

74F579

8-Bit Bidirectional Binary Counter with 3-STATE Outputs

The 74F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-STATE I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/\overline{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

April 1988 Revised August 1999

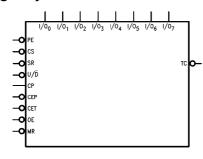
74F579

8-Bit Bidirectional Binary Counter with 3-STATE Outputs

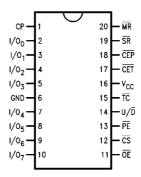
General Description

The 74F579 is a fully synchronous 8-stage up/down counter with multiplexed 3-STATE I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/ $\overline{\rm D}$ input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Features


- Multiplexed 3-STATE I/O ports
- Built-in lookahead carry capability
- Count frequency 100 MHz typical
- Supply current 75 mA typical
- Guaranteed 4000V minimum ESD protection

Ordering Code:


Order Number	Package Number	Package Description
74F579SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F579SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F579PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" tot he ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Pin Names	Decembries	U.L.	Input I _{IH} /I _{IL}	
Fill Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
I/O ₀ –I/O ₇	Data Inputs or	3.5/0.333	70 μA/–0.2 mA	
	3-STATE Outputs	75/15	–3 mA/24 mA	
PE	Parallel Enable Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
U/D	Up-Down Count Control Input	0.25/0.333	5 μA/–0.2 mA	
MR	Master Reset Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
SR	Synchronous Reset Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
CEP	Count Enable Parallel Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
CET	Count Enable Trickle Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
cs	Chip Select Input Active (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
ŌĒ	Output Enable Input (Active LOW)	0.25/0.333	5 μA/–0.2 mA	
CP	Clock Pulse Input (Active Rising Edge)	0.25/0.333	5 μA/–0.2 mA	
TC	Terminal Count Output (Active LOW)	25/12.5	−1 mA/5 mA	

Function Table

MR	SR	cs	PE	CEP	CET	U/D	ŌĒ	СР	Function
Х	Х	Н	Χ	Х	Х	Χ	Χ	Χ	I/O _a to I/O _h in High Z (PE Disabled)
X	Χ	L	Н	Χ	Χ	Χ	Н	Χ	I/O _a to I/O _h in High Z
X	Χ	L	Н	Χ	Χ	Χ	L	Χ	Flip-Flop Outputs Appear on I/O Lines
L	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Asynchronous Reset for all Flip-Flops
Н	L	Χ	Χ	Χ	Χ	Χ	Χ		Synchronous Reset for all Flip-Flops
Н	Н	L	L	Χ	Χ	Χ	Χ		Parallel Load all Flip-Flops
н	Н	(Not	t LL)	Н	Χ	Χ	Χ		Hold
Н	Н	(Not	t LL)	Χ	Н	Χ	Χ	~	Hold (TC Held HIGH)
н	Н	(Not	t LL)	L	L	Н	Χ	~	Count Up
н	Н	(Not	t LL)	L	L	L	Χ	~	Count Down

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

= LOW to HIGH Clock Transition
Not LL = \overline{CS} and \overline{PE} should never both be LOW voltage level at the same time.

Logic Diagrams DETAIL A DETAIL A DETAIL A Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. V_{CC} = Pin 16 GND = Pin 6 () = Pin Numbers Detail A

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Storage Temperature -65°C to +150°C

Voltage Applied to Output in HIGH State (with V_{CC} = 0V)

 $\begin{array}{lll} \text{Standard Output} & & -0.5 \text{V to V}_{\text{CC}} \\ \text{3-STATE Output} & & -0.5 \text{V to } +5.5 \text{V} \end{array}$

Current Applied to Output

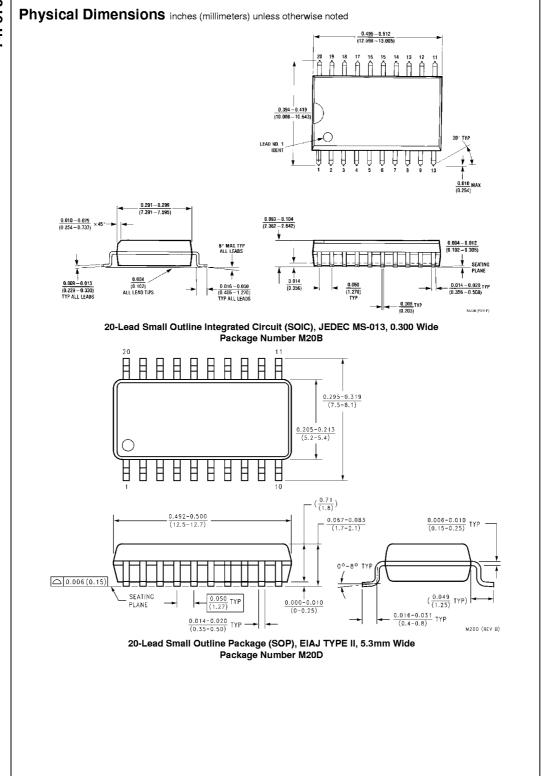
in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

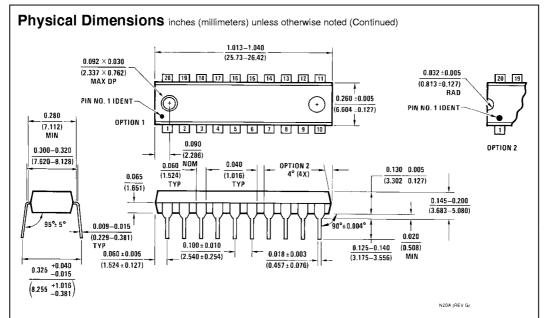
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

