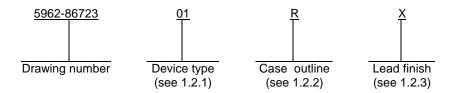
								F	REVISI	ONS										
LTR						DESCR	IPTION	١					DATE (YR-MO-DA)			APPROVED				
А	Add (02. Ed	itorial c	hanges	s throu	ghout.	Chang	e draw	ring CA	GE to		90-03-07			W. Heckman				
В	Char	Changes IAW NOR 5962-R023-99 Ijs								99-0	1-27		R	Raymon	nd Monr	nin				
С	Upda		flect la					equire	ments.	Editori	al char	nges			1-28				nd Monr	
D				current	require	ements	. Edito	rial cha	anges t	through	out	gap		09-0	3-12		Robe	ert M. H	leber	
CURRENT CONTROL The original firm REV SHEET REV SHEET REV STATUS	st sheet D 15					olaced.	D	D	D	D	D	D	D	D	D	D	D	D	D	D
)									4	5	6	7	8	9	10	11	12	13	14
PMIC N/A	David W. Queenan STANDARD CHECKED BY				3	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990 http://www.dscc.dla.mil														
MICROCIRCUIT DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE				CHE	CKED I	3Y						CC						990		
THIS DRAW FOR U DEPA AND AGE	AWING IS A JSE BY ARTMEN	CUIT G VAILAE ALL ITS OF THE		D. APPF N.	A. DiC	BY uck		ATE		3-S	TATE	CIRCU	JIT, E	DIGIT	AL, E	SIPO	LAR,	ОСТ	AL, EIVE	R,


SHEET

1 OF

16

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01 02	2947 2946	Octal, 3-state, bi-directional, bus transceivers noninverting Octal, 3-state, bi-directional, bus transceivers inverting

1.2.2 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
R	GDIP1-T20 or GDIP2-T20	20	Dual-in-line package
2	CQCC1-N20	20	Square chip carrier

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage	
Storage temperature range	
Maximum power dissipation (P_D) per device $1/$	
Lead temperature (soldering, 10 seconds)	+300°C
Thermal resistance, junction-to-case (θ_{JC})	See MIL-STD-1835
Junction temperature (T _J)	+175°C

1.4 Recommended operating conditions.

Supply voltage range (V _{CC})	+4.5 V dc to 5.5 V dc
Minimum high level input voltage (V _{IH})	
Maximum low level input voltage (V _{IL})	0.7 V dc
Ambient operating temperature range (T _A)	-55°C to +125°C

1/ Must withstand the added P_D due to short circuit test (e.g. I_{OS}).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.2.5 <u>Test circuit and switching waveforms</u>. The test circuit and switching waveforms shall be as specified on figures 4 through 6.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 3

- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 <u>Certification/compliance mark.</u> A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
 - 3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD
MICROCIRCUIT DRAWING

