REVISIONS																				
LTR					D	ESCR	IPTIO	N					DA	ATE (YI	R-MO-I	DA)		APPR	OVED	
A	Conv Edito	vert to n orial cha	nilitary o anges th	drawing hrougho	. Char out.	nges to	table	I. Cha	nges to	figures	s 2 and	4.		87-0)4-14			N. A.	Hauck	
В	Chan	nges to	table I a	and figu	ıre 1 diı	mensi	ons.						88-01-22					M. A. Frye		
С	Upda Add v	ate boile vendor	erplate f CAGE	to MIL-F 3V146.	PRF-38 Corre	535 re ct drav	equiren ving titl	nents. e C	Add "G FS	D" device criteria.			03-02-13		Т	Thomas M. Hess		SS		
D	Corre MIL-F	ect marl PRF-38	king rea 535 rea	quireme quireme	ents in 3 ents. Ec	3.5. U ditorial	pdate I I chang	poilerpl Jes thro	ate in a bughou	accorda t PHN	nce wi I.	th		05-0)4-11		T	homas	M. He	SS
REV																				
SHEET																				
REV	С																			
SHEET	15																			
REV STATUS				REV			D	С	D	D	С	С	С	С	С	С	С	С	С	С
OF SHEETS				SHEE	ΞT		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A				PREP	ARED	BY					_									
				Ray M	Ionnin						DI	EFEN C(IBUS	.Y CE , OHI(NIEF 0 432	218-39	.UMB 990	05	
STAI	NDAF	RD		CHEC	KED B	8Y							http)://ww	/w.ds	cc.dl	a.mil			
		CUIT G		D. A. I	Di Cen:	zo														
	APPROVED BY																			
THIS DRAWING IS AVAILABLE																				
DEPARTMENTS						MIC			JIT, [AL, 4	4-BIT		JLAR						
AND AGENCIES OF THE DEPARTMENT OF DEFENSE								S AINL	2 SHI 2 SHI			ROL	UNII	,						
DEITARTMEN			0L			86-0	4-04								•					
AM	SC N/A			REVIS	SION L	EVEL				SI	ZE	CA	GE CC	DE			• •			
							_			/	Ą		67268	3			86	017		
						0	כ			SHE	ET		1	OF	15					

1. SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

86017	<u>01</u>	<u>Q</u>	×							
Drawing number	Device type (see 1.2.1)	Case outline (see 1.2.2)	Lead fin (see 1.	nish 2.3)						
1.2.1 <u>Device type(s)</u> . The c	levice type(s) identif	y the circuit function	on as follows:							
Device type	Generi	<u>c number</u>		Circuit function						
01	29	04		4-bit bipolar status and s	hift control unit					
1.2.2 Case outline(s). The	case outline(s) are a	is designated in N	IIL-STD-1835 a	and as follows:						
Outline letter	Descriptive design	nator <u>T</u>	erminals	Package style						
Q Y	GDIP1-T40 or CD See figure	0IP2-T40 1	40 42	Dual-in-line Flat pack						
1.2.3 <u>Lead finish</u> . The lead	finish is as specified	d in MIL-PRF-385	35, appendix A							
1.3 Absolute maximum ratir	<u>ngs</u> .									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$										
1.4 <u>Recommended operatin</u> Supply voltage (V _{CC}) Minimum high-level inpu Maximum low-level inpu Case operating tempera	$\log \text{ conditions}$. ut voltage (V _{IH}) ut voltage (V _{IL}) ature range (T _C)			+4.5 V dc to +5.5 +2.0 V dc +0.8 V dc 55°C to +125°C	o V dc					
<u>1</u> / Must withstand the added P_D due to short circuit test (e.g., I_{OS}).										
STAN MICROCIRCI	DARD JIT DRAWING		A SIZE		86017					
DEFENSE SUPPLY (COLUMBUS, O	CENTER COLUMBL HIO 43218-3990	JS		REVISION LEVEL	SHEET 1					

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 <u>Functional block diagram</u>. The functional block diagram shall be as specified on figure 3.

