LTR									REVISI	ONS										
						DESCF	RIPTIO	N					DA	ATE (YI	R-MO-	DA)		APPF	ROVED)
А	Add title.	criteria Updat	for QD e boilei) device rplate te	e types o MIL-F	. Add v PRF-38	vendor 535 rec	CAGE	3V146. ents	Corre CFS	ct the S	SMD	02-06-10			ſ	Thomas M. Hess			
В	Corre	ect the ence 5	l _⊪ test on figu	V _{cc} fro ure 4	m 4.5 ∖ ∙ CFS	V to 5.5	i V in ta	ible I.	Correct	wavefo	orm tim	ing	02-07-24			٦	Thomas M. Hess		SS	
С	Upda	ate boil	erplate	to curr	ent MI	L-PRF-	38535	require	ments.	- CFS	5		07-12-05 Thomas M				s M. He	SS		
The second																				
The current	(:A(i																			
		E is 6	7268	• T	Г	1	1	1	1	1	1	1	1		1		1	1	1	1
REV		E is 6	7268																	
SHEET																				
	C 15	E is 6	C 17																	
SHEET REV SHEET	C	C	C				C	C	C	C	C	C	C	C	C	C	C	C	C	C
SHEET REV	C	C	C	RE\			C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	C 9	C 10	C 11	C 12	C 13	C 14
SHEET REV SHEET REV STATUS OF SHEETS	C	C	C	RE	EET	DBY			-											
SHEET REV SHEET REV STATUS	C	C	C	RE					-		5	6	7	8	9	10	11	12	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	C	C 16	C	RE\ SHE	EET	Ray N	1		-		5	6 EFEN	7 SE SI	8 UPPL	9 .Y CE			12 -UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	C 15 NDAF	C 16 RD CUIT	C	RE\ SHE	EET PAREI	Ray M BY	1	2	-		5	6 EFEN	7 SE SI	8 UPPL	9 .Y CE , OHI	10 NTEF	11 R COL 218-3	12 -UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	C 15 NDAF DCIR(C 16 RD CUIT	C	RE\ SHE PRE	EET PAREI	Ray M BY D. A. D	1 Nonnin	2	-		5	6 EFEN	7 SE SI	8 UPPL	9 .Y CE , OHI	10 NTEF 0 432	11 R COL 218-3	12 -UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN FOR U	C 15 NDAF DCIRC AWIN	C 16 RD CUIT G	C 17	RE\ SHE PRE	EET PAREI	Ray M BY D. A. D D BY	1 Nonnin	2	-	4	5 DI	6 EFEN CC	7 SE SI DLUN http	8 UPPL IBUS p://ww	9 .Y CE , OHI0 vw.ds	10 INTER O 432 Scc.dl	11 R COL 218-3 a.mil	12 -UMB 990	13 US	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRO DRA THIS DRAWIN FOR U	C 15 NDAF DCIRC AWIN NG IS A SE BY NCIES (C 16 RD CUIT G VAILAI ALL ITS DF THE	C 17 BLE	RE\ SHE PRE	EET PAREI CKED	Ray M BY D. A. I D BY N. A.	1 Nonnin DiCenzo Hauck	2 DATE	-	4 MIC	5 DI	6 EFEN CC	7 SE SI DLUW http	8 UPPL IBUS D://ww	9 .Y CE , OHI w.ds	10 NTEF 0 432 scc.dl	11 218-39 a.mil	12 -UMB 990 DYN	13	14 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR U DEPAR AND AGEN DEPARTMEN	C 15 NDAF DCIRC AWIN NG IS A SE BY NCIES (C 16 RD CUIT G VAILAI ALL ITS DF THE DEFEN	C 17 BLE	RE\ SHE PRE CHE	EET PAREI CKED ROVEI	Ray N BY D. A. I D BY N. A. APPR(20 Ap	1 Nonnin DiCenzo Hauck DVAL E ril 1987	2 DATE	-	4 MIC ME	5 DI	6 EFEN CC CIRCI	7 SE SI DLUW http	8 IBUS DIGIT COLLI	9 .Y CE , OHI w.ds	10 NTEF 0 432 CC.dl	11 218-33 a.mil	12 -UMB 990 DYN		14 C
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAI MICRC DRA THIS DRAWIN FOR U DEPAR AND AGEN DEPARTMEN	C 15 NDAF OCIRC AWIN NG IS A SE BY NG IS A SE BY NCIES (NT OF I	C 16 RD CUIT G VAILAI ALL ITS DF THE DEFEN	C 17 BLE	RE\ SHE PRE CHE	EET PAREI CKED ROVEI	Ray N BY D. A. I D BY N. A. APPR(20 Ap	1 Nonnin DiCenzo Hauck DVAL E ril 1987	2 DATE	-	4 MIC ME	5 DI CROC MOR ZE	6 EFEN CC CIRCI	7 SE SI DLUN http JIT, I DNTR GE CC 14933	8 IBUS DIGIT COLLI	9 .Y CE , OHI w.ds	10 NTEF 0 432 CC.dl	11 218-33 a.mil	12 -UMB 990 DYN HIC S		14 C

