

54F251A, 74F251A

8-Input Multiplexer with TRI-STATE Outputs

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

54F/74F251A 8-Input Multiplexer with TRI-STATE® Outputs

General Description

The 'F251A is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability
- On-chip select logic decoding
- Inverting and non-inverting TRI-STATE outputs

Commercial	Military	Package Number	Package Description
74F251APC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line
	54F251ADM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line
74F251ASC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC
74F251ASJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F251AFM (Note 2)	W16A	16-Lead Cerpack
	54F251ALL (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

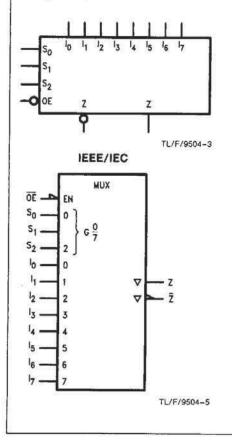
Ιx

12

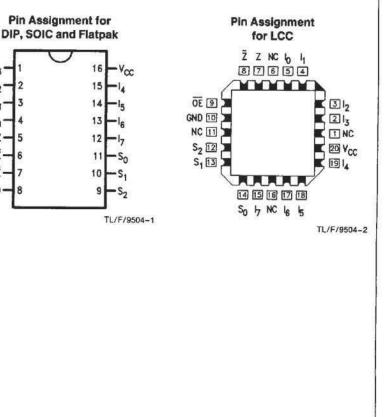
6

Z 5

ž


OE

GND -8


2

3 ١,

Logic Symbols

Connection Diagrams

251A

Unit Loading/Fan Out: See Section 2 for U.L. definitions

		54F/74F		
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
S0-S2	Select Inputs	1.0/1.0	20 µA/−0.6 mA	
OE	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA	
I0-17	Multiplexer Inputs	1.0/1.0	20 µA/-0.6 mA	
z	TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)	
Z	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	-3 mA/24 mA (20 mA)	

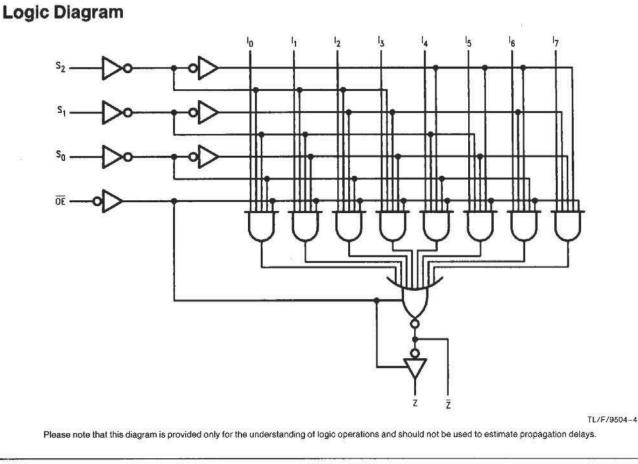
Functional Description

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both assertion and negation outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

$$\begin{split} \mathsf{Z} &= \overline{\mathsf{OE}} \bullet (\mathsf{I}_0 \bullet \overline{\mathsf{S}}_0 \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_2 + \mathsf{I}_1 \bullet \mathsf{S}_0 \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_2 + \\ & \mathsf{I}_2 \bullet \overline{\mathsf{S}}_0 \bullet \mathsf{S}_1 \bullet \overline{\mathsf{S}}_2 + \mathsf{I}_3 \bullet \mathsf{S}_0 \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_2 + \\ & \mathsf{I}_4 \bullet \overline{\mathsf{S}}_0 \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_2 + \mathsf{I}_5 \bullet \mathsf{S}_0 \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_2 + \\ & \mathsf{I}_6 \bullet \overline{\mathsf{S}}_0 \bullet \mathsf{S}_1 \bullet \mathsf{S}_2 + \mathsf{I}_7 \bullet \mathsf{S}_0 \bullet \mathsf{S}_1 \bullet \mathsf{S}_2) \end{split}$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Truth Table


