay	t _{CVCTX}	$C_L = 20$ to 200 pF, all	01	9,10,11		55	ns
		outputs	02	9,10,11		76	ns

See footnotes at end of table.

STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 8

TABLE I. Electrical performance characteristics - Continued.							
		Conditions <u>1</u> /	Device	Group A	Limits		Unit
Test	Symbol	$\label{eq:CC} \begin{array}{l} -55^\circ C \leq T_C \leq +125^\circ C \\ V_{CC} = 5.0 \ V \pm 5\% \\ \text{unless otherwise specified} \end{array}$	type	subgroups	Min	Max	
Reset delay	t _{CLRO}	$C_{L} = 20$ to 200 pF, all	01	9,10,11		60	ns
		outputs	02	9,10,11		75	ns
Queue status delay	t _{CHQSV}		01	9,10,11		35	ns
		-	02	9,10,11		44	ns
Chip-select active	t _{CLCSV}		01	9,10,11	5	66	ns
delay		-	02	9,10,11	5	80	ns
Chip-select hold from command inactive	t _{cxcsx}		01,02	9,10,11	35		ns
Chip-select inactive delay	t _{CHCSX}		01,02	9,10,11	5	47	ns
CLKIN period	t _{CKIN}		01	9,10,11	62.5	250	ns
			02	9,10,11	83	250	ns
CLKIN fall time	t _{CKHL}	3.5 V to 1.0 V <u>3</u> /	01,02	9,10,11		10	ns
CLKIN rise time	t _{CKLH}	1.0 V to 3.5 V <u>3/</u>	01,02	9,10,11		10	ns
CLKIN low time	t _{CLCK}	1.5 V <u>3</u> /	01	9,10,11	25		ns
			02	9,10,11	33		ns
CLKIN high time	t _{CHCK}	1.5 V <u>3</u> /	01	9,10,11	25		ns
			02	9,10,11	33		ns
CLKIN to CLKOUT skew	t _{CICO}	$C_L = 20$ to 200 pF, all	01	9,10,11		50	ns
		outputs	02	9,10,11		62.5	ns
CLKOUT period	t _{CLCL}		01	9,10,11	125	500	ns
			02	9,10,11	167	500	ns
CLKOUT low time	t _{CLCH}	1.5 V <u>3</u> /	01,02	9,10,11	1/2 t _{CLCL}		ns
					-7.5		

See footnotes at end of table I.


STANDARD **MICROCIRCUIT DRAWING** DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		85010
	REVISION LEVEL E	SHEET 9

	TABLE I.	Electrical performance characte	<u>ristics</u> - Co	ontinued.			
		Conditions <u>1</u> /	Device	Group A	Lim	nits	Unit
Test	Symbol	$\begin{array}{l} \text{-55°C} \leq \text{T}_{\text{C}} \leq \text{+125°C} \\ \text{V}_{\text{CC}} = 5.0 \text{ V} \pm 5\% \\ \text{unless otherwise specified} \end{array}$	type	subgroups	Min	Max	
CLKOUT high time	t _{CHCL}	1.5 V <u>3</u> /	01,02	9,10,11	1/2 t _{CLCL}		ns
					-7.5		
CLKOUT rise time	t _{CH1CH2}	1.0 V to 3.5 V <u>3</u> /	01,02	9,10,11		15	ns
CLKOUT fall time	t _{CL2CL1}	3.5 V to 1.0 V <u>3/</u>	01,02	9,10,11		15	ns

<u>1</u>/ All AC parameters tested as per circuit on figure 4.
<u>2</u>/ Setup requirements only to guarantee recognition at next CLK.
<u>3</u>/ Voltage indicated refer to voltage measurements on waveforms in figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		E	10

Dimensions					
Symbol	Inc	hes	Millim	neters	
	Min	Max	Min	Max	
A	.080	.106	2.03	2.69	
В	.016	.020	0.41	0.51	
B ₁	.040	.060	1.02	1.52	
B ₂	.030	.040	0.76	1.02	
B ₃	.005	.020	0.13	0.51	
С	.008	.012	0.20	0.30	
D	1.640	1.870	41.66	47.50	
D ₁	.935	.970	23.75	24.64	
D ₂	.800 BSC		20.32 BSC		
e ₁	.050 BSC		1.27	BSC	
L	.375	.450	9.53	11.43	
L ₁	.040	.060	1.02	1.52	
N	68 PINS		68 F	PINS	
S	.66	.087	1.68	2.21	
S ₁	.050		1.27		

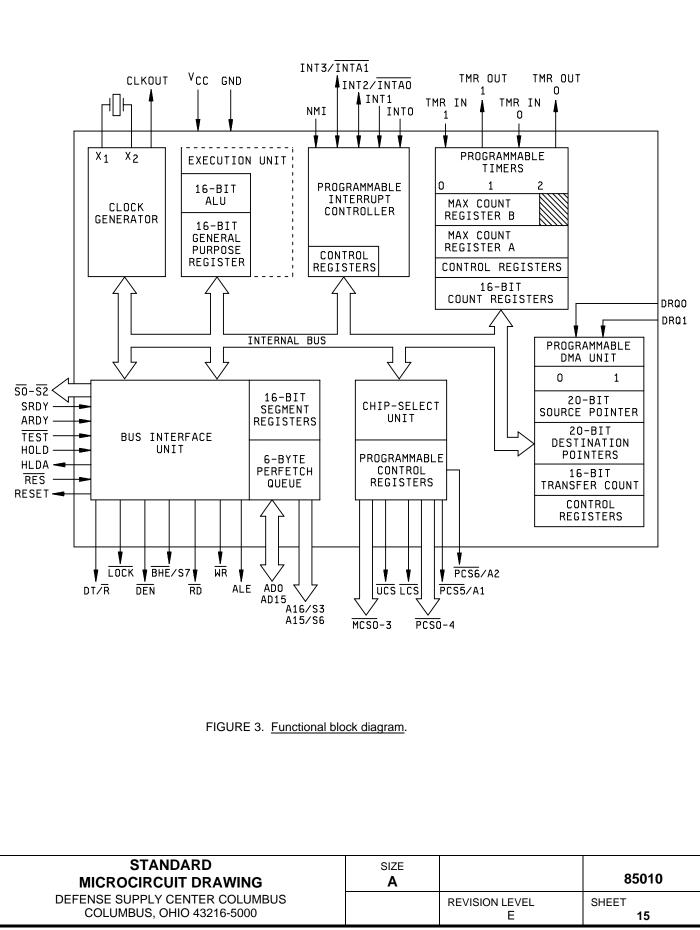
FIGURE 1. Case outline Y - Continued.