1.	SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.

1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

Drawing number	Device type Case of (see 1.2.1) (see 1	1.2.2) (see 2	1.2.3)	
Device type	device type(s) identify the circui Generic number	t function as follows.	Circuit function	
01	2964B		Dynamic Memory Co	ntroller
1.2.2 <u>Case outline(s)</u> . The <u>Outline letter</u> Q	e case outline(s) are as designat <u>Descriptive designator</u> GDIP1-T40 or CDIP2-T40	ed in MIL-STD-1835 <u>Terminals</u> 40	i and as follows: <u>Package style</u> Dual-in-line	
1.3 Absolute maximum rat				chip camer
Input voltage range Storage temperature ra Maximum power dissip Lead temperature (sole Thermal resistance, ju Junction temperature (DC voltage applied to DC output current, into DC input current	V_{CC}) ange bation, P _D <u>1</u> / dering, 10 seconds) nction-to-case (θ_{JC}) T _J) outputs for high output state o outputs		 -0.5 V dc to +5.5 V dc -65°C to +150°C 0.9 W at T_C = 125°C +300°C See MIL-STD-1835 155°C -0.5 V dc to V_{CC} maximum +20 mA 	
Minimum high-level inp Maximum low-level inp Case operating temper	ng conditions. but voltage (V _{IH}) but voltage (V _{IL}) rature range (T _C) d P _D due to short circuit test (e.g		+0.8 V dc	5 V dc maximum
-	NDARD UIT DRAWING	SIZE A		5962-87574

MICROCIRCUIT DRAWINGA0002 0101DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990REVISION LEVEL
CSHEET
2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL OTD 1025		Interface Standard Fleetranic Component Cose O

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at <u>http://assist.daps.dla.mil/quicksearch/</u> or <u>http://assist.daps.dla.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.

- 3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein.
- 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
- 3.2.3 <u>Truth tables</u>. The truth tables shall be as specified on figure 2.
- 3.2.4 <u>Block diagram</u>. The block diagram shall be as specified on figure 3.
- 3.2.5 <u>Timing waveforms</u>. The timing waveforms shall be as specified on figure 4.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	3

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.

3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.

3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.

3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	4

Test	Symbol	$\label{eq:Symbol} Symbol \qquad \begin{array}{c} Conditions \\ -55^\circ C \leq T_C \leq +125^\circ C \\ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ unless \ otherwise \ specified \end{array}$		Group A subgroups	Device type	Lir	Unit		
			1			Min	Max		
Output high voltage	V _{OH}	V _{CC} = 4.5 V V _{IN} = V _{IH} or V _{IL}	TC	1, 2, 3	01	2.5		V	
		I _{OH} = -1 mA	Others	1, 2, 3	01	3.0		V	
Output high voltage	V _{OH}	V _{CC} = 4.5 V V _{IN} = V _{IH} or V _{IL} I _{OH} = -15 mA	All outputs except TC	1, 2, 3	01	2.0		V	
Output low voltage	V _{OL}	$V_{CC} = 4.5 V$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	All out <u>puts</u> except TC. I _{OL} = 16 mA	1, 2, 3	01		0.5	V	
			$\overline{\text{TC}}$, I _{OL} = 8 mA	1, 2, 3	01		0.5	V	
Input high level	V _{IH}	Guaranteed inpu voltage for all in		1, 2, 3	01	2.0		V	
Input low level	V _{IL}	Guaranteed inpu voltage for all in		1, 2, 3	01		0.8	V	
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V; I _{IN} = -18 mA		1, 2, 3	01		-1.5	V	
Input low current	IIL	V _{CC} = 5.5 V	RASI	1, 2, 3	01		-3.2	mA	
		V _{IN} = 0.4 V	CASI, MSEL, RFSH	1, 2, 3	01		-1.6	mA	
			A ₀ -A ₁₅ , CLR, RSEL ₀ , 1, LE	1, 2, 3	01		-0.4	mA	
Input high current	IIH	V _{CC} = 5.5 V	RASI	1, 2, 3	01		100	μA	
		V _{IN} = 2.7 V	CASI, MSEL, RFSH	1, 2, 3	01		50	μA	
			A ₀ -A ₁₅ , CLR, RSEL ₀ , 1, LE	1, 2, 3	01		20	μA	
Input high current	I _{IH}	V _{CC} = 5.5 V	RASI	1, 2, 3	01		2.0	mA	
		V _{IN} = 5.5 V	CASI, MSEL, RFSH	1, 2, 3	01		1.0	mA	
			A ₀ -A ₁₅ , <u>CLR</u> , RSEL ₀ , ₁ , LE	1, 2, 3	01		0.1	mA	
Output short circuit current	I _{SC} 1/	V _{CC} = 5.5 V	NOLLU, 1, LL	1, 2, 3	01	-40	-100	mA	
Power supply	I _{CC}	-55°C and +25°C	:	1, 3	01		164	mA	
current	<u>2</u> /	+125°C		2	01		150	mA	
A ₁₅ enable current	Ι _Τ	A_{15} connected to 1 k ohm ±10%.	+12 V through	1, 2, 3	01		5	mA	