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		5962-86723
	REVISION LEVEL D	SHEET 4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Condi -55°C ≤ T _A		Group A subgroups	Device type	Limits		Unit	
		unless otherw	ise specified			Min	Max		
High level output voltage, $A_0 - A_7$	V _{OH1}	$V_{CC} = 4.5 \text{ V},$ $T/\overline{R} = 0.8 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	1, 2, 3	All	3.35		V	
		CD = 0.7 V	I _{OH} = -3.0 mA	1, 2, 3	All	2.7		V	
High level output voltage, B ₀ - B ₇	V _{OH2}	$V_{CC} = 4.5 \text{ V},$ $T/R = 2.0 \text{ V},$	I _{OH} = -0.4 mA	1, 2, 3	All	3.35		V	
		CD = 0.7 V	I _{OH} = -5.0 mA	1, 2, 3	All	2.7		V	
			I _{OH} = -10 mA	1, 2, 3	All	2.4		V	
Low level output voltage, A ₀ - A ₇	V _{OL1}	$V_{CC} = 4.5 \text{ V}, \text{ T/R} = CD = 0.7 \text{ V}, I_{OL} = 12 \text{ C}$	•	1, 2, 3	All		0.4	V	
Low level output voltage, B ₀ - B ₇	V _{OL 2}	$V_{CC} = 4.5 \text{ V},$ $T/\overline{R} = 2.0 \text{ V},$	I _{OL} = 20 mA	1, 2, 3	All		0.4	V	
		CD = 0.7 V	I _{OL} = 48 mA	1, 2, 3	All		0.55	V	
Input clamp voltage, A ₀ - A ₇ and B ₀ - B ₇	V _{I C1}	$V_{CC} = 4.5 \text{ V, CD} = 2$ $I_{IN} = -12 \text{ mA}$	2.0 V,	1, 2, 3	All		-1.5	V	
Input clamp voltage,	V _{I C2}	$V_{CC} = 4.5 \text{ V}, I_{IN} = -12$	2 mA	1, 2, 3	All		-1.5	V	
High level input current, A ₀ - A ₇	I _{IH1}	$V_{CC} = 5.5 \text{ V}, \text{ T/R} = CD = 0.7 \text{ V}, V_{IN} = 2$	•	1, 2, 3	All		80	μА	
High level input current, B ₀ - B ₇	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \text{ T/R} = V_{IN} = 2.7 \text{ V}$		1, 2, 3	All		80	μА	
High level input current,	I _{IH3}	$V_{CC} = 5.5 \text{ V},$ $V_{IN} = 2.7 \text{ V}$		1, 2, 3	All		20	μА	
High level input current, A ₀ - A ₇ , B ₀ - B ₇	I _{IH4}	$V_{CC} = 5.5 \text{ V}, CD = 2 \text{ V}_{IN} = 5.5 \text{ V}$	2.0 V,	1, 2, 3	All		1	mA	
High level input current,	I _{IH5}	$V_{CC} = 5.5 \text{ V},$ $V_{IN} = 5.5 \text{ V}$		1, 2, 3	All		1	mA	
Low level input current, A ₀ - A ₇	I _{IL1}	$V_{CC} = 5.5 \text{ V}, \text{ T/R} = $ $CD = 0.7 \text{ V}, V_{IN} = 0$		1, 2, 3	All		-200	μА	
Low level input current, B ₀ - B ₇	I _{IL2}	$V_{CC} = 5.5 \text{ V}, \text{ T/R} = 0.7 \text{ V}$ $CD = 0.7 \text{ V}, \text{V}_{IN} = 0.7 \text{ V}$	= 0.7 V,	1, 2, 3	All		-200	μА	
Low level input current,	I _{IL3}	$V_{CC} = 5.5 \text{ V},$ $V_{IN} = 0.4 \text{ V}$	<u>· · · · </u>	1, 2, 3	All		-250	μА	

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Cond -55°C ≤ T _A	Group A subgroups	Device type	Limits		Unit	
		unless otherv	unless otherwise specified			Min	Max	
Short circuit output current, A ₀ - A ₇	I _{OS1}	,	$V_{CC} = 5.5 \text{ V}, \text{ T/}\overline{\text{R}} = 0.8 \text{ V},$ $CD = 0.7 \text{ V}, V_{OUT} = 0.0 \text{ V} \underline{1}/$		All	-10	-75	mA
Short circuit output current, B ₀ - B ₇	I _{OS2}	$V_{CC} = 5.5 \text{ V}, \text{ T/R} = 2.0 \text{ V},$ $CD = 0.7 \text{ V}, V_{OUT} = 0.0 \text{ V}$ 1/		1, 2, 3	All	-25	-150	mA
Functional tests		See 4.3.1c		7, 8	All			
Off state output current high	l _{OZH}	V _{CC} = 5.5 V, CD = 2.0 V,	A ₀ - A ₇	1, 2, 3	All		80	μА
		V _{OUT} = 4.0 V	B ₀ - B ₇	1, 2, 3	All		200	μА
Off state output current low, A ₀ - A ₇ , B ₀ - B ₇	l _{OZL}	$V_{CC} = 5.5 \text{ V, CD} = V_{OUT} = 0.4 \text{ V}$	2.0 V,	1, 2, 3	All		-200	μА
Supply current	I _{CC}	V _{CC} = 5.5 V, CD = 2.0 V,	V _{IN} = 0.4 V	1, 2, 3	01		100	mA
		$T/\overline{R} = 0.4 \text{ V}$	V _{IN} = 2.0 V	1, 2, 3	02		100	mA
		$V_{CC} = 5.5 \text{ V},$ CD = 0.4 V,	$V_{IN} = 0.4 V$	1, 2, 3	01		140	mA
		T/R = 2.0 V	$V_{IN} = 2.0 \text{ V}$	1, 2, 3	02		150	mA
Propagation delay time,	t _{PHL1}	$CD = T/\overline{R} = 0.4 \text{ V}$	9	01		18	ns	
input B port to output A port		$R_1 = 1 k\Omega$,		<u>2</u> /	02		12	ns
		$R_2 = 5 \text{ k}\Omega,$ $C_1 = 30 \text{ pF}$		9, 10, 11	01		24	ns
		(See figure 4)		<u>3</u> /	02		19	ns
	t _{PLH1}			9	01		18	ns
				<u>2</u> /	02		16	ns
				9, 10, 11	01		24	ns
				<u>3</u> /	02		23	ns
Disable time,	t _{PLZ1}	T/R = 0.4 V,	$B_0 - B_7 = 0.4 \text{ V},$	9 <u>2</u> /	All		15	ns
CD to A port		$R_5 = 1 \text{ k}\Omega$, $C_4 = 15 \text{ pF}$	S ₃ = 1	9, 10, 11 <u>3</u> /	All		21	ns
	t _{PHZ1}	(See figure 6)	$B_0 - B_7 = 2.4 \text{ V},$	9 <u>2</u> /	All		15	ns
			$S_3 = 0$	9, 10, 11 <u>3</u> /	All		21	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 6

