

Low Power Triple 4-Input Multiplexer with Enable

The 100371 contains three 4-input multiplexers which share a common decoder (inputs S_0 and S_1). Output buffer gates provide true and complement outputs. A HIGH on the Enable input (\overline{E}) forces all true outputs LOW. All inputs have 50 k Ω pull-down resistors.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

October 1989 Revised August 2000 100371 Low Power Triple 4-Input Multiplexer with Enable

100371 Low Power Triple 4-Input Multiplexer with Enable

General Description

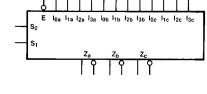
FAIRCHILD

SEMICONDUCTOR

The 100371 contains three 4-input multiplexers which share a common decoder (inputs S_0 and S_1). Output buffer gates provide true and complement outputs. A HIGH on the Enable input (\overline{E}) forces all true outputs LOW (see Truth Table). All inputs have 50 k Ω pull-down resistors.

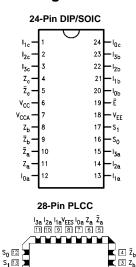
Features

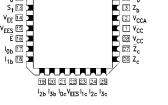
- 35% power reduction of the 100171
- 2000V ESD protection
- Pin/function compatible with 100171
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range


Ordering Code:

Order Number	Package Number	Package Description
100371SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100371PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
10371QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
10371QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

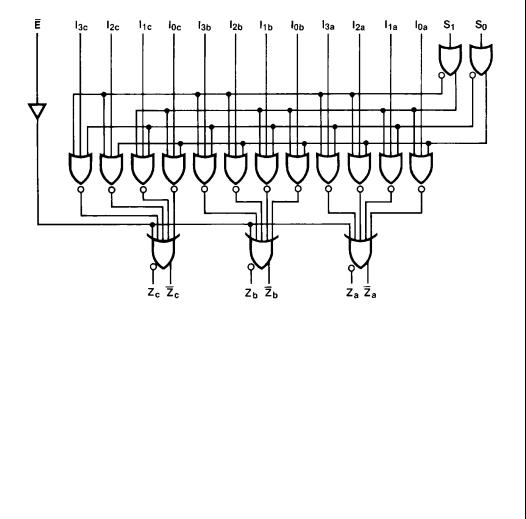
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol


Connection Diagrams

Pin Descriptions

Pin Names	Description						
I _{0x} –I _{3x}	Data Inputs						
S ₀ , S ₁	Select Inputs						
Ē	Enable Input (Active LOW)						
Z _a –Z _c	Data Outputs						
$\overline{Z}_{a}-\overline{Z}_{c}$	Complementary Data Outputs						



© 2000 Fairchild Semiconductor Corporation DS010148

Truth Table Inputs Outputs Ē S₀ S_1 $\mathbf{Z}_{\mathbf{n}}$ L L L I_{0x} н L L I_{1x} L н L I_{2x} L н н I_{3x} Н Х Х L

 $H = HIGH \ Voltage \ Level \\ L = LOW \ Voltage \ Level \\ X = Don't \ Care$

Logic Diagram

Absolute Maximum Ratings(Note 1)

 $\begin{array}{l} \mbox{Storage Temperature} (T_{STG}) \\ \mbox{Maximum Junction Temperature} (T_J) \\ \mbox{V}_{EE} \mbox{Pin Potential to Ground Pin} \\ \mbox{Input Voltage} (DC) \\ \mbox{Output current} (DC \mbox{Output HIGH}) \\ \mbox{ESD} (Note 2) \\ \end{array}$

 $\begin{array}{l} -65^{\circ}\text{C to} +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to} +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to} +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

00371

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$\mathsf{V}_{EE}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{CC}=\mathsf{V}_{CCA}=GND,\,\mathsf{T}_{C}=0^{\circ}\mathsf{C}$ to +85°C Symbol Parameter Min Max Units Conditions Тур Output HIGH Voltage -1025 -870 -955 V_{ОН} m٧ V_{IN} =V_{IH} (Max) Loading with Output LOW Voltage -1830 -1705 -1620 mV or V_{IL} (Min) 50Ω to -2.0V V_{OL} Output HIGH Voltage -1035 mV $V_{IN} = V_{IH}$ (Min) Loading with VOHC VOLC Output LOW Voltage -1610 m٧ or V_{IL} (Max) 50Ω to -2.0V -1165 -870 Guaranteed HIGH Signal VIH Input HIGH Voltage m٧ for All Inputs -1830 -1475 Guaranteed LOW Signal V_{IL} Input LOW Voltage mV for All Inputs 0.50 Input LOW Current μΑ $V_{IN} = V_{IL}$ (Min) Ι_{ΙL} $I_{\rm H}$ Input HIGH Current 340 $V_{IN} = V_{IH}$ (Max) $I_{0X} - I_{3X}$ uΑ S₀, S₁, E 300 Power Supply Current -39 Inputs Open -75 mΑ I_{EE}