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		5962-87574
	REVISION LEVEL C	SHEET 5

								-		
Test	Symbol	-55°C ≤ ⁻	ns <u>3</u> / <u>4</u> , T _C ≤ +125° V _{CC} ≤ 5.5 \ erwise spec	v √		up A roups	Device type	Lir	nits	Unit
								Min	Max	
A _i to O _i delay	t _{PD}	See figure 4. Parameter	C _L = 50	•	9, 10		01		23	ns
		reference 1	C _L = 150	0 pF <u>6</u> /	9, 10), 11	01		30	ns
\overline{RASI} to \overline{RASi} ($\overline{RFSH} = H$)	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		23	ns
		reference 2	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		27	ns
\overline{RASI} to \overline{RASi} (\overline{RFSH} = L)	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		23	ns
(RFSH = L)		reference 3	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		27	ns
MSEL to O _i	t _{PD}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01	5		ns
		reference 4	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01	7		ns
MSEL to O _i	t _{PD}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		25	ns
		reference 5	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		31	ns
CASI to CASO	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		19	ns
(RFSH = H)		reference 6	C _L = 150	0 pF <u>6</u> /	9, 10), 11	01		26	ns
RSELi to RASi	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		24	ns
$(LE = H, \overline{RASI} = L)$		reference 7	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		30	ns
RFSH to TC	t _{PLH}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		50	ns
(RASI = L)		reference 8	C _L = 15	0 pF <u>6</u> /	9, 10, 11		01		55	ns
RASI to TC	t _{PLH}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		40	ns
$(\overline{RFSH} = L)$		reference 9	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		55	ns
RASI = L	t _{PW}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01	50		ns
$(\overline{RFSH} = L)$		reference 10	C _L = 150	0 pF <u>6</u> /	9, 10), 11	01	50		ns
RASI = H	t _{PW}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01	50		ns
(RFSH = L)		reference 11	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01	50		ns
RFSH to Oi	t _{PD}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		25	ns
$(\overline{RASI} = X)$		reference 12	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		30	ns
RFSH to RASi	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10), 11	01		29	ns
(RASI = L)		reference 13	C _L = 15	0 pF <u>6</u> /	9, 10), 11	01		36	ns
See footnotes at end o	of table.									
MICRO	STANDA CIRCUIT	RD DRAWING		sizi A	Ē				5962	2-87574
DEFENSE SU	JPPLY CEN	TER COLUMBUS 43218-3990				REVIS	ION LEVEL C		SHEET	6

