

Low Power 2-Input OR/NOR Gate/Inverter

The 100201 is a 2-input OR/NOR Gate and a single Inverter Gate in an eight pin SOIC package. All inputs have 50 k Ω pull-down resistors and all outputs are buffered. The 100201 is ideal for single gate needs or for use as a feedback loop of a crystal oscillator circuit.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FAIRCHILD

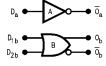
SEMICONDUCTOR

100201 Low Power 2-Input OR/NOR Gate/Inverter

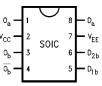
General Description

The 100201 is a 2-input OR/NOR Gate and a single Inverter Gate in an eight pin SOIC package. All inputs have 50 k Ω pull-down resistors and all outputs are buffered. The 100201 is ideal for single gate needs or for use as the feedback loop of a crystal oscillator circuit.

Features


- Small 8 lead 150 mil SOIC package
- 2000V ESD protection
- 300 MHz minimum F toggle
- Temperature compensated
- Voltage compensated operating range = -4.2V to -5.7V V_{EE}

Ordering Code:


Order Number	Package Number	Package Description				
100201SC	M08A	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.50" Narrow				
Device also available in Tane and Real. Specify by appending suffix latter "Y" to the ordering code						

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description					
D_{a},D_{1b},D_{2b}	Data Inputs					
Ob	Data Outputs					
$\overline{O}_a, \overline{O}_b$	Complementary Data Outputs					

© 1999 Fairchild Semiconductor Corporation DS011000

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG}) Maximum Junction Temperature (T _J)	−65°C to +150°C +150°C			
VEE Pin Potential to Ground Pin	-7.0V to +0.5V			
Input Voltage (DC)	V _{EE} to +0.5V			
Output Current (DC Output HIGH)	–50 mA			
ESD (Note 2)	≥2000V			

Recommended Operating Conditions

Operating Temperature (T_C) Supply Voltage (V_{EE}) 0°C to +85°C -5.7V to -4.2V

.5V Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

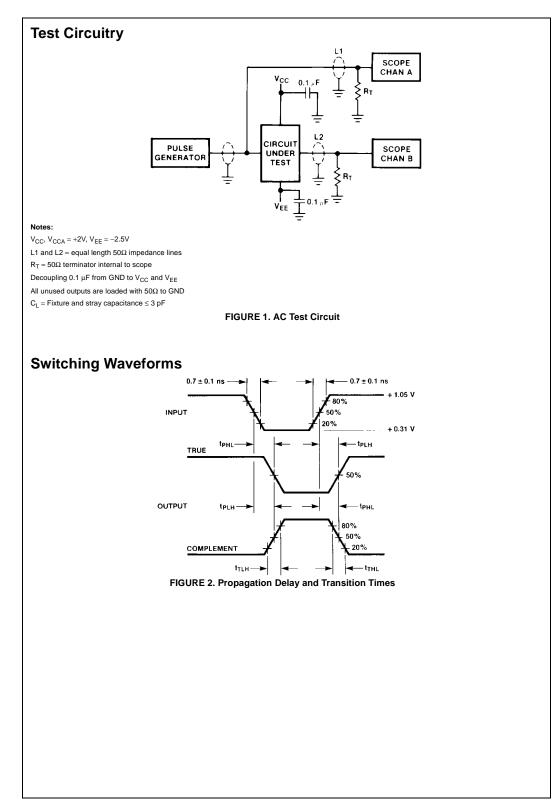
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

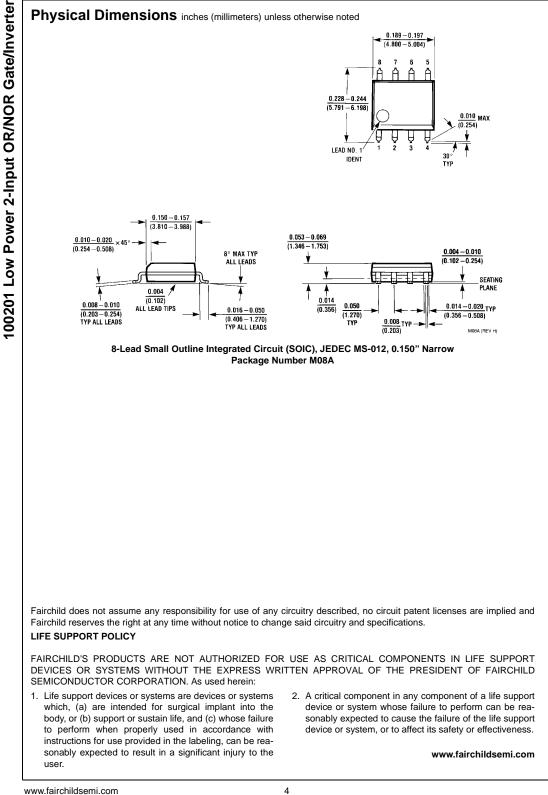
DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = GND$, $T_C = 0^{\circ}C$ to $+85^{\circ}C$

Symbol Parameter		Min Typ Max Unit			Units	Conditions			
-				mux	•				
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	$V_{IN} = V_{IH(Max)}$ or $V_{IL(Min)}$	50Ω to $-2.0V$		
V _{OHC}	Output HIGH Voltage	-1035			mV	V V or V	Loading with		
V _{OLC}	Output LOW Voltage			-1610	mV	$V_{IN} = V_{IH(Min)} \text{ or } V_{IL(Max)}$	50Ω to $-2.0V$		
VIH	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs			
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs			
IL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL(Min)}$			
I	Input HIGH Current			240	μΑ	$V_{IN} = V_{IH(Max)}$			
IEE	Power Supply Current	-29	-17	-15	mA	Inputs OPEN			


Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

SOIC AC Electrical Characteristics


 $V_{\text{EE}} = -4.2 \text{V}$ to $-5.7 \text{V}, \, \text{V}_{\text{CC}} = \text{GND}$

Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Symbol		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay Data to Output	0.4	1.10	0.4	1.15	0.4	1.20	ns	Figure 1Figure 2 (Note 4)
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.40	1.20	0.40	1.20	0.40	1.20	ns	Figure 1Figure 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 100 ps with multiple outputs switching.

www.fairchildsemi.com

