

AM25LS2538

One-of-Eight Decoder with Three-State Outputs and Polarity Control

The AM25LS2538 is a three-line to eight-line decoder/demultiplexer fabricated using advanced Low-Power Schottky technology. The decoder has three buffered select inputs -A, B, and C- that are decoded to one-of-eight Y outputs. Two active-HIGH and two active-LOW enables can be used for gating the decoder or can be used with incoming data for demultiplexing applications.

A separate polarity (POL) input can be used to force the function active-HIGH or active-LOW at the output. Two separate active-LOW output enables (OE) inputs are provided. If either OE input is HIGH, the output is in the high-impedance (off) state. When the POL input is LOW, the Y outputs are active-HIGH and when the POL input is HIGH, the Y outputs are active-LOW.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

9

Am25LS2538

One-of-Eight Decoder with Three-State Outputs and Polarity Control

DISTINCTIVE CHARACTERISTICS

- · Three-state decoder outputs
- Buffered common output polarity control
- · Inverting and non-inverting enable inputs
- A. C. parameters specified over operating temperature and power supply ranges

GENERAL DESCRIPTION

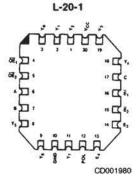
The Am25LS2538 is a three-line to eight-line decoder/demultiplexer fabricated using advanced Low-Power Schottky technology. The decoder has three buffered select inputs-A, B, and C-that are decoded to one-of-eight Y outputs. Two active-HIGH and two active-LOW enables can be used for gating the decoder or can be used with incoming data for demultiplexing applications.

A separate polarity (POL) input can be used to force the function active-HIGH or active-LOW at the output. Two separate active-LOW output enables $(\overline{\text{OE}})$ inputs are pro-

vided. If either $\overline{\text{OE}}$ input is HIGH, the output is in the high-impedance (off) state. When the POL input is LOW, the Y outputs are active-HIGH and when the POL input is HIGH, the Y outputs are active-LOW.

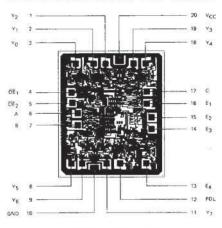
The device is packaged in a space saving (0.3-inch row spacing) 20-pin package. It also features Am25LS family improved switching specifications, higher noise margin, and twice the fan-out over the military temperature range when compared with Am54LS/74LS devices.

BLOCK DIAGRAM

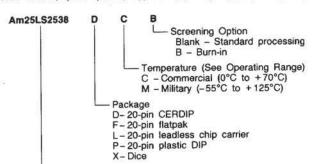


RELATED PRODUCTS

Part No.	Description
Am25LS2536	8-Bit Decoder
Am25LS2537	1-of-10 Decoder
Am25LS2539	Dual 1-of-4 Decoder
Am25LS2548	Chip Select Address Decoder
Am2921	1-of-8 Decoder
Am2924	3-to-8 Line Decoder/Demultiplexer


CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation


METALLIZATION AND PAD LAYOUT

DIE SIZE 0.081" x 0.096"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

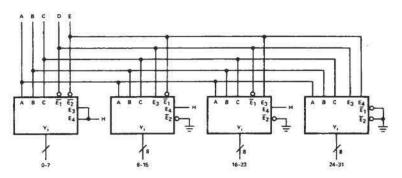
Device type 1-of-8 Decoder

Valid Cor	nbinations
Am25LS2538	PC DC, DM FM LC, LM XC, XM

Valid Combinations

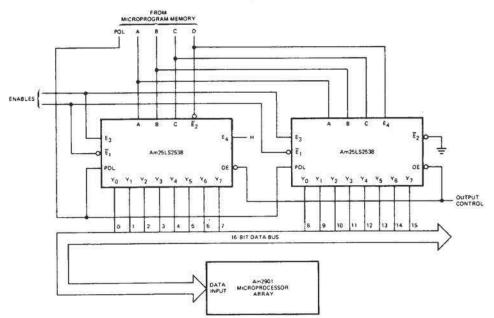
Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