Test	Symbol	-55°C ≤ ⁻	ns <u>3</u> / <u>4</u> / T _C ≤ +125° V _{CC} ≤ 5.5 \ erwise spec	C /	Grou subgr		Device type	Limits		Unit
								Min	Max	
CLR = L	t _{PW}	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01	35		ns
		reference 14	C _L = 150	0 pF <u>6</u> /	9, 10,	, 11	01	35		ns
$\overline{\text{RFSH}} \text{ to } \overline{\text{CASO}}$ $(\overline{\text{RASI}} = \text{L}, \overline{\text{CASI}} = \text{L})$	t _{PLH} <u>7</u> /	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01		25	ns
(RASI – L, CASI – L)	<u> </u>	reference 15	C _L = 150	0 pF <u>6</u> /	9, 10,	, 11	01		31	ns
LE to Oi	t _{PD}	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01		40	ns
		reference 16	C _L = 15	ЭрҒ <u>6</u> /	9, 10,	, 11	01		50	ns
LE to RASi	t _{PHL}	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01		45	ns
		reference 17	C _L = 15	0 pF <u>6</u> /	9, 10,	, 11	01		54	ns
CLR to TC	t _{PLH}	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01		56	ns
		reference 18	C _L = 150	0 pF <u>6</u> /	9, 10,	, 11	01		60	ns
CLR to Oi	t _{PLH}	See figure 4. Parameter	C _L = 50	pF	9, 10,	, 11	01		54	ns
(RFSH = L)		reference 19	C _L = 150	0 pF <u>6</u> /	9, 10,	, 11	01		62	ns
Ai to LE	ts	See figure 4. Parameter reference 20	C _L = 50	pF	9, 10,	, 11	01	5		ns
Set-up time	<u>8</u> /		C _L = 15	0 pF <u>6</u> /	9, 10,	, 11	01	5		ns
Ai to LE	t _H	See figure 4.	C _L = 50	pF	9, 10,	, 11	01	15		ns
Hold time	<u>8</u> /	Parameter reference 21	C _L = 150	0 pF <u>6</u> /	9, 10, 11		01	12		ns
RSELi to LE	t _s	See figure 4.	C _L = 50	pF	9, 10,	, 11	01	5		ns
Set-up time	<u>8</u> /	Parameter reference 22	C _L = 150	0 pF <u>6</u> /	9, 10,	, 11	01	5		ns
RSELi to LE	t _H	See figure 4.	C _L = 50	pF	9, 10,	, 11	01	25		ns
Hold time	<u>8</u> /	Parameter reference 23	C _L = 15	0 pF <u>6</u> /	9, 10,	, 11	01	25		ns
CLR recover time	ts	See figure 4.	C _L = 50	pF	9, 10, 11		01	18		ns
		Parameter reference 24	C _L = 150	50 pF <u>6</u> / 9, 10, 11		, 11	01	18		ns
Oi to RASi	t _{skew}	See figure 4.	C _L = 50	pF	9, 10,	, 11	01		6	ns
(RFSH = H)	<u>9</u> /	Parameter reference 25	C _L = 15	0 pF <u>6</u> /	9, 10,	, 11	01		7	ns
Oi to CASO	t _{skew}	See figure 4.	C _L = 50	pF	9, 10,	, 11	01		8	ns
	<u>9</u> /	Parameter reference 26	C _L = 150	ЭрF <u>6</u> /	9, 10,	, 11	01		8	ns
Soo footnatoo at and af	table	<u> </u>	1		1				1	
See footnotes at end of table. STANDARD MICROCIRCUIT DRAWING					Ξ				5962	2-87574
DEFENSE SU	PPLY CEN	TER COLUMBUS 43218-3990				REVISI	ON LEVEL C		SHEET	7