3.2.4 Load circuits. The load circuits shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		86017
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 2

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		86017
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		D	3

		TABLE I.	Electrical p	performance o	haracteristics	<u>3</u> .			
Test	Symbol	-55°C +4.5 \	Conditions $C \le T_C \le +12$ $V \le V_{CC} \le +5$	5°C	Group A subgroups	Device type	Li	mits	Unit
		unless c	therwise sp	ecified		-91	Min	Max	
Output high voltage	V _{OH}	V _{CC} = 4.5 V, V _{IN} = V _{IH} or V _I	I _{OH} = -1 Y _Z , Y _C ,	.6 mA Y _N , Y _{OVR}	1, 2, 3	01	2.4		V
			I _{OH} = -0.8 r SIO _o , SIO _n QIO _n , CT,				2.4		
Output low voltage	V _{OL}	V _{CC} = 4.5 V, V _{IN} = V _{IH} or V _I	$V_{CC} = 4.5 \text{ V}, \qquad I_{OL} = 16 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \qquad \frac{Y_Z, Y_C, Y_N,}{I_{OL} = 8 \text{ mA}}$ $SIO_0, SIO_n, SIO_n, OIO_2, CT = 0$					0.5	V
								0.5	
Input high voltage	V _{IH}	<u>1</u> /					2.0		V
Input low voltage	V _{IL}	<u></u>						0.8	V
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V, I _I	_N = -18 mA					-1.5	V
Input low current	IIL	V _{CC} = 5.5 V,	CP					-0.7	mA
		V _{IN} = 0.5 V	$\overline{CE}_{m}, \overline{C}$	Ē				-1.8	
			I _Z , I _C , I _N	, I _{OVR}				-1.2	
	Lo-I ₁₂ , E _{OVR} , C _X , Y _Z Y _{OVR}		$\begin{array}{c} \underline{I}_{D} - I_{12}, \underline{\overline{E}}_{2}\\ E_{OVR}, O\\ C_{X}, Y_{Z}, \\ Y_{OVR} \end{array}$	z, Ē <u>c, Ē</u> n, Ē _Y , OE _{CT} , Y _C , Y _N ,				-0.45	
			\overline{SE} , SIO _o , SIO _n , QIO _o , QIO _n					-1.35	
Input high current	I _{IH1}	V _{CC} = 5.5 V, V _{IN} = 2.7 V	<u>C</u> P, <u></u> _0-I <u>E</u> _N , E _{OV} OE _{CT} , C	$\overline{E_{Z}}, \overline{E_{C}}, E_$				20	μΑ
			$\overline{CE}_{m}, \overline{C}$	– E _u				80	
			I _Z , I _C , I _N	, I _{OVR} , SE				60	1
			SIO _o , S QIO _n	IO _n , QIO _o ,				110	_
			Y _Z , Y _C ,	Y _N , Y _{OVR}				70	
Input high current	I _{IH2}	$V_{\rm CC}$ = 5.5 V, V	/ _{IN} = 5.5 V					1.0	mA
Off-state (high	I _{OZH} ,	V _{CC} = 5.5 V	СТ	V ₀ = 2.4 V				50	μA
impedance)	I _{OZL}			V _O = 0.5 V				-50	
output current		:	SIO _o , SIO _n ,	V ₀ = 2.4 V				110	
			QIO _o , QIO _n <u>2</u> /	V _O = 0.5 V				-1350	
			Y _Z , Y _C , Y _N ,	V ₀ = 2.4 V				70	
			Y _{OVR} <u>2</u> /	V _O = 0.5 V				-450	
Output short circuit current <u>3</u> /	I _{OS}	V _{CC} = 5.75 V,	V _O = 0.5 V				-30	-85	mA
See footnotes at end	of table.								
MICRO	STAND/	ARD DRAWING		SIZE A				86	017
DEFENSE S COLUM	UPPLY CEN MBUS, OHIC	NTER COLUMB 0 43218-3990	US		REVI	SION LEVE C	L	SHEET	4