	Inp	Outputs			
ŌE	S ₂	S ₁	S ₀	Z	Z
н	х	x	x	Z	Z
L	L	Ł	L	Ī ₀	lo
L	L	L	н	Ī1	11
L	L	Н	L	Ĩ2	12
E.	L	н	н	Ĩ3	l3
L	н	L	L	Ī4	I4
L	н	L	н	Ī5	le
L	н	н	L	Ĩ ₆	le
L	н	н	н	Ĩ7	17

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance

7

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias Plastic	-55°C to +175°C -55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE Output	-0.5V to +5.5V

DC Electrical Characteristics

Current Applied to Output in LOW State (Max)

twice the rated IOL (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	-55°C to +125°C
Commercial	0°C to + 70°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V

Symbol	Parameter		54F/74F			Units	Vcc	Conditions	
oymbol	Faranie		Min	Тур	Max	Onits	*cc	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
VIL	Input LOW Voltage				0.8	v		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	v	Min	$I_{\rm IN} = -18 {\rm mA}$	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 54F 10% V _{CC} 74F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC} 74F 5% V _{CC}	2.5 2.4 2.5 2.4 2.7 2.7	0		v	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$	
VOL	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	v	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	
lін	Input HIGH Current	54F 74F			20.0 5.0	μA	Max	V _{IN} = 2.7V	
IBVI	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μA	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μA	Max	V _{OUT} = V _{CC}	
ViD	Input Leakage Test	74F	4.75			v	0.0	l _{ID} = 1.9 μA All Other Pins Grounded	
IOD	Output Leakage Circuit Current	74F		1.9.10	3.75	μA	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
կլ	Input LOW Current			Π:	-0.6	mA	Max	V _{IN} = 0.5V	
ЮZH	Output Leakage Curren	t	105355	284460 ent-11	50	μA	Max	V _{OUT} = 2.7V	
IOZL	Output Leakage Curren	t			- 50	μΑ	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit Cu	rrent	-60		- 150	mA	Max	V _{OUT} = 0V	
Izz	Bus Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V	
ICCL	Power Supply Current			15	22	mΑ	Max	V _O = LOW	
lccz	Power Supply Current			16	24	mA	Max	V _O = HIGH Z	

Symbol	Parameter	74F $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		t _{PLH} t _{PHL}	Propagation Delay S _n to Z	3.5 3.2	6.0 5.0	9.0 7.5	3.5 3.2	11.5 8.0	3.5 3.2	9.5 7.5
t _{PLH} t _{PHL}	Propagation Delay S _n to Z	4.5 4.0	7.5 6.0	10.5 8.5	3.5 3.0	14.0 10.5	4.5 4.0	12.5 9.0	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay I _n to Z	3.0 1.5	5.0 2.5	6.5 4.0	2.5 1.5	8.0 6.0	3.0 1.5	7.0 5.0	ns	2-3
t _{PLH} t _{PHL}	Propagation Delay I _n to Z	3.5 3.5	5.0 5.5	7.0 7.0	2.5 3.5	9.0 9.0	2.5 3.5	8.0 7.5	ns	2-3
^t PZH t _{PZL}	Output Enable Time OE to Z	2.5 2.5	4.3 4.3	6.0 6.0	2.0 2.5	7.0 7.5	2.5 2.5	7.0 6.5	_ ns	2-5
t _{PHZ} t _{PLZ}	Output Disable Time \overline{OE} to \overline{Z}	2.5 1.5	4.0 3.0	5.5 4.5	2.5 1.5	6.0 5.0	2.5 1.5	6.0 4.5		
t _{PZH} t _{PZL}	Output Enable Time OE to Z	3.5 3.5	5.0 5.5	7.0 7.5	3.0 3.5	8.5 9.0	3.0 3.5	7.5 8.0	_ ns	2-5
t _{PHZ} t _{PLZ}	Output Disable Time	2.0 1.5	3.8 3.0	5.5 4.5	2.0 1.5	5.5 5.5	2.0 1.5	5.5 4.5		

7