Τ.	ABLE I. <u>Electrical p</u>	performance charact	teristics - Cont	inued.				
Symbol	-55°C ≤ T 4.5 V ≤ \	Group A subgroups	Device type	Lin	nits	Unit		
					Min	Max		
t _{skew}	10/ Parameter	C _L = 50 pF	9, 10, 11	01		10	ns	
<u>10</u> /		C _L = 150 pF <u>6</u> /	9, 10, 11	01		10	ns	
$\frac{t_{ASi}}{L} = \downarrow) \qquad \qquad \frac{t_{SKEW}}{\underline{11}} \qquad \qquad \frac{11}{2} \qquad \qquad \frac{See figure 4.}{Parameter} \\ reference 28 \qquad \qquad \frac{11}{2} \qquad \qquad $	•	C _L = 50 pF	9, 10, 11	01		5	ns	
		C _L = 150 pF <u>6</u> /	9, 10, 11	01		5	ns	
	Symbol t _{SKEW} <u>10</u> / t _{SKEW}	$\begin{tabular}{ c c c c c } \hline Symbol & Condition & -55^\circ C \leq T & 4.5 \ V \leq V & unless other & \\ \hline t_{SKEW} & See figure 4. & \\ \hline 10/ & Parameter & \\ \hline t_{SKEW} & See figure 4. & \\ \hline 11/ & Parameter & \\ \hline 11/ & Parameter & \\ \hline \end{tabular}$	$\begin{array}{ c c c c c } \hline Symbol & \hline Conditions & \underline{3}/ & \underline{4}/ & \underline{5}/ \\ & -55^\circ C \leq T_C \leq +125^\circ C \\ & 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ & unless \ otherwise \ specified \\ \hline t_{SKEW} & \underline{10}/ & \hline Parameter \\ reference \ 27 & \hline C_L = 50 \ pF \\ \hline t_{SKEW} & \underline{See \ figure \ 4.} \\ & \underline{11}/ & \underline{See \ figure \ 4.} \\ \hline Parameter & \hline C_L = 50 \ pF \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c } \hline Symbol & Conditions & \underline{3}/ & \underline{4}/ & \underline{5}/ \\ & -55^\circ C \leq T_C \leq +125^\circ C \\ & 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ unless otherwise specified & \\ \hline t_{SKEW} & See figure 4. \\ \hline \underline{10}/ & Parameter \\ reference 27 & \hline C_L = 50 \ pF & 9, 10, 11 \\ \hline t_{SKEW} & See figure 4. \\ \hline Parameter & C_L = 50 \ pF & 9, 10, 11 \\ \hline t_{SKEW} & See figure 4. \\ \hline Parameter & C_L = 50 \ pF & 9, 10, 11 \\ \hline t_{SKEW} & See figure 4. \\ \hline Parameter & C_L = 50 \ pF & 9, 10, 11 \\ \hline \end{tabular}$	$ \begin{array}{ c c c c c } \hline Symbol & \begin{array}{c} -55^\circ C \leq T_C \leq +125^\circ C \\ 4.5 \ V \leq V_{CC} \leq 5.5 \ V \\ unless \ otherwise \ specified \end{array} & \begin{array}{c} Group \ A \\ subgroups \end{array} & \begin{array}{c} Device \\ type \end{array} \\ \hline \\ \hline \\ t_{SKEW} \\ \underline{10} \end{array} & \begin{array}{c} See \ figure \ 4. \\ Parameter \\ reference \ 27 \end{array} & \begin{array}{c} C_L = 50 \ pF & 9, \ 10, \ 11 & 01 \\ \hline \\ C_L = 150 \ pF & \underline{6} \end{matrix} & \begin{array}{c} 9, \ 10, \ 11 & 01 \\ 01 \end{array} \\ \hline \\ \hline \\ t_{SKEW} \\ 11 \end{matrix} & \begin{array}{c} See \ figure \ 4. \\ Parameter \\ Parameter \end{array} & \begin{array}{c} C_L = 50 \ pF & 9, \ 10, \ 11 & 01 \\ \hline \\ C_L = 50 \ pF & 9, \ 10, \ 11 & 01 \\ \end{array} \\ \hline \end{array} \\ \end{array}$	$\begin{array}{ c c c c c c } \hline Symbol & \hline Conditions & \underline{3}/ & \underline{4}/ & \underline{5}/ & & \\ & -55^\circ C \leq T_C \leq +125^\circ C & & \\ & 4.5 & V \leq V_{CC} \leq 5.5 & V & \\ & unless & otherwise & specified & & \\ \hline & unless & otherwise & specified & & \\ \hline & \underline{10}/ & & \\ \hline & See & figure & 4. & \\ Parameter & reference & 27 & & \\ \hline & C_L & = 50 & pF & & 9, 10, 11 & 01 & \\ \hline & C_L & = 150 & pF & & \underline{9}, 10, 11 & 01 & \\ \hline & t_{SKEW} & & \\ & \underline{11}/ & & \\ \hline & See & figure & 4. & \\ Parameter & & \\ \hline & C_L & = 50 & pF & & 9, 10, 11 & 01 & \\ \hline & C_L & = 50 & pF & & 9, 10, 11 & 01 & \\ \hline & t_{SKEW} & & \\ \hline & See & figure & 4. & \\ \hline & 11/ & & \\ \hline & C_L & = 50 & pF & & 9, 10, 11 & 01 & \\ \hline & & \hline & & \\ \hline & & & \\ \hline &$	$\begin{array}{ c c c c c } \hline Symbol & \hline Conditions & \underline{3/} & \underline{4/} & \underline{5/} & \\ & -55^\circ C \leq T_C \leq +125^\circ C & \\ & 4.5 & V \leq V_{CC} \leq 5.5 & V & \\ & unless & otherwise specified & \\ \hline \hline & & & & \\ \hline & & & & \\ \hline & & & &$	

- 1/ Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
- <u>2</u>/ I_{CC} is worst case when the address inputs are latched high, the refresh counter is at terminal count (255). RASI and CASI are high and all other inputs are low.
- 3/ Minimum spec limits for t_{PW}, t_S and t_H are minimum system operating requirements. Limits for t_{SKEW} and t_{PD} are guaranteed test limits for the device.
- 4/ All ac parameters are specified at the 1.5 V level.
- 5/ AC and function testing are performed at V_{IL} = 0 V and V_{IH} = 3.5 V.
- 6/ AC testing is performed to a 50 pF typical capacitive load. The ac limits for 150 pF are not tested, but are correlated to the 50 pF measurements.
- 7/ RFSH inhibits CASO during refresh. Specification is for CASO inhibit time.
- 8/ Set-up and hold tests are not performed. These parameters are guaranteed by correlation and characterization.
- 9/ Oi to RASi (RFSH = high) skew is guaranteed maximum difference between fastest RASI to RASi delay and slowest Ai to Oi delay within a single device. Oi to CASO skew is maximum difference between fastest CASI to CASO delay and slowest MSEL to Oi delay within a single device.
- 10/ Oi to RASi (RFSH = low) skew is guaranteed maximum difference between fastest RASI to RASi delay and slowest RFSH to Oi delay within a single device
- 11/ Oi to RASi (MSEL = ↓) skew is guaranteed maximum difference between fastest MSEL↓ to Oi delay and slowest RASI to RASi delay within a single device.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	8