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	$-55^{\circ}C \le T_A \le +125^{\circ}C$ sub		Group A subgroups	Device type	Limits		Unit
			wise specified			Min	Max	
Enable time, CD to A port	t _{PZL1}	$C_4 = 30 \text{ pF},$ T/ $R = 0.4 \text{ V},$	$B_0 - B_7 = 0.4 \text{ V},$ $S_3 = 1,$	9 <u>2</u> /	All		25	ns
		(See figure 6)	$R_5 = 1 \text{ k}\Omega$	9, 10, 11 <u>3</u> /	All		33	ns
	t _{PZH1}	<u>4</u> /	$B_0 - B_7 = 2.4 \text{ V},$ $S_3 = 0,$	9 <u>2</u> /	All		25	ns
			$R_5 = 5 \text{ k}\Omega$	9, 10, 11 <u>3</u> /	All		33	ns
Propagation delay time,	t _{PHL2}	CD = 0.4 V,	$R_1 = 100 \Omega$,	9 <u>2</u> /	01		23	ns
input A port to output B port		$T/\overline{R} = 2.4 \text{ V},$ (See figure 4)	(See figure 4) $C_1 = 300 \text{ pF}$		02		18	ns
·				9, 10, 11	01		34	ns
	4/	<u>4</u> /		<u>3</u> /	02		29	ns
			$R_1 = 667 \Omega$,	9 <u>2</u> /	01		18	ns
			$R_2 = 5 \text{ k}\Omega,$ $C_1 = 45 \text{ pF}$		02		12	ns
				9, 10, 11	01		25	ns
				<u>3</u> /	02		19	ns
	t _{PLH2}	1	$R_1 = 100 \Omega$,	9 <u>2</u> /	01		23	ns
			$R_2 = 1 \text{ k}\Omega,$ $C_1 = 300 \text{ pF}$		02		20	ns
			01 = 300 pi	9, 10, 11	01		34	ns
				<u>3</u> /	02		30	ns
			$R_1 = 667 \Omega$,	9 <u>2</u> /	01		18	ns
			$R_2 = 5 \text{ k}\Omega,$ $C_1 = 45 \text{ pF}$		02		14	ns
			01 – 40 pi	9, 10, 11	01		25	ns
				<u>3</u> /	02		22	ns
Disable time, CD to B port	t _{PLZ2}	$T/R = 2.4 \text{ V},$ $R_5 = 1 \text{ k}\Omega,$	$A_0 - A_7 = 0.4 \text{ V},$ $S_3 = 1$	9 <u>2</u> /	All		18	ns
·		$C_4 = 15 \text{ pF},$ (See figure 6)		9, 10, 11 <u>3</u> /	All	_	26	ns
	t _{PHZ2}	<u>4</u> /	$A_0 - A_7 = 2.4 \text{ V},$ $S_3 = 0$	9 <u>2</u> /	All		15	ns
		_		9, 10, 11 <u>3</u> /	All		21	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 7