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$\mathbf{T}_{\mathbf{C}} = 0^{\circ}\mathbf{C}$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	Onits	Conditions
t _{PLH}	Propagation Delay	0.45	1.50	0.45	1.50	0.45	1.60	ns	
t _{PHL}	I _{0x} –I _{3x} to Output	0.45	1.50	0.45	1.50	0.45	1.00	115	
t _{PLH}	Propagation Delay	0.90	2.40	0.90	2.40	1.00	2.60	ns	Figures 1, 2
t _{PHL}	S ₀ , S ₁ to Output	0.90	2.40	0.90	2.40	1.00	2.00	115	(Note 4)
t _{PLH}	Propagation Delay	0.65	2.30	0.65	2.30	0.75	2.40		
t _{PHL}	E to Output	0.05	2.30	0.05	2.30	0.75	2.40	ns	
t _{TLH}	Transition Time	0.35	1.20	0.35	1.20	0.35	1.20		Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.35	1.20	0.55	35 1.20	0.35	1.20	ns	Figures 1, 2

Note 4: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

$\begin{array}{l} \textbf{Commercial Version} \quad (\text{Continued}) \\ \textbf{SOIC and PLCC AC Electrical Characteristics} \\ \textbf{V}_{\text{EE}} = -4.2 \text{V to } -5.7 \text{V}, \ \textbf{V}_{\text{CC}} = \textbf{V}_{\text{CCA}} = \texttt{GND} \end{array}$

Symbol	Parameter	T _C =	= 0°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	onito	Contaitions
t _{PLH}	Propagation Delay	0.45	1.30	0.45	1.30	0.45	1.40	ns	
t _{PHL}	I _{0x} -I _{3x} to Output	0.45	1.50	0.45	1.50	0.45	1.40	115	
t _{PLH}	Propagation Delay	0.90	2.20	0.90	2.20	1.00	2.40	ns	Figures 1, 2
t _{PHL}	S ₀ , S ₁ to Output	0.50	2.20	0.50	2.20	1.00	2.40	115	(Note 5)
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.75	2.20	ns	
t _{PHL}	E to Output	0.05	2.10	0.05	2.10	0.75	2.20	115	
t _{TLH}	Transition Time	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1, 2
t _{THL}	20% to 80%, 80% to 20%	0.55	1.10	0.35	1.10	0.35	1.10	115	Figures 1, 2
toshl	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		400		400		400	ps	(Note 6)
	Data to Output Path								
toslh	Maximum Skew Common Edge								PLCC only
	Output-to-Output Variation		490		490		490	ps	(Note 6)
	Data to Output Path								
tost	Maximum Skew Opposite Edge								PLCC only
	Output-to-Output Variation		490		490		490	ps	(Note 6)
	Data to Output Path								
t _{PS}	Maximum Skew								PLCC only
	Pin (Signal) Transition Variation		430		430		430	ps	(Note 6)
	Data to Output Path								