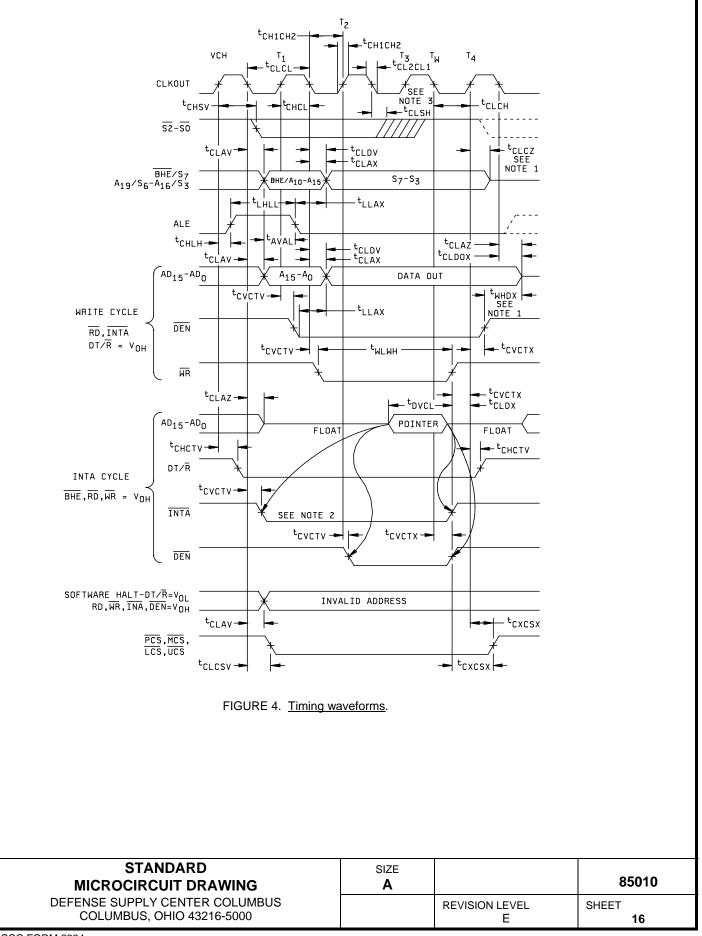
STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 12

Device type All						
	Case outline Y					
Pin number	Pin symbol	Pin number	Pin symbol			
1	V _{CC}	35	V _{CC}			
2	AD4	36	INT2/INTA0			
3	AD12	37	INT3/INTA1			
4	AD5	38	DT/R			
5	AD13	39	DEN			
6	AD6	40	MCS0			
7	AD14	41	MCS1			
8	AD7	42	MCS2			
9	AD15	43	MCS3			
10	A16/S3	44	UCS			
11	A17/S4	45	LCS			
12	A18/S5	46	PCS6 /A2			
13	A19/S6	47	PCS5 /A1			
14	BHE /S7	48	PCS4			
15	WR /QS1	49	PCS3			
16	RD/QSMD	50	PCS2			
17	ALE/QS0	51	PCS1			
18	V _{SS}	52	V _{SS}			
19	X1	53	PCS0			
20	X2	54	RES			
21	RESET	55	TMR OUT1			
22	CLKOUT	56	TMR OUT0			
23	ARDY	57	TMR IN1			
24	S2	58	TMR IN0			
25	S1	59	DRQ1			
26	SO	60	DRQ0			
27	HLDA	61	AD0			
28	HOLD	62	AD8			
29	SRDY	63	AD1			
30	LOCK	64	AD9			
31	TEST	65	AD2			
32	NMI	66	AD10			
33	INT0	67	AD3			
34	INT1	68	AD11			

