

AM2907, AM2908

Quad Bus Transceivers with Interface Logic

The AM2907 and AM2908 are high-performance bus transceivers intended for bipolar or MOS microprocessor system applications. These devices consist of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches, that feature three-state outputs. The devices also contain a four-bit odd parity checker/generator.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am2907/Am2908

Quad Bus Transceivers with Interface Logic

DISTINCTIVE CHARACTERISTICS

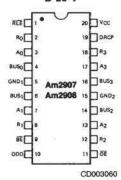
- Quad high-speed LSI bus-transceiver
- D-type driver register with open-collector bus driver output can sink 100mA at 0.8V max.
- Internal 4-bit odd parity checker/generator
- Receiver has output latch for pipeline operation
- Three-state receiver outputs sink 12mA
- Am2907 has 2.0V input receiver threshold; Am2908 is "DECQ or LSI-II bus compatible" with 1.5V receiver threshold

GENERAL DESCRIPTION

The Am2907 and Am2908 are high-performance bus transceivers intended for bipolar or MOS microprocessor system applications. The Am2908 is Digital Equipment Corporation "Q or LSI-II bus compatible" while the Am2907 features a 2.0V receiver threshold. These devices consist of four D-type edge-triggered flip-flops. The flip-flop outputs are connected to four open-collector bus drivers. Each bus driver is internally connected to one input of a differential amplifier in the receiver. The four receiver differential amplifier outputs drive four D-type latches, that feature three-state outputs. The devices also contain a four-bit odd parity checker/generator.

These LSI bus transceivers are fabricated using advanced low-power Schottky processing. All inputs (except the BUS inputs) are one LS unit load. The open-collector bus output can sink up to 100mA at 0.8V maximum. The BUS input differential amplifier contains disconnect protection diodes such that the bus is fail-safe when power is not applied. The bus enable input (BE) is used to force the driver outputs to the high-impedance state. When BE is HIGH, the driver is disabled. The open-collector structure of the driver allows wired-OR operations to be performed on the bus.

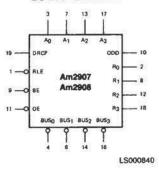
The input register consists of four D-type flip-flops with a buffered common clock. The buffered common clock (DRCP) enters the A_i data into this driver register on the LOW-to-HIGH transition.

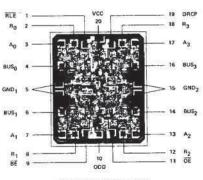

Data from the A input is inverted at the BUS output. Likewise, data at the BUS input is inverted at the receiver output. Thus, data is non-inverted from driver input to receiver output. The four receivers each feature a built-in D-type latch that is controlled from the buffered receiver latch enable (RLE) input. When the RLE input is LOW, the latch is open and the receiver outputs will follow the bus inputs (BUS data inverted and OE LOW). When the RLE input is HIGH, the latch will close and retain the present data regardless of the bus input. The four latches have three-state outputs and are controlled by a buffered common three-state control (OE) input. When OE is HIGH, the receiver outputs are in the high-impedance state.

The Am2907 and Am2908 feature a built-in four-bit odd parity checker/generator. The bus enable input (BE) controls whether the parity output is in the generate or check mode. When the bus enable is LOW (driver enabled), odd parity is generated based on the A field data input to the driver register. When BE is HIGH, the parity output is determined by the four latch outputs of the receiver. Thus, if the driver is enabled, parity is generated and if the driver is in the high-impedance state, the BUS parity is checked.

The Am2907 has receiver threshold typically of 2.0V while the Am2908 threshold is typically 1.5V.