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	$-55^{\circ}C \le T_A \le +125^{\circ}C$		Group A subgroups	Device type			Unit
			unless otherwise specified		·	Min	Max	
Enable time, CD to B port	t _{PZL2}	$A_0 - A_7 = 0.4 \text{ V},$ T/R = 2.4 V,	$R_5 = 100 \Omega$, $C_4 = 300 pF$	9 <u>2</u> /	All		35	ns
·		$S_3 = 1$, (See figure 6)		9, 10, 11 <u>3</u> /	All		43	ns
		$\frac{4}{}$ $R_{5} = 667 \ \Omega,$ $C_{4} = 45 \ pF$ $R_{5} = 667 \ \Omega,$ $C_{4} = 45 \ pF$ $R_{5} = 1 \ k\Omega,$ $C_{4} = 300 \ pF$ $R_{5} = 5 \ k\Omega,$ $C_{4} = 45 \ pF$		9 <u>2</u> /	All		22	ns
			Ο4 = 40 μι	9, 10, 11 <u>3</u> /	All		30	ns
	t _{PZH2}			9 <u>2</u> /	All		35	ns
			$C_4 = 300 \text{ pF}$	9, 10, 11 <u>3</u> /	All		43	ns
				9 <u>2</u> /	All		22	ns
			C ₄ = 45 pF	9, 10, 11 <u>3</u> /	All		30	ns
Propagation delay time,	t _{TRL}	t_{TRL} A port, $S_2 = 1$, $C_2 = 30 \text{ pF}$; $CD = 0.4 \text{ V}$,		9 <u>2</u> /	01		38	ns
from transmit mode to receive, T/\overline{R} to A port					02		33	ns
		$R_3 = 1 k\Omega$		9, 10, 11	01		48	ns
		(See figure 5)	ee figure 5) <u>4</u> /	<u>3</u> /	02		43	ns
		B port, $S_1 = 0$,		9 <u>2</u> /	01		38	ns
		$R_4 = 100 \Omega;$ $C_3 = 5 pF$			02		33	ns
			<u>4</u> /	9, 10, 11	01		48	ns
				<u>3</u> /	02		43	ns
	t _{TRH}	A port, $S_2 = 0$, $C_2 = 30 \text{ pF}$;		9 <u>2</u> /	01		38	ns
		$C_2 = 30 \text{ pr},$ CD = 0.4 V,			02		33	ns
		$R_3 = 5 \text{ k}\Omega$	A /	9, 10, 11 <u>3</u> /	01		48	ns
			<u>4</u> /	9 <u>2</u> /	02		43	ns
R	B port, $S_1 = 1$, $R_4 = 100 \Omega$;	B port, $S_1 = 1$,		01		38	ns	
		$C_3 = 5 \text{ pF}$			02		33	ns
		(See figure 5)	<u>4</u> /	9, 10, 11 <u>3</u> /	01		48	ns
					02		43	ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 8

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol		Group A subgroups	Device type	Lin	nits	Unit	
		unless otherwise specified			Min	Max		
Propagation delay time,	t _{RTL}	A port, $S_2 = 0$,	9 <u>2</u> /	01		40	ns	
from transmit mode to receive, T/R to B port		$C_2 = 5 \text{ pF};$ CD = 0.4 V,		02		35	ns	
Todatto, titt to 2 point		$R_3 = 300 \Omega$	9, 10, 11	01		51	ns	
		(See figure 5) $\underline{4}$ /	<u>3</u> /	02		47	ns	
		B port, $S_1 = 1$,	9 <u>2</u> /	01		40	ns	
		$R_4 = 100 \Omega;$ $C_3 = 300 pF$		02		35	ns	
		(See figure 5) <u>4/</u>	9, 10, 11	01		51	ns	
			<u>3</u> /	02		47	ns	
	t _{RTH}	A port, $S_2 = 1$,	9 <u>2</u> /	01		40	ns	
		$C_2 = 5 \text{ pF};$ CD = 0.4 V,		02		35	ns	
	$R_3 = 300 \Omega$ (See figure 5) B port, $S_1 = 0$, $R_4 = 1 k\Omega$;		$R_3 = 300 \Omega$	9, 10, 11	01		51	ns
		(See figure 5) <u>4/</u>	<u>3</u> /	02		47	ns	
		•	9 <u>2</u> /	01		40	ns	
			$R_4 = 1 \text{ k}\Omega;$ $C_3 = 300 \text{ pF}$		02		35	ns
		(See figure 5) <u>4/</u>	9, 10, 11	01		51	ns	
			<u>3</u> /	02	_	47	ns	