FIGURE 2. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVE E


CASE Z		
TOP		L O O O O O O O O O O O O O
I	PIN 1 DENTIFIER	IDENTIFIER


Case outline Z	Case	outline	Ζ
----------------	------	---------	---

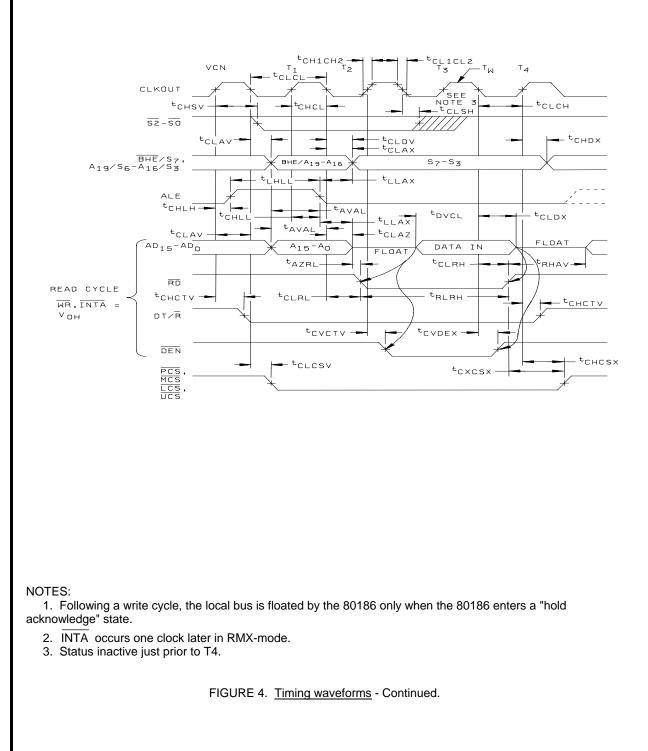
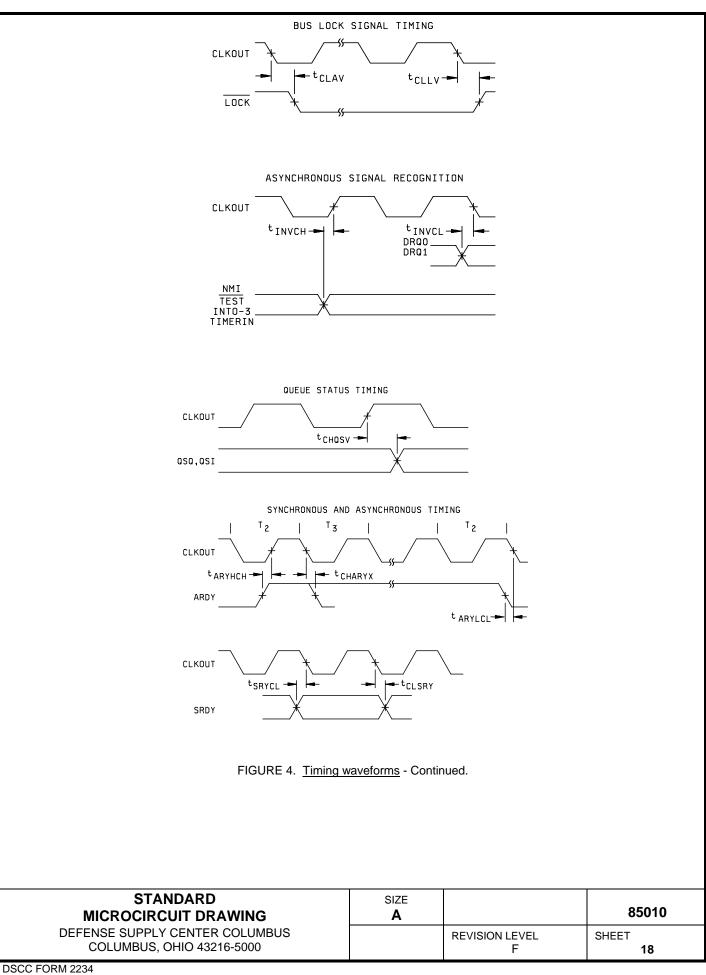
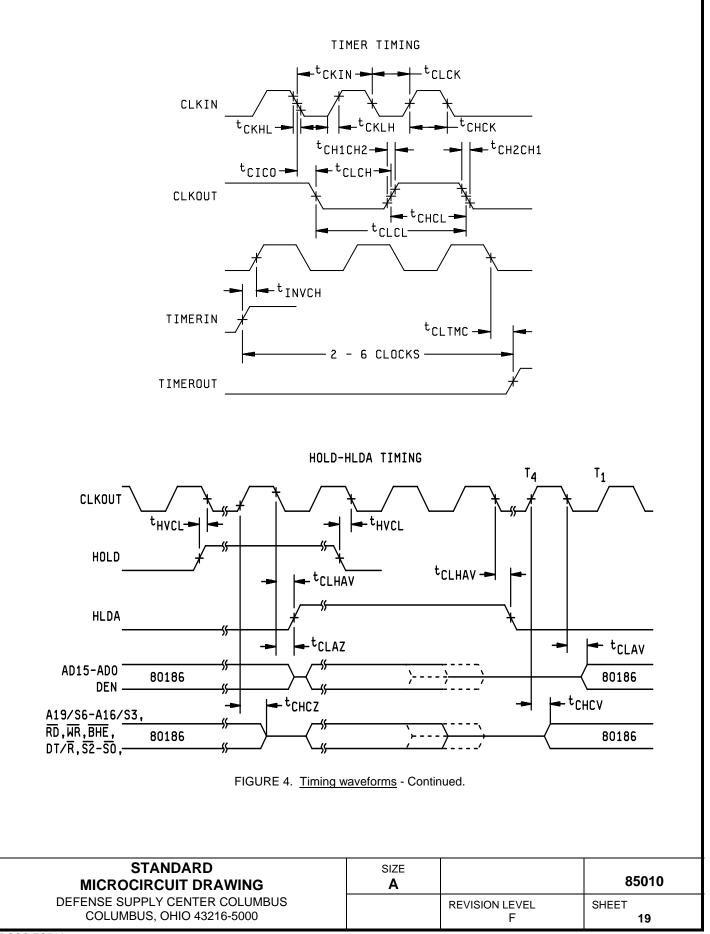

Symbol	Location	Symbol	Location	Symbol	Location
V _{CC} , V _{CC}	F1, F11	A16/S3	A2		A5
V _{SS} , V _{SS}	L6, A6	AD15	B1	ARDY	B9
RESET	B8	AD14	C1	SRDY	C11
X1, X2	B7, A7	AD13	D1	LOCK	D10
CLKOUT	A8	AD12	E1	SO	A10
RES	L5	AD11	F2	S1	B10
TEST	D11	AD10	G2	S2	A9
TMR IN0	L3	AD9	H2	HOLD	C10
TM,R IN1	K3	AD8	J2	(Input)	
TMR OUT0	L4	AD7	B2	HLDA	B11
TMR OYT1	K4	AD6	C2	(output)	
DRQ0	L2	AD5	D2	UCS	L10
DRQ1	K2	AD4	E2	LCS	K9
NM1	E10	AD3	G1	MCS0 - 3	J10, J11, K10, K11
INT0, INT1	E11, F10	AD2	H1	PCS0	K5
INT2/INTA0	G10	AD1	J1	PCS1 - 4	K6, L7, K7, L8
INT3/INTA1	G11	AD0	K1	PCS5 /A1	K8
A19/S6	B4	BHE /S7	A4	PCS6 /A2	L9
A18/S5	A3	ALE/QS0	B6	DT/R	H10
A17/S4	B3	WR /QS1	B5	DEN	H11

FIGURE 2. <u>Terminal connections</u> - Continued.


STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL G	SHEET 14



STANDARD	SIZE		
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL E	SHEET 17

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (method 5005)	<u>2</u> / 1, 2, 3, 4, 7, 8 ,9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	2, 8(+125°C only), 10 or 1,2,3,7,8

TABLE II. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

 $\frac{2}{2}$ Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN}, and C_{I/O} measurements) shall be measured only for the initial test and after process or design changes which may affect input capacitance. A minimum sample size of 5 devices with zero failures shall be required.
- d. Subgroups 7 and 8 shall include verification of the programming set. See table III.

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 20

TABLE III. Instruction set summary.

	Format			Clock cycles	Comments
DATA TRANSFER MOV = Move:					
Register to register/memory	1000100w	mod reg r/m		1/12	
Register/memory to register	1 0 0 0 1 0 1 w	mod reg r/m		2/9	
mmediate to register/memory	1100011w	mod req r/m	data data if W = 1	12-13	8/16-bit
mmediate to register	1011w reg	data	data if W = 1	3-4	8/16-bit
Memory to accumulator	101000w	addr-low	addr-high	9	
Accumulator to memory	1010001w	addr-low	addr-high	8	
Register/memory to segmet register	10001110	mod 0 reg r/m		2/9	
Segment register to register/memory	10001100	mod 0 reg r/m		2/11	
PUSH = Push:			-		
Memory	11111111	mod 1 1 0 r/m	4	16	
Register	01010 reg	<u> </u>	4	10	
Segment register	0 0 0 reg 1 1 0			9	
mmediate	011010s0	data	data if $s = 0$	10	
PUSHA = Push All	01100000				
POP = Pop:		1	-		
Memory	10001111	mod 0 0 0 r/m		20	
Register	01011 reg		-	10	
Segment register	000 reg 1 1 1	(reg 01)		8	
POPA = Pop All	01100001			51	
XCHG = Exchange:		1	7		
Register/memory with register	1000011w	mod reg r/m		4/17	
Register with accumulator	10010 reg]		3	
N = Input from:			7		
Fixed port	1110010w	port		10	
Variable port	1110110w			8	

	TABLE III. Instruction s	et summary - (Continued.	
Function	Format		CI	ock Comments
OUT = Output to:				
Fixed port	1110011w po	rt	9	
Variable port	1110111wW		7	
XLAT = Translate byte to AL	11010111		11	
LEA = Load EA to register	10001101 mod reg	g r/m	6	
LDS = Load pointer to DS	11000101 mod reg	g r/m	(mod ≠ 11) 18	}
LES = Load pointer to ES	11000100 mod reg	g r/m	(mod ≠ 11) 18	}
LAHF = Load AH with flags	10011111		2	
SAHF = Store AH into flags	10011110		3	
PUSHF = Push flags	10011100		9	
POPF = Pop flags	10011101		8	
SEGMENT = Segment Override:				
CS	00101110		2	
DS	00110110		2	
ES	00100110		2	
ARITHMETIC				
ADD = Add:	r			
Reg/memory with register to either	000000dw mod reg	g r/m	3/	10
Immediate to register/memory	100000sw mod00	00 r/m d	ata data if s w = 4/	16
Immediate to accumulator	0000010w da	ita dat	a if w = 1 3/-	4 8/16-bit
ADC = Add with carry:				
Reg/memory with register to either	0 0 0 1 0 0 d w mod reg	g r/m	3/	10
Immediate to register/memory	100000sw mod01	0 r/m d	ata data if s w = 01 4/	16
Immediate to accumulator	0001010w da	ita dat	a if w = 1 3/-	4 8/16-bit
INC = Increment:	· · · · · · · · · · · · · · · · · · ·			
Register/memory	1111111 w mod 0 0	00 r/m	3/	15
Register	01000 reg		3	
STANDAF MICROCIRCUIT I		SIZE A		85010
DEFENSE SUPPLY CENT	ER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO	43216-5000		F	22

	TABLE III. Instruction	Set Summar			
Function	Format			Clock cycles	Comments
Sub = Subtract:			-		
Reg/memory and register to either	001010dw mod re	g r/m		3/10	
mmediate from register/memory	10000w mod 1	01 r/m	data data if s w = 01	4/16	
mmediate from accumulator		ata	data if w = 1	3/4	8/16-bit
SSB = Subtract with borrow:					
Reg/memory and register to either	000110dw mod re	q r/m	7	3/10	
mmediate from register/memory	100000sw mod 0		data data if s w =	4/16	
mmediate from accumulator		ata	data if $w = 1$	3/4	8/16-bit
PEC = Decrement:				5/4	0,10 51
Register/memory	1111111 m mod 0	0.1 r/m	7	3/15	
Register	01001 reg	//!!!		3	
CMP = Compare:				Ĭ	
Register/memory with register	0011101w mod re	g r/m	7	3/10	
Register with register/memory	0011100w mod re	0	1	3/10	
nmediate with register/memory	100000sw mod 1	0	data data if s w = 01	3/10	
nmediate with accumulator		lata	data if $w = 1$	3/4	8/16-bit
IEG = Change sign	1111011w mod 0			3	0/10-01
		1 1 1/111			
AA = ASCII adjust for add	00110111			8	
DAA = Decimal adjust for add	00100111			4	
AS = ASCII adjust for subtract	00111111			7	
AS = Decimal adjust for substract	00101111			4	
IUL = Multiply (unsigned):	1111011w moc1	0.0 r/m			
Register-Byte Register-Word				26-28 35-37	
lemory-Byte Iemory-Word				32-34 41-43	
MUL = Integer multiply (signed):	1111011w mod 1	0.1 r/m	7		
	Lifioriw (modif	<u>vi i/III</u>		25-28 34-37	
Register-Byte Register-Word Aemory-Byte Aemory-Word				34-37 31-34 40-43	
lemory-Word				40-43	