		TABLE I. <u>Electric</u>	al performance	e characte	<u>eristics</u> - Co	ntinued.			
Test	Symbol	$\begin{array}{c} Conditions \\ -55^\circ C \leq T_C \leq +125^\circ C \\ +4.5 \ V \leq V_{CC} \leq +5.5 \ V \\ unless \ otherwise \ specified \end{array}$			Group A subgroups	Device type	Limits		Unit
							Min	Max	
Power supply current <u>4</u> /	I _{CC}	V _{CC} = 5.5 V	T _C = -55°C t +125°C	to	1, 2, 3	01		348	mA
			T _C = +125°0	C	2	_		222	
Setup time 1	t _{s1}	$C_L = 50 \text{ pF}$, see	e figure 4		9, 10, 11		15		ns
Hold time 1	t _{h1}	Inputs: I _Z , I _{IN} , I _C	OVR					5	ns
Setup time 2	t _{s2}	$C_L = 50 \text{ pF}$, see	e figure 4				28		ns
Hold time 2	t _{h2}	Inputs: I _C (I ₁ , I ₂	, I ₃ = 001)					5	ns
Setup time 3	t _{s3}	$C_L = 50 \text{ pF}$, see	e figure 4				15		ns
Hold time 3	t _{h3}	Inputs: I _C (I ₁ , I ₂	, I ₃ ≠ 001)					5	ns
Setup time 4	t _{s4}	$C_L = 50 \text{ pF}$, see	e figure 4				20		ns
Hold time 4	t _{h4}	Inputs: \overline{CE}_{μ}						3	ns
Setup time 5	t _{s5}	C_L = 50 pF, see	e figure 4				23		ns
Hold time 5	t _{h5}	Inputs: \overline{CE}_{m}						4	ns
Setup time 6	t _{s6}	$C_L = 50 \text{ pF}$, see	e figure 4				23		ns
Hold time 6	t _{h6}	Inputs: E_{z} , E_{c} ,	E _N , E _{OVR}					4	ns
Setup time 7	t _{s7}	$C_{L} = 50 \text{ pF}, \text{see}$	e figure 4				48		ns
Hold time 7	t _{h7}	Inputs: $I_0 - I_5$	0					2	ns
Setup time 8	t _{s8}	$C_1 = 50 \text{ pF}$, see	e figure 4				44		ns
Hold time 8	t _{h8}	Inputs: $I_6 - I_{10}$	0					2	ns
Setup time 9	teg	C ₁ = 50 pF. see	e fiqure 4				40		ns
Hold time 9	tha	Inputs: SE	0					0	ns
Setup time 10	t _{s10}	C ₁ = 50 pF. see	e fiqure 4				16		ns
Hold time 10	t _{b10}	Inputs: Y_7, Y_6 ,	Y_N, Y_{OVR}, I_{0-5}	= LOW				6	ns
Setup time 11	t _{e11}	$C_1 = 50 \text{ pF. see}$	e figure 4				20		ns
Hold time 11	t _{b11}	Inputs: SIO ₀ , S) _n			-	5	ns
Propagation delay 1: From (input):	t _{pd1}	$C_L = 50 \text{ pF}, \text{ see}$	e figure 4					40	ns
I _Z , I _C , I _N , I _{OVR} To (output):									
Propagation delay 2: From (input): CP To (output):	t _{pd2}							45	ns
Y_Z, Y_C, Y_N, Y_{OVR}									
Propagation delay 3:	t _{pd3}							38	ns
From (input): I_4 , I_5									
To (output):									
Y _Z , Y _C , Y _N , Y _{OVR}									
See footnotes at end of	table.								
MICRO				SIZE A				86	017
DEFENSE SI COLUM	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990				REV	ISION LEVE	L	SHEET	5

	-	TABLE I. Electrical performan	ice characte	<u>eristics</u> - C	Continued.			
Test	Symbol	$\begin{array}{c} Conditions\\ -55^\circ C \leq T_C \leq +125^\circ c\\ +4.5 \ V \leq V_{CC} \leq +5.5\\ unless \ otherwise \ spec \end{array}$	C V ified	Group A subgroup	A Device os type	Lii	mits	Unit
						Min	Max	
Propagation delay 4: From (input): I _Z , I _C , I _N , I _{OVR} To (output): CT	t _{pd4}	$C_L = 50 \text{ pF}$, see figure 4		9, 10, 11	01		44	ns
Propagation delay 5: From (input): CP To (output): CT	t _{pd5}						40	ns
Propagation delay 6: From (input): I ₀ - I ₅ To (output): CT	t _{pd6}						41	ns
Propagation delay 7: From (input): C _X To (output): C _O	t _{pd7}						22	ns
Propagation delay 8: From (input): CP To (output): C _o	t _{pd8}						28	ns
Propagation delay 9: From (input): I ₁ , I ₂ , I ₃ , I ₅ , I ₁₁ , I ₁₂ To (output): Co	t _{pd9}						42	ns
Propagation delay 10: From (input): SIO _n , QIO _n To (output): SIO _c	t _{pd10}						20	ns
Propagation delay 11: From (input): SIO _o , QIO _o To (output): SIO	t _{pd11}						20	ns
Propagation delay 12: From (input): I _C , I _N , I _{OVR} To (output): SIO _o	t _{pd12}						29	ns
See footnotes at end of	table.							
MICRO	STANDA CIRCUIT	ARD DRAWING	SIZE A				86	017
DEFENSE SU COLUM	JPPLY CEN IBUS, OHIC	NTER COLUMBUS 0 43218-3990		RE	EVISION LEVE C	L	SHEET	6