CONNECTION DIAGRAM Top View

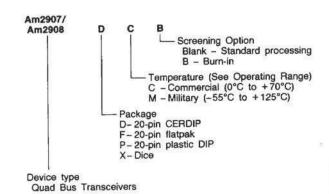

D-20-1



Note: Pin 1 is marked for orientation

LOGIC SYMBOL

METALLIZATION AND PAD LAYOUT



DIE SIZE 0.088" x 0.103"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

Valid Combinations							
Am2907 Am2908	PC DC, DCB, DM, DMB FM, FMB XC, XM						

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

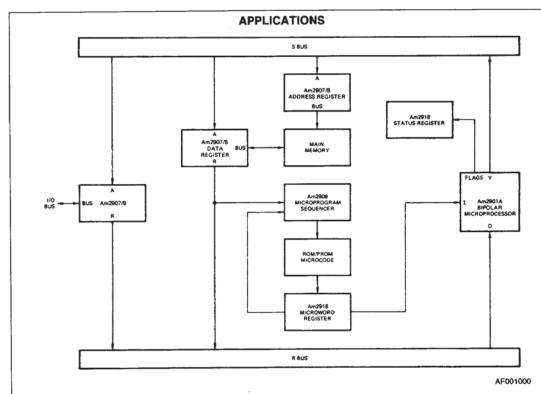
PIN DESCRIPTION

Pin No.	Name	1/0	Description
3, 7 13, 17	A ₀ , A ₁ A ₂ , A ₃	1	The four driver register inputs.
19	DRCP	T	Driver Clock Pulse: Clock pulse for the driver register.
9	BE	1	Bus Enable. When the Bus Enable is HIGH. The four drivers are in the high impedance state.
4 6 14 16	BUS ₀ , BUS ₁ , BUS ₂ , BUS ₃	1/0	The four driver outputs and receiver inputs (data is inverted).
2, 8, 12, 18	R ₀ , R ₁ , R ₂ , R ₃	0	The four receiver outputs. Data from the bus is inverted while data from the A inputs is non-inverted.
1	RLE	0	Receiver Latch Enable. When RLE is LOW, data on the BUS inputs is passed through the receiver latches. When RLE is HIGH, the receiver latches are closed and will retain the data independent of all other inputs.
10	ODD	0	Odd parity output. Generates parity with the driver enabled, checks parity with the driver in the high-impedance state.
11	ŌĒ	1	Output Enable. When the OE input is HIGH, the four three-state receiver outputs are in the high-impedance state.

TRUTH TABLE

	INPUTS					INTERNAL TO DEVICE		ОПТРИТ	
Ai	DRCP	BE	RLE	ŌĒ	DI	Qj	Bį	Ri	FUNCTION
X	×	Н	Х	Х	Х	Х	Н	X	Driver output disable
X	х	Х	Х	Н	х	Х	X	Z	Receiver output disable
X	×	Н	L L	L L	X	L H	L H	H	Driver output disable and receive data via Bus input
X	×	X	Н	Х	Х	NC	×	X	Latch received data
L	Ť Ť	X	X	X	L H	X	X	X X	Load driver register
X	L H	X	X	X	NC NC	X	X	X	No driver clock restrictions
X	×	L	Х	Х	Н	Х	L	X	Drive Bus

H = HIGH Z = HIGH Impedance X = Don't care
L = LOW NC = No change t = LOW to HIGH transition


i = 0, 1, 2, 3

PARITY OUTPUT FUNCTION TABLE

BĚ	ODD PARITY OUTPUT							
L	ODD = A ₀ ⊕ A ₁ ⊕ A ₂ ⊕ A ₃							
Н	$ODD = Q_0 \oplus Q_1 \oplus Q_2 \oplus Q_3$	l						

5

Am2907/Am2908

The Am2907 can be used as an I/O Bus Transceiver and Main Memory I/O Transceiver in high-speed Microprocessor Systems.

ABSOLUTE MAXIMUM RATINGS

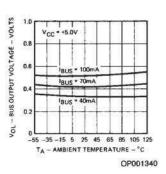
Storage Temperature65°C to +150°C
(Ambient) Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
Continuous0.5V to +7.0V
DC Voltage Applied to Outputs for
High Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Bus200mA
DC Output Current, Into Outputs
(Except Bus) 30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

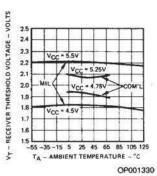
OPERATING RANGES

Commercial (C) Devices
Temperature0°C to +70°C
Supply Voltage + 4.75V to +5.25V
Military (M) Devices
Temperature55°C to +125°C
Supply Voltage + 4.5V to + 5.5V
Operating ranges define those limits over which the function- ality of the device is guaranteed.

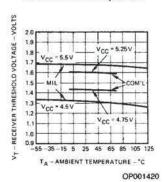
DC CHARACTERISTICS over operating range unless otherwise specified

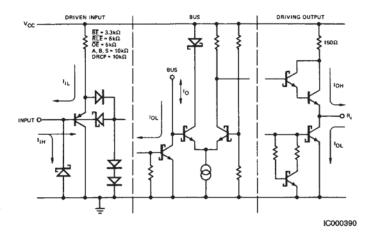

Parameters	Description	Test Conditions (Note 2)			Min	Typ (Note 1)	Max	Units
	1	V _{CC} = MIN	MIL: IOH	= - 1.0mA	2.4	3.4		g
VOH	Receiver Output HIGH Voltage	VIN = VIL or VIH	COM'L:Id	OH = -2.6mA	2.4	3.4		Volts
120000	Parity	VCC = MIN, IOH = -6	660µA	MIL	2.5	3.4		Volts
VOH	Output HIGH Voltage	VIN - VIH OF VIL		COM'L	2.7	3.4		VOICE
- hite		327	IOL = 4m	nA		0.27	0.4	
VOL	Output LOW voltage	VCC = MIN	IOL = 8m	nA	2000	0.32	0.45	Volts
	(Except Bus)	VIN = VIL or VIH	IOL = 12	mA		0.37	0.5	
VIH	Input HIGH Level (Except Bus)	Guaranteed input logical HIGH for all inputs			2.0			Volts
-	Input LOW Level	Guaranteed input lo	Guaranteed input logical LOW MIL				0.7	
VIL	(Except Bus)(for all inputs COM'L					0.8	Volts
V _I	Input Clamp Voltage (Except Bus)	V _{CC} = MIN, I _{IN} = -1	V _{CC} = MIN, I _{IN} = -18mA				-1.2	Volts
IIL.	Input LOW Current (Except Bus)	V _{CC} = MAX, V _{IN} = 0	.4V				-0.36	mA
Ін	Input HiGH Current (Except Bus)	V _{CC} = MAX, V _{IN} = 2	.7V	120.38-11			20	μΑ
Ч	Input HIGH Current (Except Bus)	VCC = MAX, VIN = 5	.5V				100	μА
Isc	Output Short Circuit Current (Except Bus)	V _{CC} = MAX	V _{CC} = MAX				-65	mA
				Am2907		75	110	mA
loc	Power Supply Current	V _{CC} = MAX, All inpu	IIS = GND	Am2908		80	120	11114
7	Off-State Output Current	V _{CC} = MAX	VO = 2.4	IV			20	μА
lo	(Receiver Outputs)	ACC - MVV	Vo = 0.4	IV			-20	