Function	Format			Clock cycles	Comments
ARITHMETIC (Continued):					
IMUL = Integer immediate multiply	011010s1 mod reg	r/m data	data if $s = 0$	22-25/	
(signed)				29-32	
DIV = Divide (unsigned):	1111011w mod11	0 r/m			
Register-Byte register-Word Memory-Byte Memory-Word				29 38 35 44	
IDIV = Integer divide (signed):	1111011w mod11	1 r/m			
Register-Byte Register-Word Memory-Byte Memory-Word				44-52 53-61 50-58 59-67	
AAM = ASCII adjust for multiply	11010100 00001	010		19	
AAD = ASCII adjust for divide	11010101 00001	010		15	
CBW = Convert byte to word	10011000			2	
CWD = Convert word to double word	10011001			4	
LOGIC Shift/rotate instructions:					
Register/memory by 1	1101000 w mod TT	r/m		2/15	
Register/memory by CL	1 1 0 1 0 0 1 w mod TT	Г r/m		5+n/ 17+n	
Register/memory by count	1 1 0 0 0 0 0 w mod TT	Г r/m с	punt	5+n/ 17+n	
	TT 000 001 010 011 100 101 111	「Instruction ROL ROR RCL RCR SHL/SAL SHR SAR			
STANDAR		SIZE			85010
MICROCIRCUIT E DEFENSE SUPPLY CENT	ER COLUMBUS	Α	REVISION LEVEL	SI	HEET
COLUMBUS, OHIO 4			F	3	24

	TABLE III. Instruction s	set summary -	Continued.		
Function	Format			Cloc	ck Comments
AND = And:					
Reg/memory and register to either	0 0 1 0 0 0 d w mod reg	g r/m		3/10)
mmediate to register/memory	100000w mod 1	00 r/m d	lata data i	f w = 1 4/16	3
mmediate to accumulator			lata if w = 1	3/4	8/16-bit
TEST = And function to flags,					
Register/memory and register	1000010 w mod reg	g r/m		3/10)
mmediate data and register/memory	1111011w mod 00		lata data i	f w = 1 4/10)
Immediate data and accumulator	1010100w d	ata d	lata if w = 1	3/4	8/16-bit
DR = Or:					
Reg/memory and register to either	000010dw mod reg	a r/m		3/10)
mmediate to register/memory	100000w mod00)1 r/m d	lata data i	f w = 1 4/16	6
mmediate to accumulator	0000110w d	ata d	lata if w = 1	3/4	8/16-bit
(OR = Exclusive or:					
Reg/memory and register to either	0 0 1 1 0 0 d w mod reg	g r/m		3/10)
mmediate to register/memory	1000000 w mod 1 1	0 r/m d	lata data i	f w = 1 4/16	3
mmediate to accumulator	0011010w	data d	lata if w = 1	3/4	8/16-bit
NOT = Invert register/memory STRING MANIPULATION:	1111011w moc01	0 r/m		3	
MOVS = Move byte/word	1010010w			14	
CMPS = Compart byte/word	1010011w			22	
SCAS = Scan byte/word	1010111w			15	
ODS = Load byte/wd to AL/AX	1010110w			12	
STOS = Store byte/wd from AL/A	1010101w			10	
NS = input byte/wd from DX port	0110110w			14	
DUTS = Output byte/wd to DX port	0110111w			14	
					·
STANDAR MICROCIRCUIT D		SIZE A			85010
DEFENSE SUPPLY CENT COLUMBUS, OHIO 4	ER COLUMBUS		REVISION	LEVEL F	SHEET 25

	TABLE III. Instruc	ction set summary	<u>/</u> - Cont	inued.		
Function	Format				Clock cycle	c Comments
STRING MANIPULATION (Continued): Repeated by count in CX						
MOVS = Move string	11110010 1	010010w			8+8n	
CMPS = Compare string	1111001z 1	0 1 0 0 1 1 w			5+22	n
SCAS = Scan string	1111001z 1	0 1 0 1 1 1 w			5+15	n
LODS = Load string	11110010 1	0 1 0 1 1 0 w			6+11	n
STOS = Store string	11110010 1	010101w			6+9n	
INS = Input string	11110010 0	110110w]		8+8n	
OUTS = Output str9ng	11110010 0	110111w]		8+8n	
CONTROL TRANSFER CALL = Call:			_			
Direct within segment	11101000	disp-low d	isp-high		14	
Register/memory indirect within segment		iod 0 1 0 r/m			13/19	2
					13/13	
Direct intersegment	10011010	segment offset]	23	
		segment selecto	or]		
Indirect intersegment	11111111 m	od 0 1 1 r/m		_	38	
JMP = Unconditional jump:						
Short/long	11101011	disp-low			13	
Direct within segment	11101001	disp-low	disp	-high	13	
Register/memory indirect within segment	11111111 m	od 1 0 0 r/m]		11/17	7
Direct intersegment	11101010	segment offset]	13	
		segment selecto	or			
Indirect intersegment	11111111 m	od 1 0 1 r/m			26	
RET = Return from CALL:						
Within segment	11000011				16	
Within seg adding immed to SP	1100010	data-low	data	high	18	
Intersegment	11001011				22	
Intersegment adding immediate to SP	11001010	data-low	data-	high	25	
Within seg adding immed to SP Intersegment Intersegment adding immediate to SP	1100010 11001011				22	
STANDARI MICROCIRCUIT DE		SIZE A				85010
DEFENSE SUPPLY CENTE		A		REVISION LEVEL	-+	SHEET
COLUMBUS, OHIO 43				F		26