Device type			01		
Case outline	Q	U	Case outline	Q	U
Terminal number	Terminal symbol	Terminal symbol	Terminal number	Terminal symbol	Terminal symbol
1	\overline{RAS}_2	\overline{RAS}_2	23	A ₄	A ₁₂
2	RAS₃	\overline{RAS}_3	24	A ₁₁	O ₄
3	RASI	RASI	25	RFSH	A ₄
4	RSEL0	RSEL0	26	O ₃	A ₁₁
5	RSEL1	RSEL1	27	A ₃	RFSH
6	CASO	NC	28	A ₁₀	NC
7	CASI	CASO	29	O ₂	O ₃
8	CLR	CASI	30	GND	A ₃
9	TC	CLR	31	A ₂	A ₁₀
10	V _{CC}	TC	32	A ₉	O ₂
11	A ₁₅	V _{cc}	33	01	GND
12	O ₇	A ₁₅	34	A ₁	A ₂
13	A ₇	O ₇	35	A ₈	A ₉
14	A ₁₄	A ₇	36	LE	O ₁
15	O ₆	A ₁₄	37	O ₀	A ₁
16	MSEL	O ₆	38	A ₀	A ₈
17	A ₆	NC	39	\overline{RAS}_0	NC
18	A ₁₃	MSEL	40	RAS ₁	LE
19	O ₅	A ₆	41		O ₀
20	A ₅	A ₁₃	42		A ₀
21	A ₁₂	O ₅	43		\overline{RAS}_0
22	O ₄	A ₅	44		RAS ₁

NC = No connection

FIGURE 1. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	9

RFSH	RASI	RSEL ₁	RSEL ₀	RAS ₀	RAS₁	RAS ₂	RAS₃
L	Н	х	Х	Н	Н	н	Н
L	L	Х	Х	L	L	L	L
Н	Н	Х	Х	н	Н	н	Н
Н	L	L	L	L	Н	н	Н
Н	L	L	Н	Н	L	н	Н
Н	L	Н	L	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	L