		TABLE I. Electrical performan	ice characte	<u>eristics</u> - C	ontinued.				
Test	Symbol	$\begin{array}{c} \text{Conditions} \\ -55^\circ\text{C} \leq T_\text{C} \leq +125^\circ\text{H} \\ +4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq +5.5 \\ \text{unless otherwise spec} \end{array}$	C V ified	Group A subgroups	Device type	Li	mits	Unit	
						Min	Max		
Propagation delay 13: From (input): SIO _n , QIO _n To (output): QIO _o	t _{pd13}	C_L = 50 pF, see figure 4		9, 10, 11	01		20	ns	
Propagation delay 14: From (input): SIO _o , QIO _o To (output): QIO _n	t _{pd14}						20	ns	
Propagation delay 15: From (input): CP To (output): SIO _o , SIO ₂ , QIO ₂ , QIO ₂	t _{pd15}						32	ns	
Propagation delay 16: From (input): $I_6 - I_{10}$ To (output): SIO _o , SIO _n , QIO _o , QIO _n	t _{pd16}						31	ns	
Enable time 1: From (input): OE _{CT} To (output): CT	t _{EN1}						25	ns	
Disable time 1: From (input): OE _{CT} To (output): CT	t _{DIS1}	$C_L = 5 \text{ pF}$, see figure 4					18	ns	
Enable time 2: From (input): \overline{SE} To (output): SIO_0 , SIO_n , QIO_0 , QIO_n	t _{EN2}	C_L = 50 pF, see figure 4					35	ns	
Disable time 2: From (input): SE To (output): SIO _o , SIO _n , QIO _o , QIO _n	t _{DIS2}	$C_L = 5 \text{ pF}$, see figure 4					20	ns	
See footnotes at end of	table.								
MICRO		ARD DRAWING	SIZE A				86	017	
DEFENSE SU COLUM	JPPLY CEN IBUS, OHIC	NTER COLUMBUS 0 43218-3990		RE	ISION LEVE/ C	L	SHEET 7		

	-	TABLE I. Electrical performance charac	<u>teristics</u> - Cor	ntinued.			
Test Symbol		$\begin{array}{c} Conditions\\ -55^\circ C \leq T_C \leq +125^\circ C\\ +4.5 \ V \leq V_{CC} \leq +5.5 \ V\\ unless \ otherwise \ specified \end{array}$	Group A subgroups	Device type	Lir	Unit	
					Min	Max	
Enable time 3: From (input): I ₁₀ To (output): SIO _o , SIO _n , QIO _o , QIO _n	t _{EN3}	$C_L = 50 \text{ pF}$, see figure 4	9, 10, 11	01		43	ns
Disable time 3: From (input): I ₁₀ To (output): SIO _o , SIO _n , QIO _o , QIO _n	t _{DIS3}	$C_L = 5 \text{ pF}$, see figure 4				32	ns
Enable time 4: From (input): OEY To (output): Y _z , Y _C , Y _N , Y _{OVR}	t _{EN4}	$C_L = 50 \text{ pF}$, see figure 4				28	ns
Disable time 4: From (input): OEY To (output): Y _z , Y _C , Y _N , Y _{OVR}	t _{DIS4}	$C_L = 5 \text{ pF}$, see figure 4				23	ns
Enable time 5: From (input): $I_0 - I_5$ To (output): Y_Z , Y_C , Y_N , Y_{OVR}	t _{EN5}	$C_L = 50 \text{ pF}$, see figure 4				30	ns
Disable time 5: From (input): $I_0 - I_5$ To (output): Y_Z , Y_C , Y_N , Y_{OVR}	t _{DIS5}	C _L = 5 pF, see figure 4				41	ns
Minimum clock low time	t _{CL}				25		ns
Minimum clock high time	t _{CH}				25		ns

1/ These input levels provide zero noise immunity and should only be static tested in a noise-free environment (not functionally tested).