03664B


			PIN DESCRIPTION
Pin No.	Name	1/0	Description
6, 7, 17	A. B. C	- 1	The three select inputs to the decoder/demultiplexer.
16, 15	Ē1. Ē2	1	The active LOW enable inputs. A HIGH on either the E1 or E2 input forces all decoded functions to be disabled.
14, 13	E3, E4	1	The active HIGH enable inputs. A LOW on either the E3 or E4 input forces all the decoded functions to be inhibited.
12	POL	Ţ	Polarity Control. A LOW on the polarity control input forces the output to the active-HIGH state while a HIGH on the polarity control input forces the Y outputs to the active-LOW state.
4, 5	ŌĒ₁, ŌĒ₂	į	Output Enable. When both the \overline{OE}_1 and \overline{OE}_2 inputs are LOW, the Y outputs are enabled. If either \overline{OE}_1 or \overline{OE}_2 input is HIGH, the Y outputs are in the high-impedance state.
	Yi	0	The eight outputs for the decoder/demultiplexer.

FUNCTION TABLE

					INP	UTS								OUT	PUTS			
FUNCTION	ŌE ₁	ŌĒ2	Ē1	Ē ₂	E ₃	E ₄	POL	С	В	A	Yo	Y1	Y2	Y3	Y4	Y5	Y6	Y
	н	х	Х	×	х	Х	Х	х	Х	X	Z	Z	Z	Z	Z	Z	Z	Z
High-Impedance	×	н	х	×	х	x	x	x	х	х	Z	Z	Z	Z	Z	Z	Z	2
	L	L	н	х	Х	х	L	X	х	Х	L	L	L	L	L	L	L	L
	L	L	н	X	X	X	H	X	×	X	H	H	н	н	Н	н	Н	H
	Ĺ	L	×	н	×	x	L	X	X	X	L	L	L	L	L	L	L	1
	1	1	×	н	X	×	н	X	X	X	н	н	H	н	н	н	H	1
Disable	l ī	l ī.	×	×	L	X	L	X	×	×	L	L	L	L	L	L	L	
	l ī	L.	×	×	L	×	н	X	×	×	H	н	н	H	н	Н	H	1
	l ī	L.	×	×	×	L	L	X	X	X	L	L	L	L	L	L	L	1.3
	Ĺ	Ĺ	X	X	X	L	н	X	X	X	н	Н	Н	н	н	н	Н	1
	L	L	L	L	Н	н	L	L	L	L	н	L	L	L	L	L	L	L I
	L	L	L	L	H	н	L	L	L	Н	L	Н	L	L	L	L	L	
	L	L	L	L	Н	н	L	L	н	L		L	Н	L	L	L	L	1 3
2 KI - MARKAMARANAN	L	L	L	L	H	н	L	L	н	Н	L	L	L	Н	L	L	L	1 9
Active-HIGH Output	L	L	L	L	H	Н	L	H	L	L	L	L	L	L	Н	L	L	
	L	L	L	L	н	н	L	Н	L	H	L	L	L	L	L	Н	L	1
	L	L	L	L	Н	Н	L	Н	H	L	L	L	L	L	L	L	Н	
	L	L	L	L	H	н	L	Н	Н	Н	L	L	L	L	L	L	L	3
	L	L	L	L	н	н	Н	L	L	L	L	Н	н	н	н	Н	Н	
	L	L	L	L	н	Н	H	L	L	н	H	L	Н	Н	н	Н	Н	
	L	L	L	L	H	Н	Н	L	н	L	H	н	L	н	н	н	н	
STOR ENGINEERING TO	L	L	L	L	н	Н	Н	L	H	Н	H	Н	Н	L	н	Н	Н	
Active-LOW Output	L	L	L	L	н	н	H	н	L	L	H	H	H	н	L	н	н	
	L	L	L	L	н	H	н	н	L	Н	Н	H	Н	Н	н	L	н	1 3
	L	L	L	L	н	н	H	н	н	L	Н	н	Н	H	н	Н	L	
	100	1 1	1	L	н	Н	H	H	H	L	H	H	H	H	H	H	H	1 1


H = HIGH L = LOW X = Don't Care Z = High-Impedance

APPLICATIONS

AF001091

One-of-thirty-two decoder without additional decoding devices. Can be used for I/O decoding in an Am9080A system.

AF001081

Two Am25LS2538s can be used to perform a one-of-sixteen-bit mask function or a one-of-sixteen-bit select function to perform bit manipulation in a microprocessor system.

