

54LS256, DM74LS256

Dual 4-Bit Addressable Latch

The 'LS256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A0, A1), an active LOW enable input (\overline{E}) and an active LOW Clear input (\overline{CL}). Each latch has a data input (D) and four outputs (Q0-Q3).

When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q0-Q3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q0-Q3), determined by the Address inputs, follows D. When \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode (\overline{E} = LOW, \overline{CL} = HIGH), changing more than one bit of the Address (A0, A1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode (\overline{E} = \overline{CL} = HIGH).

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

54LS256/DM74LS256 Dual 4-Bit Addressable Latch

General Description

The 'LS256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (A0, A1), an active LOW enable input (\overline{E}) and an active LOW Clear input (\overline{CL}). Each latch has a Data input (D) and four outputs (Q0-Q3).

When the Enable (\overline{E}) is HIGH and the Clear input (\overline{CL}) is LOW, all outputs (Q0-Q3) are LOW. Dual 4-channel demultiplexing occurs when the \overline{CL} and \overline{E} are both LOW. When \overline{CL} is HIGH and \overline{E} is LOW, the selected output (Q0-Q3), determined by the Address inputs, follows D. When the \overline{E} goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\overline{E} = LOW$, $\overline{CL} =$ HIGH), changing more than one bit of the Address (A0, A1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\overline{E} = \overline{CL} =$ HIGH).

Features

- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Active low common clear

Truth Table

Inputs			Outputs					
CL	Ē	A0	A1	QO	Q1	Q2	Q3	Mode
L	н	х	х	L	L	L	L	Clear
L	L	L	L	D	Ĺ	L	L	Demultiplex
L	L	н	L	L	D	L	L	
L	L	L	н	L	L	D	L	
L	L	н	_ н	L	L	L	D	
н	н	Х	Х	Q _{t-1}	Q _{t-1}	Q _{t-1}	Q _{t-1}	Memory
н	L	L	L	D	Qt-1	Qt-1	Q+_1	Addressable
н	L.	н	L	Qt-1	D	Qt-1	Qt_1	Latch
н	L	L	н	Q _{t-1}	Qt-1	D	Qt _ 1	
н	L	н	н	Qt-1	Qt-1	Q+-1	D	

Mode Colection

Ē	A	
5	UL	Mode
L	н	Addressable Latch
н	н	Memory
L	L	Active HIGH 4-Channel Demultiplexers
н	L	Clear

Logic Diagram

TL/F/9823-3

2

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
54LS	-55°C to +125°C
DM74LS	0°C to + 70°C
Storage Temperature Range	~65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS256			DM74LS256			Lipite
	- arameter	Min	Nom	Max	Min	Nom	Max	Units
Vcc	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2		< 1911 1917	v
VIL	Low Level Input Voltage			0.7			0.8	v
lон	High Level Output Current			-0.4			-0.4	mA
IOL	Low Level Output Current			4			8	mA
TA	Free Air Operating Temperature	- 55		125	0		70	°C
t _s (H)	Setup Time HIGH, Dn to E	20			20			ns
t _h (H)	Hold Time HIGH, Dn to E	0			0			ns
t _s (L)	Setup Time LOW, D_n to \overline{E}	15			15			ns
t _h (L)	Hold Time LOW, Dn to E	0			0			ns
t _s (H) t _s (L)	Setup Time HIGH or LOW, A _n to E	0			0			ns
t _w (L)	E Pulse Width LOW	17			17			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 mA$			_	-1.5	V
VOH	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5			v
	Voltage	$V_{IL} = Max$	DM74	2.7	3.4		
VOL	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$	54LS			0.4	v
		V _{IH} = Min	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74		0.25	0.4	
ų	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10V$	Inputs		aller at Patien	0.1	mA
			Ē			0.2	
IIH High Level Input Current	High Level Input Current	$V_{CC} = Max, V_1 = 2.7V$	Inputs		AMULARANI - CONTRA N S	20	
		Ē		hi kababasa a	40	μη	
կլ	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$	Inputs			-0.4	mA
			Ē			-0.8	
los	Short Circuit	V _{CC} = Max	54LS	-20		- 100	mA
	Output Current	(Note 2) DM74		-20		- 100	IIIA
lcc	Supply Current	V _{CC} = Max				25	mA

Symbol	Parameter	$R_{L} = 2 k\Omega$ $C_{L} = 15 pF$	Units
		Max	
telh	Propagation Delay	27	ns
tehl	E to Q _n	24	
tелн	Propagation Delay	30	ns
tенг	D _n to Q _n	20	
tPLH	Propagation Delay	30	ns
tPHL	A _n to Q _n	29	
ФНL ФLH	An to Qn Propagation Delay CE to Qn	29 18	ns

LS256