REI Datasheet

## AM27S185, AM27S185A <br> 8,192-Bit (2048x4) Bipolar PROM

The AM27S185 (2048 words by 4 bits) is a Schottky TTL Programmable Read-Only Memory (PROM).

This device has three-state outputs, compatible with low-power Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy-word depth expansion is facilitated by an active LOW (G) output enable.

## Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

## Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

## DISTINCTIVE CHARACTERISTICS

- Ultra-fast access time " A " version ( $\mathbf{3 5} \mathrm{ns}$ Max.) - Fast access time Standard version ( 50 ns Max.) - allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98\%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm


## GENERAL DESCRIPTION

The Am27S185 (2048 words by 4 bits) is a Schottky TTL Programable Read-Only Memory (PROM).

This device has three-state outputs, compatible with lowpower Schottky bus standards capabje of satisfying the
requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy-word depth expansion is facilitated by an active LOW ( $\bar{G}$ ) output enable.

## BLOCK DIAGRAM



PRODUCT SELECTOR GUIDE

| Three-State <br> Part Number | Am27S185A |  | Am27S185 |  |
| :--- | :---: | :---: | :---: | :---: |
| Address Aecess <br> Time | 35 ns | 45 ns | 50 ns | 55 ns |
| Operating <br> Range | $C$ | $M$ | $C$ | $M$ |

## CONNECTION DIAGRAMS <br> Top View



LCC**


Note: Pin 1 is marked for orientation.
*Also available in an 18 -pin Flatpack. Pinout identical to DIPs.
**Also available in a 28 -pin square PLCC. Pinout identical to LCC.

## LOGIC SYMBOL



## ORDERING INFORMATION

## Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Optlon (if applicable)
c. Package Type
d. Temperature Range
e. Optional Proceseing
f. Alternate Packaging Option


DEVICE NUMBER/DESCRIPTION
Am27S185/Am27S185A
8,192-Bit (2,048 $\times 4$ ) Bipolar PROM

| Valld Combinations |  |
| :--- | :--- |
| AM27S185 | PC, PCB, DC |
|  | DCB, FC, |
| AM27S185A | FCB, LC, LCB, |
|  | LC-S, LCB-S, JC, |
|  |  |

## Valld Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

## MILITARY ORDERING INFORMATION

## APL Products

AMD products for Aerospace and Delense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish


Group $A$ tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

## military burn-in

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.

## PIN DESCRIPTION

$\mathrm{A}_{0}-\mathrm{A}_{10}$ Address Inputs The 11-bit field presented at the address inputs selects one of 2,048 memory locations to be read from.
$\boldsymbol{Q}_{0}-\boldsymbol{a}_{3}$ Data Output Port
The outputs whose state represents the data read from the selected memory locations.

## G Output Enable

Provides direct control of the Q-output buffers. Outputs disabled forces all three-state outputs to a floating or highimpedance state.
Enable = $\overline{\mathbf{G}}$
Disable =G

Vcc Device Power Supply Pin The most positive of the logic power supply pins. GND Device Power Supply Pin
The most negative of the logic power supply pins.

## ABSOLUTE MAXIMUM RATINGS

|  |  |
| :---: | :---: |
| Ambient Temperature with |  |
| Supply Voltage ...............................-0.5 $V$ to +7.0 |  |
| DC Voltage Applied to Outputs <br> (Except During Programming) .......-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$ Max. |  |
| DC Voltage Applied to Outputs <br> During Programming $\qquad$ 21 V |  |
| Output Current into Outputs During <br> Programming (Max. Duration of 1 sec ) ............ 250 mA <br> DC Input Voltage $\qquad$ -0.5 V to +5.5 V <br> DC Input Current $\qquad$ -30 mA to +5 mA |  |
|  |  |
|  |  |
| Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device relisbility. |  |
|  |  |
|  |  |
|  |  |

## OPERATING RANGES

Commercial (C) Devices
Ambient Temperature ( $\mathrm{T}_{\mathrm{A}}$ ) 0 to $+75^{\circ} \mathrm{C}$
Supply Vottage (VCC) $\qquad$ $+4.75 \mathrm{~V}$ to +5.25 V