Not more than one output should be shorted at a time and the duration of the short circuit condition should not exceed <u>1</u>/ one second.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 9

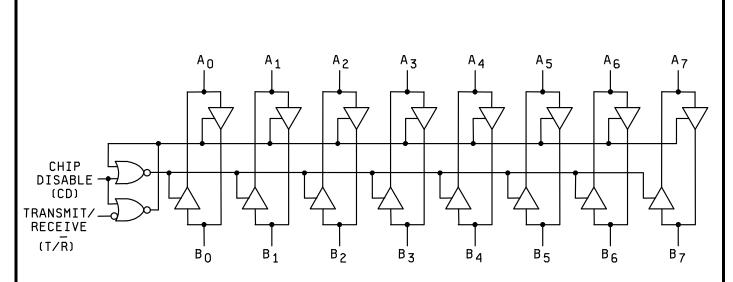
9

 $V_{CC} = 5.0 \text{ V}.$

 $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}.$

All ac loads are correlated from load of 50 pF during test.

Device types	01	02
Case outlines	R and 2	R and 2
Terminal number	Terminal	symbols
1	A_0	A_0
2	A ₁	A ₁
3	A ₂	A_2
4	A_3	A ₃
5	A_4	A_4
6	A ₅	A ₅
7	A ₆	A ₆
8	A ₇	A ₇
9	CD	CD
10	GND	GND
11	T/R	T/R
12	B ₇	B ₇
13	B ₆	B ₆
14	B ₅	B ₅
15	B ₄	B ₄
16	B ₃	B_3
17	B ₂	B ₂
18	B ₁	B ₁
19	B ₀	B ₀
20	V _{CC}	V _{CC}


FIGURE 1. <u>Terminal connections</u>.

Inputs	Conditions			
Chip Disable	L L H			
Transmit/ Receive	L	Н	X	
A Port	Out	In	Z	
B Port	In	Out	Z	

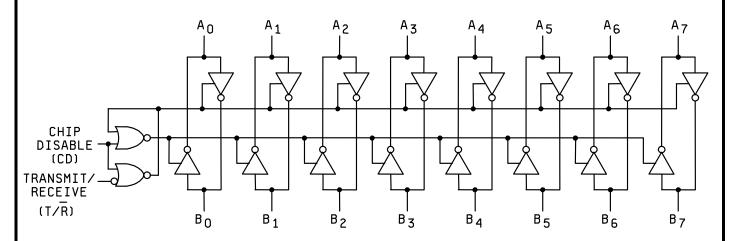
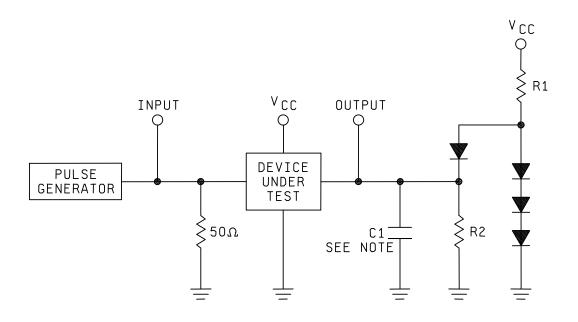
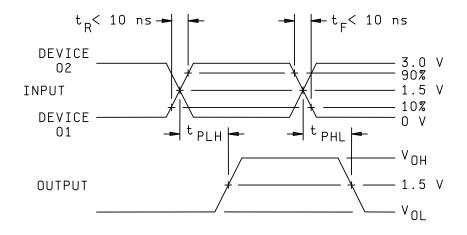

H = high level L = low level Z = high impedance state X = irrelevant

FIGURE 2. Truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 10

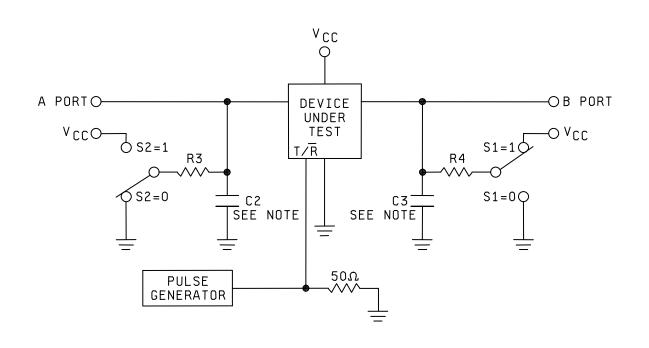

DEVICE 01 (NONINVERTING)