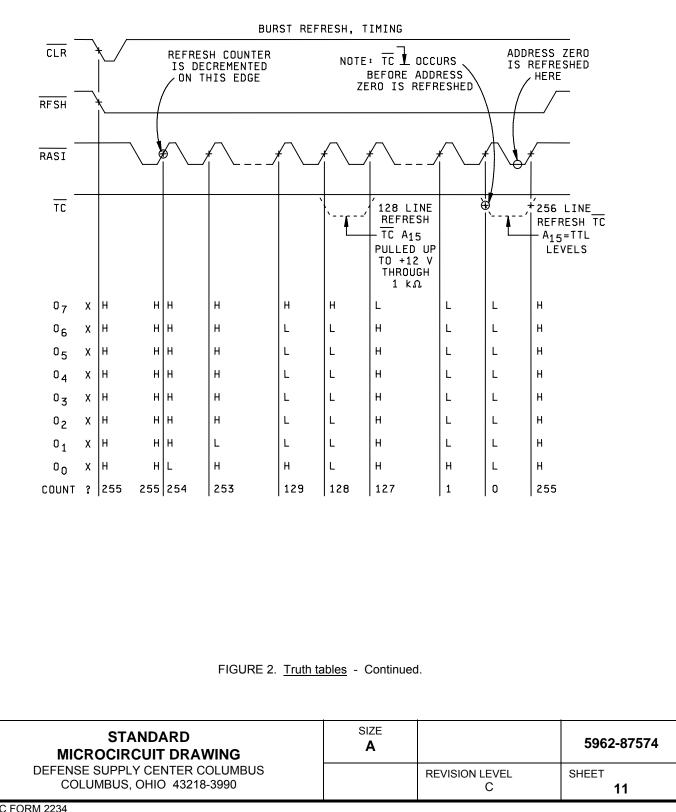
RAS output function table

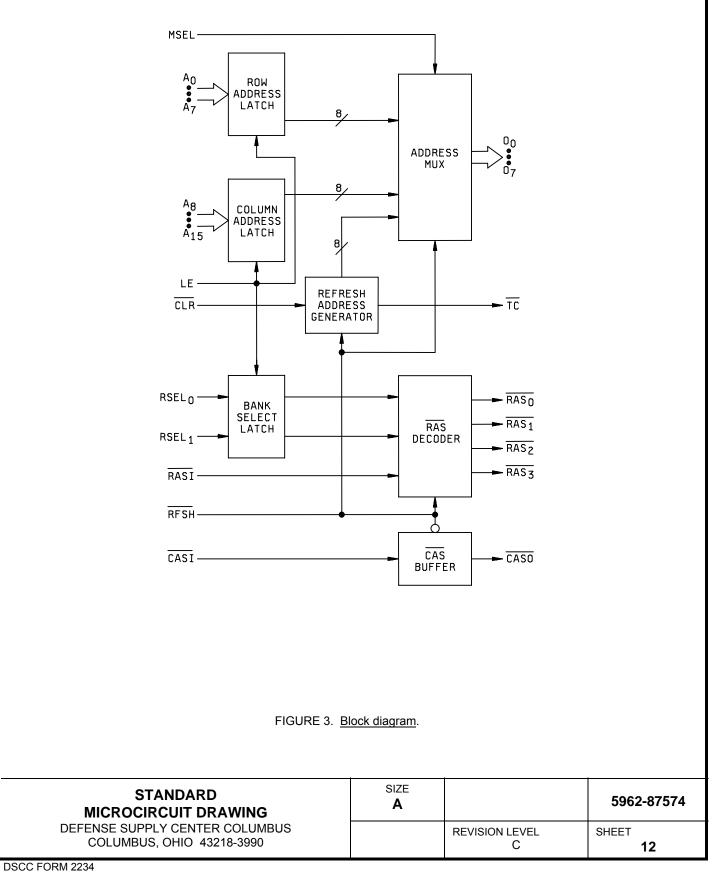
CASO function table

RFSH	CASI	CASO
н	L	L
Н	н	Н
L	Х	Н

Address output function table

MSEL	RFSH	$O_0 - O_7$
Н	Н	$A_0 - A_7$
L	Н	$A_8 - A_{15}$
Х	L	Refresh address


Refresh address counter function table


A ₁₅	CLR	RFSH	RASI	TC	Refresh count	Function
Х	L	х	Х	х	FF _H	Clear counter
Х	Н	Ļ	Х	х	NC	Output refresh address no change for counter
Х	Н	1	L	х	Count - 1	Return to memory cycle mode and decrement counter
х	Н	L	Ļ	х	NC	Output all RAS _i to RAM no change for counter
Х	Н	L	1	х	Count - 1	Return RAS _i to HIGH and decrement counter
L or H	Н	х	Х	L	00 _H	Terminal count for 256 line refresh
+12 V*	Н	х	х	L	$00_{\rm H}$ and $80_{\rm H}$	Terminal count for 128 line refresh

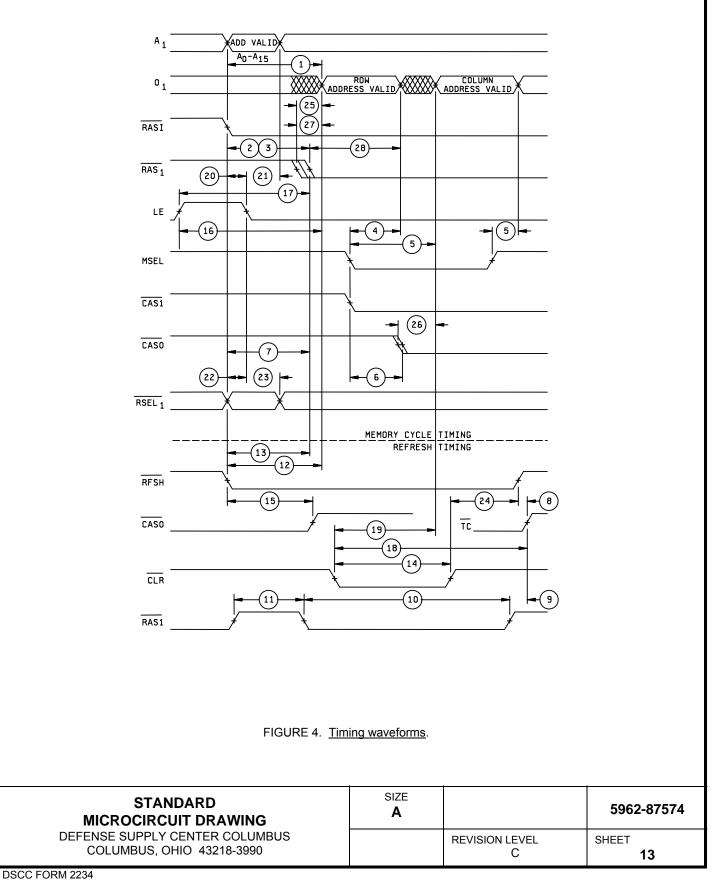

* - Through $1k\Omega$ resistor.