2/ These are three-state outputs internally connected to TTL inputs. Input characteristics are measured with output enables high.

3/ Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 4/ Worst case I_{CC} is at minimum temperature.

STANDARD MICROCIRCUIT DRAWING	SIZE A		86017
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	8

Case outline Y

NOTES:

1. Index area: A notch, tab, or pin one identification mark shall be located within the shaded area shown.

2. E1 allows for Ag-Cu alloy brazed overrun.

3. Dim. b and c increase by 3 mils max. limit if tinplate/solder dip lead finish is applied.

4. All dimensions are given in inches.

 STANDARD
 SIZE
 86017

 MICROCIRCUIT DRAWING
 REVISION LEVEL
 SHEET

 DEFENSE SUPPLY CENTER COLUMBUS
 REVISION LEVEL
 SHEET

 DSCC FORM 2234
 DSCC FORM 2234
 SHEET

Device type		01	
Case o	utline Q	Case	outline Y
Terminal number	Terminal symbol	Terminal numbe	r Terminal symbol
1	I ₇	1	I ₃
2	\overline{CE}_{μ}	2	CEm
3	I ₆	3	Ēz
4	I ₅	4	NC
5	I_4	5	Ι _Ζ
6	l ₃	6	V _{cc}
7	CE _m	7	Ēc
8	Ēz	8	Ι _C
9	Ι _Ζ	9	Ē _N
10	V _{cc}	10	I _N
11	Ēc	11	E _{OVR}
12	Ι _C	12	NC
13	Ē _N	13	I _{OVR}
14	I _N	14	CP
15	E _{OVR}	15	Ι _ο
16	I _{OVR}	16	I ₁
17	CP	17	OEY
18	Ι _ο	18	I ₂
19	I ₁	19	I ₁₁
20	OEY	20	I ₁₂
21	I ₂	21	C _x
22	I ₁₁	22	Co
23	I ₁₂	23	OE _{CT}
24	C _x	24	СТ
25	Co	25	Y _{OVR}
26	OE _{CT}	26	Y _N
27	СТ	27	GND
28	Y _{OVR}	28	Y _C
29	Y _N	29	Yz
30	GND	30	QIO _n
31	Y _C	31	QIOo
32	Yz	32	SIO _n
33	QIO _n	33	SIO
34	QIOo	34	SE
35	SIOn	35	I ₁₀
36	SIO	36	l ₉
37	SE	37	I ₈
38	I ₁₀	38	<u> </u>
39	lg	39	CE _μ
40	I ₈	40	I ₆
		41	l ₅
		42	I ₄
	FIGURE 2. <u>Terr</u>	ninal connections.	
TANDARD		SIZE A	
	NG	<u> </u>	
LT CENTER COL	90 01VIBUS		
,			0

10

SWITCHING TEST CIRCUIT

Pin (DIP)	Pin (FP)	Pin label	Test circuit	R ₁	R ₂
25	22	Co	В	470	3k
27	24	СТ	А	430	1k
28	25	Y _{OVR}	А	220	1k
29	26	Y _N	А	220	1k
31	28	Y _C	А	220	1k
32	29	Yz	А	220	1k
33	30	QIO _n	А	430	1k
34	31	QIOo	А	430	1k
35	32	SIOn	А	430	1k
36	33	SIO _o	А	430	1k

NOTES:

1. C_L = 50 pF includes scope probe, wiring, and stray capacitances without device in test fixture.

2. S_1 , S_2 , and S_3 are closed during function tests and all ac tests except output enable test.

3. S_1 and S_3 are closed while S_2 is open for t_{PZH} test. S_1 and S_2 are closed while S_3 is open for t_{PZL} test. 4. C_L = 5 pF for output disable tests.

FIGURE 4. Load circuits.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		86017
	REVISION LEVEL	SHEET
	С	12

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9, 10, 11**
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

TABLE II. Electrical test requirements.

* PDA applies to subgroup 1.

** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroups 7 and 8 shall include verification of the input to output logic combinations.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		86017
		REVISION LEVEL C	SHEET 13

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		86017
		REVISION LEVEL C	SHEET 14

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 05-04-11

Approved sources of supply for SMD 86017 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN 2/
8601701QA	3V146	2904/BQA
8601701YA	3V146	2904/BYA
8601701YC	3V146	2904/BYC

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

Vendor name and address

3V146

Rochester Electronics Inc. 10 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.