	TABLE III. Instruction se	<u>et summary</u> - Co	ntinued.	
Function	Format		Cloc	ck Comments es
CONTROL TRANSFER (Continued):		_		
JE/JZ = Jump on equal zero	01110100 disp		4/13	3 JMP not
				taken/JMP
JL/JNGE = Jump on less/not greater or equal	01111100 disp		4/13	3 taken
JLE/JNG = Jump on less or equal/ not greater	01111110 disp		4/13	3
JB/JNAE = Junp on below/not above or equal	01110010 disp		4/13	3
JBE/JNA = Jump on below or equal/not above	01110110 disp		4/13	3
JP/JPE = Jump on parity/parity even	01111010 disp		4/13	3
JO = Jump on overflow	01110000 disp]	4/13	3
JS = Jump on sign	01111000 disp		4/13	3
JNE/JNZ = Jump on not equal/ not zero	01110101 disp		4/13	3
JNL/JGE = Jump on not less/ greater or equal	01111101 disp		4/13	3
JNLE/JG = Jump on not less or equal/greater	01111111 disp		4/13	3
JNB/JAE = Jump on not below/ above or equal	01110011 disp		4/13	3
JNBE/JA = Jump on not below/ or equal/above	01110111 disp]	4/13	3
JNP/JPO = Jump on not par/par odd	01111011 disp		4/13	3
JNO = Jump on not overflow	01110001 disp		4/13	3
JNS = Jump on not sign	01111001 disp		4/13	3
JCXZ = Jump on CX zero	11100011 disp		5/15	5
LOOP = Loop CX times	11100010 disp		6/16	6
LOOPZ/LOOPE = Loop while zero/ equal	11100001 disp		6/16	5 LOOP not Taken/LOOP taken
LOOPNZ/LOOPNE = Loop while not Zero/equal	11100000 disp		6/16	
STANDAR	2D	SIZE		
MICROCIRCUIT D	RAWING	Α		85010
DEFENSE SUPPLY CENT COLUMBUS, OHIO 4			REVISION LEVEL F	SHEET 27
SCC FORM 2234	Į		1	

ENTER = Enter procedure	Format	Clo	ck Comments
	11001000 data-low data-high	L	
_ = 0		15	
_=1		25	
_ > 1		22+ (n-1	16)
EAVE = Leave procedure	1 1 0 0 1 0 0 1	8	
NT = Interrupt:			
Type specified	11001101 type	47	
Гуре 3	1 1 0 0 1 1 0 0	45	if INT. taken/
NTO = Interrupt on overflow	11001110	48/4	4 if INT. not taken
RET = Interrupt return	11001111	28	
BOUND = Detect value out of range	0 1 1 0 0 0 1 0 mod reg r/m	33-3	35
PROCESSOR CONTROL			
CLC = Clear carry	1111000	2	
CMC = Complement carry	11110101	2	
STC = Set carry	1111001	2	
CLD = Clear direction	1111100	2	
STD = Set direction	1111101	2	
CLI = Clear interrupt	1111010	2	
STI = Set interrupt	1111011	2	
HLT = Halt	11110100	2	
WAIT = Wait	10011011	6	if <u>test</u> = 0
_OCK = Bus lock prefix	11110000	2	= 0
ESC = Processor extension escape	10011TT mod LLL r/m	6	
	(TTT LLL are opcode to processor extension)		

NOTES:

The effective address (EA) of the memory operand is computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field

if mod = 00 then $DISP = 0^*$, disp-low and disp-high are absent

if mod = 01 then DISP = disp-low sign-extended to 16-bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m = 000 then EA = (BX) + (SI) + DISP

if r/m = 001 then EA = (BX) + (DI) + DISP

if r/m = 010 then EA = (BP) + (SI) + DISP

if r/m = 011 then EA = (BP) + (DI) + DISP

if r/m = 100 then EA = (SI) + DISP

if r/m = 101 then EA = (DI) + DISP

if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if required)

*Except if mod = 00 and r/m = 110 then EA = disp-high: disp-low.

EA calculation time is 4 clock cycles for all modes, and is included in the execution times given whenever appropriate.

SEGMENT OVERRIDE PREFIX

0 0 1 reg 1 1 0

reg is assigned according to the following:

reg Register Segment

- 00 ES 01 CS 10 SS
- 11 DS

REG is assigned according to the following table:

16-Bit(w = 1) 8-Bit(w = 0)

000 AX	000 AL
001 CX	001 CL
010 DX	010 DL
011 BX	011 BL
100 SP	100 AH
101 BP	101 CH
110 SI	110 DH
110 SI	110 DH
111 DI	111 BH
111 01	

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

STANDARD	SIZE		05040
MICROCIRCUIT DRAWING	Α		85010
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL F	SHEET 29

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 <u>Symbols, definitions and functional descriptions</u>. The symbols, definitions, and functional descriptions for this device shall be as follows:

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		F	30

Symbol	Name and function			
V _{CC}	System power: +5 volt power supply.			
V _{SS}	System ground.			
RESET	Reset output indicates that the 80186 active HIGH, synchronized with the pr corresponding to the length of the RE	rocessor clock, ar		
X1, X2	Crystal inputs, X1 and X2, provide an crystal for the internal crystal oscillato this case, minimize the capacitance o frequency is internally divided by two	or. X1 can interfaction X2 or drive X2 v	e to an external clock inste with complemented X1. The	ad of a crystal. In
CLKOUT	Clock output provides the system with specified relative to CLKOUT.	n a 50 percent dut	y cycle waveform. All devic	ce pin timings are
RES	System reset causes the 80186 to immediately terminate its present activity, clear the internal logic, and enter a dormant state. This signal may be asynchronous to the 80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles after RES is returned HIGH. RES is required to be LOW for greater than 4 clock cycles and is internally synchronized. For proper initialization, the LOW-to-HIGH transition of RES must occur no sooner than 50 microseconds after power up. This input is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC network. When RES occurs, the 80186 will drive the status lines to an inactive level for one clock, and then three-state them.			
TEST	TEST is examined by the WAIT instruction. If the TEST input is HIGH when "WAIT" execution begins, instruction execution will suspend. TEST will be resampled until it goes LOW, at which time execution will resume. If interrupts are enabled while the 80186 is waiting for TEST, interrupts will be serviced. The input is synchronized internally.			
TMR IN 0, TMR IN 1	Timer inputs are used either as clock or control signals, depending upon the programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH transitions are counted) and internally synchronized.			
TMR OUT 0, TMR OUT 1	Timer outputs are used to provide single pulse or continuous waveform generation, depending upon the timer mode selected.			
DRQ0 DRQ1	DMA request is driven HIGH by an external device when it desires that a DMA channel (channel 0 or 1) perform a transfer. These signals are active HIGH, level-triggered, and internally synchronized.			
NMI	Non-maskable interrupt is an edge-triggered input which causes a type 2 interrupt. NMI is not maskable internally. A transition from a LOW to HIGH initiates the interrupt at the next instruction boundary. NMI is latched internally. An NMI duration of one clock or more will guarantee service. This input is internally synchronized.			
INTO, INT1,	Maskable interrupt requests can be requested by strobing one of these pins.			
INT2/INTA0	When configured as inputs, these pins are active HIGH. Interrupt requests			
INT3/INTA1 are synchronized internally. INT2 and INT3 may be configured via software to provide active-LOW interrupt-acknowledge output signals. All interrupt inputs may be configured via software to be either edge-or level-triggered. To ensure recognition, all interrupt requests must remain active until the interrupt is acknowleged. When iRMX mode is selected, the function of these pins changes.				
S	TANDARD	SIZE		
	IRCUIT DRAWING	Α		85010
	PLY CENTER COLUMBUS JS, OHIO 43216-5000		REVISION LEVEL F	SHEET 31
CC FORM 2234			l	

A19/S6,	A19/S6, Address bus outputs (16-19) and bus cycle status (3-6) reflect the four most A18/S5, significant address bits during T ₁ . These signals are active HIGH. During					
A18/S5, A17/S4,	T_2 , T_3 , T_W , and T_4 , status information is available on these lines as					
A16/S3						
			Low		High	
		S6	Processor	cvcle	DMA cy	
				0)0.0		
	S3, S4, and S5 are o	defined as LOW of	during T_2 - T_4 .			
AD ₁₅ -AD ₀	Address/data bus (0 $(T_2, T_3, T_W, and T_4)$ bus, pins D_7 through the bus in memory o	bus. The bus is a D_0 . It is LOW due	active HIGH A ₀ is	analogous to	BHE for the lo	wer byte of the data
BHE /S7	During T ₁ the bus hig most significant half			determine if	data is to be e	nabled onto the
	BHE is LOW during transferred on the hi					
	S7 is logically equiva HOLD.	alent to BHE. Th	ne signal is active	LOW, and is	three-stated C	FF during bus
		BHE	and A0 encodin	gs		
	BHE value	A0 value		Function		
	0	0	Word transfer			
	0	1 Byte transfer on upper half of data bus (D15-D8)				
	1	0	Byte transfer on	lower half of	data bus (D7-I	00)
	1	1	Reserved			
ALE/QS0	Address latch enable/queue status 0 is provided by the 80186 to latch the address into the address latches. ALE is active HIGH. Addresses are guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is generated off the rising edge of the CLKOUT immediately preceding T_1 of the associated bus cycle. The trailing edge is generated off the CLKOUT rising edge in T_1 . Note that ALE is never floated.					
WR /QS1	Write strobe/queue s	status 1 indicates	that the data on t	ha hus is ta h	o written into a	memory or an I/O
	device. WR is activ "HOLD." It is driven	e for T_2 , T_3 , and	T_{W} of any write cy	cle. It is activ	ve LOW, and fl	oats during
	status mode, the AL		5			
	QS1	QS0		Queue opera	ation	
	0	0	No queue op		(man 11)	_
	0	1	First opcode byte fetched from the queue			
	1	1 0	Subsequent byte fetched from the queue Empty the queue		ŧ.	
	STANDARD					95040
	MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS		Α			85010
	US, OHIO 43216-5000			REVISION L	EVEL F	SHEET 32