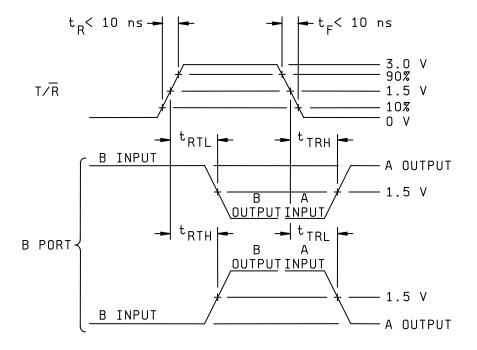


DEVICE 02 (INVERTING)

FIGURE 3. Logic diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 11

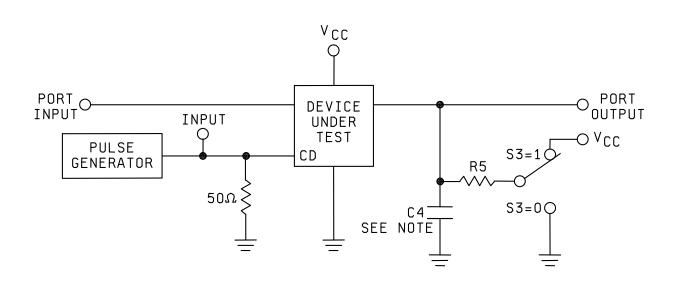


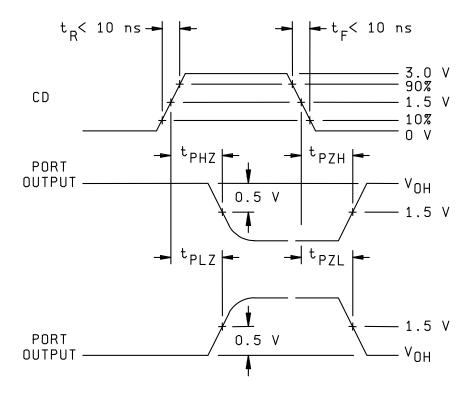


NOTE: C1 includes test fixture capacitance.

FIGURE 4. Test circuit and switching waveforms - From A/B port to B/A port.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 12





NOTE: C2 and C3 include test fixture capacitance.

FIGURE 5. Test circuit and switching waveforms - From T/R to A or B port.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 13

NOTE: C4 includes test fixture capacitance, port input is in a fixed logical condition.

FIGURE 6. Test circuit and switching waveforms - From CD to A or B port.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 14

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10**, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroups 7 and 8 shall include verification of the truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-86723
		REVISION LEVEL D	SHEET 15

^{**} Subgroups 10 and 11, if not tested, shall be guaranteed to the limits specified in table I.

- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.
- 6.3 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 Record of users. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 Comments. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.
- 6.6 Approved sources of supply. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-86723
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL D	SHEET 16

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 09-03-12

Approved sources of supply for SMD 5962-86723 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor	
microcircuit drawing	CAGE	similar	
PIN <u>1</u> /	number	PIN <u>2</u> /	
5962-8672301RA	3V146	2947/BRA	
	0DKS7	GEM07501QRA	
	<u>3</u> /	AM2947/BRA	
5962-8672301RC	0DKS7	GEM07501QRC	
5962-86723012A	3V146	2947/B2A	
	0DKS7	GEM07501Q2A	
	<u>3</u> /	AM2947/B2A	
5962-86723012C	0DKS7	GEM07501Q2C	
5962-8672302RA	3V146	2946/BRA	
	0DKS7	GEM13302BRA	
	<u>3</u> /	AM2947/BRA	
5962-8672302RC	0DKS7	GEM13302BRC	
5962-86723022A	3V146	2946/B2A	
	0DKS7	GEM13302B2A	
	<u>3</u> /	AM2947/B2A	
5962-86723022C	0DKS7	GEM13302B2C	

- The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>Z</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ No current source.

 Vendor CAGE
 Vendor name

 number
 and address

3V146 Rochester Electronics

16 Malcom Hoyt Drive Newburyport, MA 01950

0DKS7 Sarnoff, David Research Center

201 Washington Road Princeton, NJ 08540-5300

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.