## Military (M) Devices

Case Temperature (TC) $\ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . . .55$ to $+125^{\circ} \mathrm{C}$
Supply Voltage (VCC) +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.
*Military products $100 \%$ tested at $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

| Parameter Symbol | Parameter Description | Teat Conditions |  | Min. | Tуp. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VoH (Nots 1) | Output HIGH Voltage | $\begin{aligned} & V_{C C}=M_{i n}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \\ & V_{I N}=V_{H H} \text { or } V_{\mathbb{L}} \end{aligned}$ |  | 2.4 |  |  | V |
| Vol | Output LOW Voltage | $\begin{aligned} & V_{C C}=M_{i n}, I_{O L}=16 \mathrm{~mA} \\ & V_{I N}=V_{H H} \text { or } V_{\mathrm{IL}} \end{aligned}$ |  |  |  | 0.50 | V |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Level | Guaranteed input logical HIGH voltage for all inputs (Note 2) |  | 2.0 |  |  | V |
| VIL | Input LOW Level | Guaranteed input logical LOW voltage for all inputs (Note 2) |  |  |  | 0.8 | V |
| It. | Input LOW Current | $V_{C C}=$ Max. $V_{\text {PN }}=0.45 \mathrm{~V}$ |  |  |  | -0.250 | mA |
| ${ }_{1 / \mathrm{H}}$ | Input HIGH Current | $V_{C C}=M_{\text {Max }}, V_{\text {IN }}=V_{\text {CC }}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| Isc (Note 1) | Output Short Circuit Current | $\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{\text {OUT }}=0.0 \mathrm{~V} \text { (Note 3) } \end{aligned}$ |  | -20 |  | -90 | mA |
| Icc | Power Supply Current | All inputs $=$ GND $V_{C C}=$ Max. |  |  |  | 150 | mA |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=$ Min., $I_{1 /}=-16 \mathrm{~mA}$ |  |  |  | -1.2 | $V$ |
| ICEX | Output Leakage Curren | $\begin{aligned} & V_{C C}=\text { Max. } \\ & V_{G}=2.4 \mathrm{~V} \end{aligned}$ | $V_{0}=V_{C c}$ |  |  | 40 | $\mu \mathrm{A}$ |
|  |  |  | $V_{0}=0.4 \mathrm{~V}$ |  |  | -40 |  |
| $\mathrm{ClN}_{\mathrm{N}}$ | Input Capacitance | $\begin{aligned} & V_{I N}=2.0 \vee @ \pm=1 \mathrm{MHz} \text { (Note 4) } \\ & V_{C C}=5 \mathrm{~V} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  | 5.0 |  | pF |
| Cout | Output Capacitance | $\begin{aligned} & \text { VOUT }=2.0 \mathrm{~V} \text { © } \mathrm{I}_{2}=1 \mathrm{MHz} \text { (Note 4) } \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$ |  |  | 8.0 |  |  |

Notes: 1. This epplies to three-state devices only.
2. $V_{I L}$ and $V_{I H}$ are input conditions of output tests and are not themselves directly tested. $V_{I L}$ and $V_{I H}$ are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
Not more than one output should be shorted at a time. Duration of the short circuit test should not be more than one second.
4. These parameters are not $100 \%$ tested, but are ovaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS
over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups $9,10,11$ are tested unless otherwise noted ${ }^{*}$ )

| No. | Parameter Symbol | Parameter Description | Version | COM'L |  | MIL |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. | Min. | Max. |  |
| 1 | TAVQV | Address Valid to Output Valid Access Time | A |  | 35 |  | 45 | ns |
|  |  |  | STD |  | 50 |  | 55 |  |
| 2 | TGVQZ | Delay from Output Enable Valid to Output Hi-Z | A |  | 25 |  | 30 | ns |
|  |  |  | STD |  | 25 |  | 30 |  |
| 3 | tGVQV | Delay from Output Enable Valid to Output Valid | A |  | 25 |  | 30 | ns |
|  |  |  | STD |  | 25 |  | 30 |  |

See also Switching Test Circuit.
Notes: 1. Tests are performed with input transition time of 5 ns or less, timing reference levels of 1.5 V , and input pulse levels of 0 to 3.0 V .

## SWITCHING TEST CIRCUIT



Notes: 1. TAVQV is tested with switch $S_{1}$ closed and $C_{L}=50 \mathrm{pF}$.
2. For three-state qutputs, TGVQV is tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level: $\mathrm{S}_{1}$ is open for high-impedance to HI GH tests and closed for high-impedance to LOW tests. TGVQZ is tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. HIGH to high-impedance tests are made to an output steady state HIGH voltage -0.5 V with $\mathrm{S}_{1}$ open; LOW to high-impedance tests are made to the steady slate LOW +0.5 V level with $\mathrm{S}_{1}$ closed.

## SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

| Waverorm | Imeurs | outputs |
| :---: | :---: | :---: |
|  | MuST BE STEADY | will be STEAOY |
|  | may chamge FROM H TOL | wilt ${ }^{\text {PE }}$ CHANGING FAOM H TOL |
|  | may change FMOML TON | will ${ }^{6}$ changimg FROML TOH |
|  | DONT GARE: AMY CHAMGE PERAMTTED | changing: STATE UWKNCWM |
|  | $\begin{aligned} & \text { DOES MOT } \\ & \hline \text { APMLY } \end{aligned}$ | CENTER <br> LINE ESHIGH mpedance OFF- STATE |

KS000010