RD/QSMD	Read strobe indicates that the 80186 is performing a memory or I/O read cycle. \overline{RD} is active LOW for T_2 , T_3 , and T_W of any read cycle. It is guaranteed not to go LOW in T_2 until after the address bus is floated. \overline{RD} is active LOW, and floats during "HOLD." \overline{RD} is driven HIGH for one clock during reset, and then the output driver is floated. A weak internal pull-up mechanism on the \overline{RD} line holds it HIGH when the line is not driven. During RESET the pin is sampled to determine whether the 80186 should provide ALE, \overline{WR} , and \overline{RD} , or if the queue-status should be provided. \overline{RD} should be connected to GND to provide queue-status data.				
ARDY	a data transfe rising edge is be synchroniz	er. The ARDY internally syn zed to the 801	' input pin will chronized by 86 clock. If c	that the addressed memory space or I/O devic l accept an asynchronous input, and is active H the 80186. This means that the falling edge o connected to V_{CC} , no WAIT states are inserted. RDY) must be active to terminate a bus cycle.	HGH. Only the of ARDY must
SRDY	Synchronous ready must be synchronized externally to the 80186. The use of SRDY provides a relaxed system-timing specification on the ready input. This is accomplished by eliminating the one-half clock cycle which is required for internally resolving the signal level when using the ARDY input. This line is active HIGH. If this line is connected to V_{CC} , no WAIT states are inserted. Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is terminated. If unused, this line should be tied LOW.				
LOCK	$\overrightarrow{\text{LOCK}}$ output indicates that other system bus masters are not to gain control of the system bus while $\overrightarrow{\text{LOCK}}$ is active LOW. The $\overrightarrow{\text{LOCK}}$ signal is requested by the $\overrightarrow{\text{LOCK}}$ prefix instruction and is activated at the beginning of the first data cycle associated with the instruction following the $\overrightarrow{\text{LOCK}}$ prefix. It remains active until the completion of the instruction following the LOCK prefix. No prefetches will occur while $\overrightarrow{\text{LOCK}}$ is asserted. $\overrightarrow{\text{LOCK}}$ is active LOW, is driven HIGH for one clock during RESET, and then floated. If unused, this line should be tied LOW.				
$\overline{S0}$, $\overline{S1}$, $\overline{S2}$	S1, S2 Bus cycle status S0 - S2 are encoded to provide bus-transaction information.				
		8	0186 bus cyc	ele status information	
	S2	S1	SO	Bus cycle initiated	
	0	0	0	Interrupt acknowledge	
	0	0	1	Read I/O	
	0	1	0	Write I/O	
	0	1	1	Halt	
	1	0	0	Instruction fetch	
	1	0	1	Read data from memory	
	1	1	0	Write data to memory	
	1	1	1	Passive (no bus cycle)	j
		ised as a logic es are driven	cal M/IO indic	ator, and $\overline{S1}$ as a DT/ $\overline{S1}$ indicator. a clock during reset, and then floated	

STANDARD MICROCIRCUIT DRAWING	SIZE A		85010
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		F	33

	HOLD (input) HLDA (output)	HOLD indicates that another bus master is requesting the local bus. The HOLD input is active HIGH. HOLD may be asynchronous with respect to the 80186 clock. The 80186 will issue a HLDA (HIGH) in response to a HOLD request at the end of T_4 or T_1 . Simultaneous with the issuance of HLDA the 80186 will float the local bus and control lines. After HOLD is detected as being LOW, the 80186 will lower HLDA. When the 80186 needs to run another bus cycle, it will again drive the local bus and control lines.			
	UCS	Upper memory chip select is an active defined upper portion (1K-256K block) of memory. This	s line is not floated during b	
		address range activating \overline{UCS} is software programmable.			
	LCS	Lower memory chip select is active LC portion (1K-256K) of memory. This lin $\overline{\text{LCS}}$ is software programmable.			
	MCS0-3	Mid-range memory chip select signals defined mid-range portion of memory	(8K-512K). Thes	e lines are not floated durin	
		address ranges activating MCS0 -3 and	re software progra	ammable.	
	PCS0	Peripheral chip select signals 0-4 are	active LOW when	a reference is made to	
	PCS1-4	the defined peripheral area (64K byte	I/O space). Thes	e lines are not floated	
		during bus HOLD. The address range	es activating PCS	0 -4 are software programn	nable.
	PCS5 /A1	Peripheral chip select 5 or latched A ₁	may be program	ned to provide a sixth period	heral chin select or
	1003/81			· · · ·	-
		to provide an internally latched A ₁ signal. The address range activating PCS5 is software programmable. When programmed to provide latched A ₁ , rather than $\overline{PCS5}$, this pin will retain the previously latched value of A ₁ during a bus HOLD. A ₁ is active HIGH.			
	PCS6 /A2	Peripheral chip select 6 or latched A_2 may be programmed to provide a seventh peripheral chip select,			
		or to provide an internally latched A ₂ s		· · · ·	
		programmable. When programmed to provide latched A_2 , rather than $\overrightarrow{PCS6}$, this pin will retain the previously latched value of A_2 during a bus HOLD. A_2 is active HIGH.			
	DT/R	Data transmit/receive controls the direction of data flow through the external data bus transceiver. When LOW, data is transferred to the 80186. When HIGH the 80186 places write data on the data bus.			
	$\overline{\text{DEN}}$ Data enable is provided as a data bus transceiver output enable. $\overline{\text{DEN}}$ is active LOW during each memory and I/O access. $\overline{\text{DEN}}$ is HIGH whenever DT/R changes state.				W during each
	e agreed to this dra	upply. Approved sources of supply are awing and a certificate of compliance (s			
		TANDARD RCUIT DRAWING	SIZE A		85010
		PLY CENTER COLUMBUS	~	REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000			F	34	

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 07-08-16

Approved sources of supply for SMD 85010 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8501001ZA	3V146	MG80186-8/BZA
8501001ZC	3V146	MG80186-8/BZC
8501001YA	3V146	MQ80186-8/BYA
8501001YC	3V146	MQ80186-8/BYC
8501002ZA	3V146	MG80186-6/BZA
8501002ZC	3V146	MG80186-6/BZC
8501002YA	3V146	MQ80186-6/BYA
8501002YC	3V146	MQ80186-6/BYC

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

Vendor name and address

3V146

Rochester Electronics, Inc. 16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.