Note 5: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

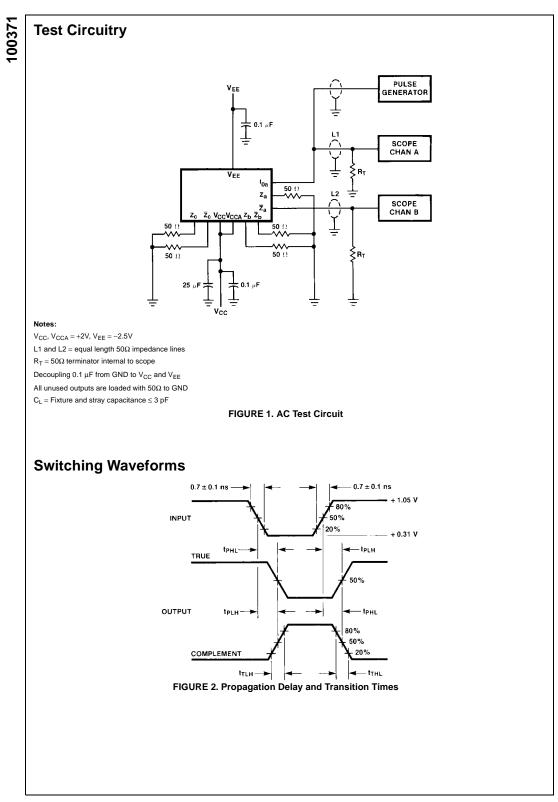
Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same pack-aged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design.

PLCC DC Electrical Characteristics (Note 7)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -40^{\circ}C$ to +85°C

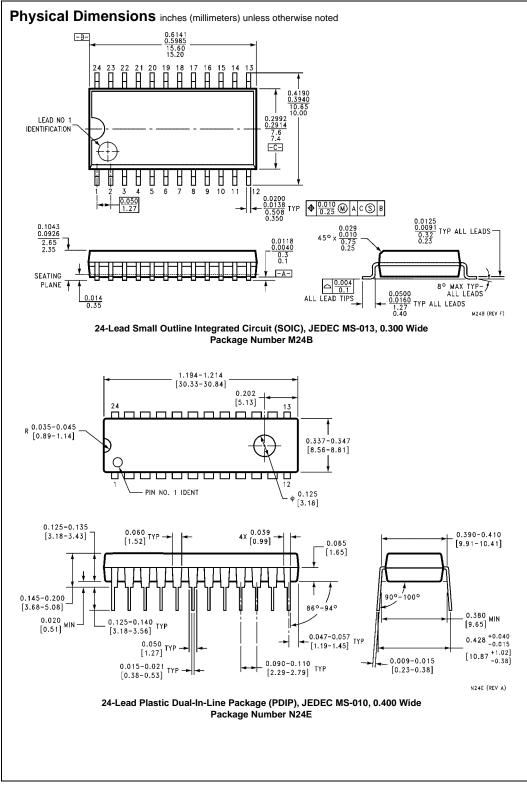
Symbol	Parameter		$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Symbol			Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage		-1085	-870	-1025	-870	mV	V _{IN} =V _{IH} (Max)	Loading with	
V _{OL}	Output LOW Voltage		-1830	-1575	-1830	-1620	mV	or V_{IL} (Min) 50 Ω to -2		
V _{OHC}	Output HIGH Voltage		-1095		-1035		mV	V _{IN} = V _{IH} (Min) Loading wi		
V _{OLC}	Output LOW Voltage			-1565		-1610	mV	or V _{IL} (Max) 50Ω to -2		
V _{IH}	Input HIGH Voltage		-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal		
								for All Inputs		
V _{IL}	Input LOW Voltage		-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal		
								for All Inputs		
I _{IL}	Input LOW Current		0.50		0.50		μΑ	$V_{IN} = V_{IL}$ (Min)		
IIH	Input HIGH Current									
		I _{0X} –I _{3X}		340		340	μΑ	$V_{IN} = V_{IH}$ (Max)		
		S ₀ , S ₁ , E		300		300				
I _{EE}	Power Supply Current		-75	-35	-75	-39	mA	Inputs Open		

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


PLCC AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH} t _{PHL}	Propagation Delay I _{0x} –I _{3x} to Output	0.40	1.30	0.45	1.30	0.45	1.40	ns	
t _{PLH} t _{PHL}	Propagation Delay S_0 , S_1 to Output	0.70	2.20	0.90	2.20	1.00	2.40	ns	Figures 1, 2 (Note 8)
t _{PLH} t _{PHL}	Propagation Delay E to Output	0.65	2.10	0.65	2.10	0.75	2.20	ns	
t _{TLH} t _{THL}	Transition Time 20% to 80%, 80% to 20%	0.20	1.60	0.35	1.10	0.35	1.10	ns	Figures 1, 2


Note 8: The propagation delay specified is for single output switching. Delays may vary up to 300 ps with multiple outputs switching.

100371

www.fairchildsemi.com

6

www.fairchildsemi.com