 $\begin{array}{ll} -0.5 \mbox{V to V}_{CC} & \mbox{Note 1: Absolute maximum ratings are values beyond which the device} \\ 0.5 \mbox{V to } +5.5 \mbox{V} & \mbox{max be damaged or have its useful life impaired. Functional operation} \\ & \mbox{under these conditions is not implied.} \end{array}$

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	٧		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	٧	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.4 2.7			٧	Min	I _{OH} = -3 mA
.,		5% V _{CC}	2.7					1 1 1 1 1
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA } (\overline{TC}), I_{OL} = 24 \text{ mA } (I/O_n)$
	ľ	5% V _{CC}			0.5			$I_{OL} = 20 \text{ mA (TC)}, I_{OL} = 24 \text{ mA (I/O}_n)$
l _{IH}	Input HIGH Current				5.0	μА	Max	V _{IN} = 2.7V (Non-I/O Pins)
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μА	Max	V _{IN} = 7.0V (Non-I/O Pins)
I _{BVIT}	Input HIGH Current Breakdown (I/O)				0.5	mA	Max	V _{IN} = 5.5V (I/O _n)
I _{CEX}	Output HIGH Leakage Current				50	μА	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA All Other Pins Grounded
l _{OD}	Output Leakage Circuit Control				3.75	μА	0.0	V _{IOD} = 150 mV All Other Pins Grounded
l _{ZZ}	Bus Drainage Test				500	μΑ	0.0	V _{OUT} = 5.25V
I _{IL}	Input LOW Current				-0.2	mA	Max	V _{IN} = 0.5V (Non-I/O Pins)
I _{IH} & I _{OZH}	Output Leakage Current				70	μΑ	Max	V _{OUT} = 2.7V (I/O _n)
I _{IL} & I _{OZL}	Output Leakage Current				-200	μΑ	Max	V _{OUT} = 0.5V (I/O _n)
los	Output Short-Circuit Curre	ent	-60		-150	mA	Max	V _{OUT} = 0V
Гссн	Power Supply Current			70	110	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			85	120	mA	Max	V _O = LOW
lccz	Power Supply Current			85	125	mA	Max	V _O = HIGH Z


AC Electrical Characteristics

Symbol			T _A = +25°C		T _A = 0°C	Units	
	Parameter		$V_{CC} = +5.0V$		v _{cc} =		
	raianietei		$C_L = 50 \text{ pF}$		C _L =		
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	70	85		80		
t _{PLH}	Propagation Delay	3.0	5.0	7.5	3.0	8.0	ns
t _{PHL}	CP to I/O _n	5.0	8.0	11.5	5.0	11.5	113
t _{PLH}	Propagation Delay	5.0	7.5	11.5	5.0	12.0	ns
t _{PHL}	CP to TC	5.0	7.0	11.5	5.0	12.0	115
t _{PLH}	Propagation Delay	4.5	7.0	9.0	4.5	10.0	
t _{PHL}	U/D to TC	4.5	8.0	9.5	4.5	10.0	ns
t _{PLH}	Propagation Delay	2.5	3.8	6.0	2.5	6.5	
t _{PHL}	CEP or CET to TC	3.5	6.0	8.0	3.5	8.5	ns
t _{PHL}	Propagation Delay	5.0	7.5	10.0	5.0	10.0	
	MR to I/O _n	5.0	7.5	10.0	5.0	10.0	ns
t _{PHL}	Propagation Delay	6.5	10.0	13.0	6.5	13.5	ns
	MR to TC	0.5	10.0	13.0	0.5	15.5	115
t _{PZH}	Output Enable Time	3.0	5.0	8.5	3.0	9.0	20
t_{PZL}	CS or PE to I/O	5.5	8.0	10.5	5.5	11.5	ns
t _{PHZ}	Output Disable Time	2.0	5.0	8.5	2.0	9.0	
t_{PLZ}	CS or PE to I/O	2.0	4.5	8.0	2.0	8.5	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	3.0	8.5	
t_{PZL}	OE to I/O _n	5.0	8.0	11.0	5.0	12.0	ns
t _{PHZ}	Output Disable Time	2.0	4.0	6.5	2.0	6.5	ns
t_{PLZ}	OE to I/On	2.0	4.0	6.0	2.0	6.5	115

AC Operating Requirements

			T _A = +25°C		T _A = 0°C	Units	
Symbol	Parameter		$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		
		Min	Тур	Max	Min	Max	
t _S (H)	Setup Time	4.0			4.0		ns
t _S (L)	I/O _n to CP	4.0			4.0		115
t _H (H)	Hold Time	0.0			0.0		
t _H (L)	I/O _n to CP	0.0			0.0		ns
t _S (H)	Setup Time	9.5			9.5		
t _S (L)	PE, CS or SR to CP	9.5			9.5		ns
t _H (H)	Hold Time	0.0			0.0		
t _H (L)	PE, CS or SR to CP	0.0			0.0		ns
t _S (H)	Setup Time	6.5			6.5		
t _S (L)	CET or CEP to CP	9.5			9.5		ns
t _H (H)	Hold Time	0.0			0.0		
t _H (L)	CET or CEP to CP	0.0			0.0		ns
t _S (H)	Setup Time	9.0			9.5		
t _S (L)	U/D to CP	9.0			9.5		ns
t _H (H)	Hold Time	0.0			0.0		
t _H (L)	U/D to CP	0.0			0.0		ns
t _W (H)	Clock Pulse Width	4.5			4.5		
$t_{\mathbf{W}}(L)$	HIGH or LOW	4.5			4.5		ns
t _W (L)	MR Pulse Width	3.0			3.0		ns
t _{REC}	Recovery Time	1.0					
	MR to CP	4.0			4.0		ns

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com