FIGURE 2. Truth tables.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	10

4. VERIFICATION

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	<u>1</u> / 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 7, 9

TABLE II. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroups 7 and 8 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		C	14

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractorprepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.

6.6 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and table III herein.

6.7 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-87574
		REVISION LEVEL C	SHEET 15

TABLE III. Pin description.

Pin number	Name	I/O	Description
	$A_0 - A_7$	I	The low order address inputs are used to latch eight row address inputs for the RAM. These inputs drive the outputs $O_0 - O_7$ when MSEL is high
	$A_8 - A_{15}$	I	The high order address inputs are used to latch eight column address inputs for the RAM. These inputs drive the outputs $O_0 - O_7$ when MSEL is low.
11	A ₁₅	I	A_{15} is a dual input. With normal TTL level inputs, A_{15} acts as an address input for 64k RAMs. If A_{15} is pulled up to +12 V through a 1 kilohm resistor, the terminal count output, TC, will go low every 128 counts (for 16k RAMs) instead of every 256 counts.
	O ₀ – O ₇	0	The RAM address output. The eight-bit width is designed for dynamic RAMs up to 64k.
16	MSEL	I	The multiplexer-select input determines whether the low order or high order address input appears at the multiplexer outputs $O_0 - O_7$. When MSEL is high, the low order address latches $(A_0 - A_7)$ are connected to the outputs. When MSEL is low, the high order address latches are connected to the outputs.
25	RFSH	1	The refresh control input. When active low, the RFSH input switches the address output multiplexer to output the inverted contents of the eight-bit refresher counter. RFSH low also inhibits the CAS buffer and changes the mode of the RAS decoder from one-of-four to four-of-four so that all four RAS decoder outputs, RAS ₀ , RAS ₁ , RAS ₂ , and RAS ₃ go low in response to a low input at RASI. This action refreshes one row address in each of the four RAS decoded memory banks. The refresh counter is advanced at the end of each refresh cycle by the low-to-high transition of RFSH or RASI (whichever occurs first). In burst mode refresh, RFSH may be held low and refresh accomplished by toggling RASI.
9	TC	0	The terminal count output. A low output at $\overline{\text{TC}}$ indicates that the refresh counter has been sequenced through either 128 or 256 refresh addresses depending on the A ₁₅ . The $\overline{\text{TC}}$ output remains active low until the refresh counter is advanced by the rising edge of RASI or RFSH.
8	CLR	I	The refresh counter clear input. An active low input at CLR resets the refresh counter to all low (refresh address output to all high).
36	LE	I	The address latch enable input. An active high input at LE causes the two 8- bit address latches and the 2-bit RAS select input latch to go transparent, accepting new input data. A low input on LE latches the input data which meet set-up and hold time requirements.
4, 5	RSEL ₀ and RSEL ₁	I	The \overline{RAS} decoder select inputs. Data (latched) at these inputs (normally higher order addresses) is decoded by the \overline{RAS} decoder to "RAS select" one of four banks of memory with RAS ₀ , RAS ₁ , RAS ₂ , or RAS ₃ .
3	RASI	I	The row address strobe input. During normal memory cycles the selected RAS decoder output \overline{RAS}_0 , \overline{RAS}_1 , \overline{RAS}_2 , or \overline{RAS}_3 will go active low in response to an active low input at \overline{RASI} . During refresh (RFSH = low), all RAS outputs go low in response to RASI = low.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		5962-87574
		REVISION LEVEL C	SHEET 16

Pin number	Name	I/O	Description
39, 40, 1, 2	$\begin{array}{c} RAS_0,\\ RAS_1,\\ RAS_2,\\ RAS_3 \end{array}$	0	Row address strobe outputs (\overline{RASi}). Each provides a row address strobe output for one of the four banks of memory. Each will go active low only wh <u>en selected</u> by RSEL ₀ and RSEL ₁ and only when RASI goes active low. All RAS _{0.3} outputs go active low in response to RASI when RFSH goes low.
7	CASI	I	The column address strobe. An active low input at CASI will result in an active low output at CASO, unless a refresh cycle is in progress (RFSH = low).
6	CASO	0	The column address strobe output. The <u>active</u> low CASO output strobes the <u>column</u> address into the dynamic RAM, CASO is inhibited during refresh (RFSH = low).

TABLE III. Pin description - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87574
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL C	SHEET 17

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 07-12-05

Approved sources of supply for SMD 5962-87574 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-8757401QA	3V146	2964B/BQA
5962-8757401UA	3V146	2964B/BUA

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number Vendor name and address

3V146

Rochester Electronics, Inc. 16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.