Examples:

D	C	В	Α	POL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Function
n	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	Bit Select
1	1	o	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Bit Select
0	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	Bit Mask
1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	Bit Mask

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
High Output State0.5V to +VCC max
DC Input Voltage0.5V to +7.0V
DC Output Current, Into Outputs
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature	0°C to +70°C
Supply Voltage	+ 4.75V to +5.25V
Military (M) Devices	Al Part of Control
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to + 5.5V
Operating ranges define those limits	over which the function-
ality of the device is guaranteed.	

DC CHARACTERISTICS over operating range unless otherwise specified

Parameters	Description	Test Con	ditions (No	ote 2)	Min	Typ (Note 1)	Max	Units
		V _{CC} = MIN	OH = - 1.0mA (MIL)			3.4		EESW
VOH	Output HIGH Voltage	VIN = VIH OF VIL	IOH = -2.	6mA (COM'L)	2.4	3.4		Volts
	The second secon		I _{OL} = 4.0 mA				0.4	
VOL	Output LOW Voltage	VCC - MIN	IOL = 8.0	πA			0.45	Volts
*OL	(Note 5)	VIN = VIH or VIL IOL = 12mA					0.5	DIVISION CE
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
		Consistent insulate	Guaranteed input logical LOW Voltage for all inputs.		- 22		0.7	
VIL	Input LOW Level				- 33/16		0.8	Volts
VI	Input Clamp Voltage	VCC = MIN, IN = -1	8mA				- 1.5	Volts
lit.	Input LOW Current	VCC = MAX, VIN =).4V		77.0		-0.36	mA
I _{IH}	Input HIGH Current	VCC = MAX, VIN =	2.7V				20	μΑ
h	Input HIGH Current	VCC = MAX, VIN = 7	7.0V				0.1	mA
-	Off State (Ulich Impedance)		Vo = 0.4	/			-20	
loz	Off-State (High-Impedance) Output Current	V _{CC} = MAX	Vo = 2.4	/			20	μА
isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX			-15		-85	mA
lcc	Power Supply Current (Note 4)	V _{CC} = MAX				21	34	mA

- Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

 2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.

 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

 4. Test conditions: A = B = C = D = E

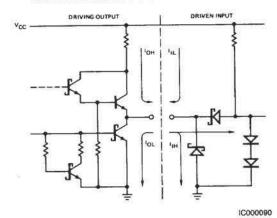
 1 = E

 2 = GND: E3 = E

 2 = POL = OE

 2 = 4.5V.

 5. V_{OL} is specified with total device I_{OL} = 60mA (max).


Parameters	Description	Test Conditions	Min	Тур	Max	Units	
tpLH				20	30		
t _{PHL}	A, B, C to Yi		- 20.5 G/A	15	22	ns	
IPLH	100 H2 100 100 100 100 100 100 100 100 100 10			19	28		
t _{PHL}	E ₁ , E ₂ to Y _i			20	30	ns	
tpLH		C _L = 15pF		21	31	ns	
tpHL	E3, E4 to Yi	$R_L = 2.0k\Omega$		23	34	ns	
tPLH	and the second s			16	24	2000	
tpHL	POL to Yi	1		20	30	ns	
tzh				17	25		
tzL	OE ₁ , OE ₂ to Y _i			14	21	ns	
thz		C ₁ = 5.0pF		17	25	1	
tLZ	OE1, OE2 to Y;	$R_L = 2.0k\Omega$		20	30	ns	

SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

			COMM	ERCIAL	MILI	TARY		
			Am25	LS2538	Am25			
Parameters	Description	Test Conditions	Min	Max	Min	Max	Units	
terh	A, B, C to Y _i E ₁ , E ₂ to Y _i			36		42		
tpHL				29		37	ns	
tplH			λ".	34		39	ns	
tpHL				38	3.1232	45		
tpLH		C _L = 50pF		38		45		
tpHL	E3, E4 to Yi	R _L = 2.0kΩ		43		52	ns	
tPLH .				29		34	ns	
t _{PHL}	POL 10 Yi		JUDANA ZI	39		49	ns	
tzh				38		45	320	
1 _{ZL}	OE ₁ , OE ₂ to Y _i			23		25	ns	
¹HZ	Perit years	C = 5.00F		29		33	22	
ILZ	OE ₁ , OE ₂ to Y _i	C _L = 5.0pF R _L = 2.0kΩ		33		36	ns	

^{*}AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9.

Am25LS2538 LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.