BUS INPUT/OUTPUT CHARACTERISTICS over operating temperature range


Parameters	Description	Description Test Conditions (Note 2)				Typ (Note 1)	Max	Units
VOL IO IOFF VTH			I _{OL} = 40mA		1000	0.32	0.5	
	Bus Output LOW Voltage	V _{CC} = MIN	IOL = 70mA			0.41	0.7	Volts
111000		88203	I _{OL} = 100mA			0.55	0.8	
THUS HOLD			V _O = 0.4V				-50	VIII SV
lo	Bus Leakage Current	$V_{CC} = MIN$ $I_{OL} = 70mA$ $I_{OL} = 100mA$ $V_{CC} = 100mA$ $I_{OL} $	MIL	- (0.000)		200	μA	
	REPORT OF THE PROPERTY OF THE	V _O = 4.5V	COM'L			100	Laure	
IOFF	Bus Leakage Current (Power Off)	VO = 4.5V	V				100	μА
- Ciri	Receiver Input HIGH Threshold	Bus Enable = 2.4V	Am2907	MIL	2.4	2.0	1	Volts
				COM, F	2.3	2.0		
VTH			la contrar non	MIL	1.9	1.5		
			Am2908	COM'L	1.7	1.5		
- 1000 Harris	 		2 1111	MIL		2.0	1.5	8
	10000 TEG 54997	PD-1 20 2020	Am2907	COM'L		2.0	1.6	
V _{TL}	Receiver Input LOW Threshold	Bus Enable = 2.4V	6-27	MIL		1.5	1.1	Volts
			Am2908	COM'L		1.5	1.3	1
Vı	Input Clamp Voltage	VCC = MIN, IIN = -1	V _{CC} = MIN, I _{IN} = -18mA				-1.2	Volts

TYPICAL PERFORMANCE CURVES


Bus Output Low Voltage Versus Ambient Am2907 Receiver Threshold Variation Temperature


Versus Ambient Temperature

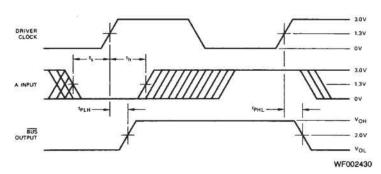
Am2908 Receiver Threshold Variation Versus Ambient Temperature

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

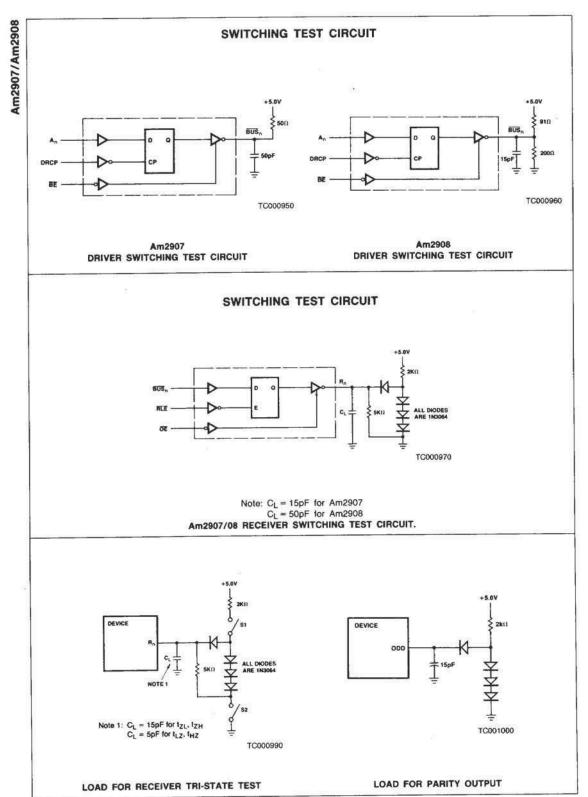
Note: Actual current flow direction shown.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified

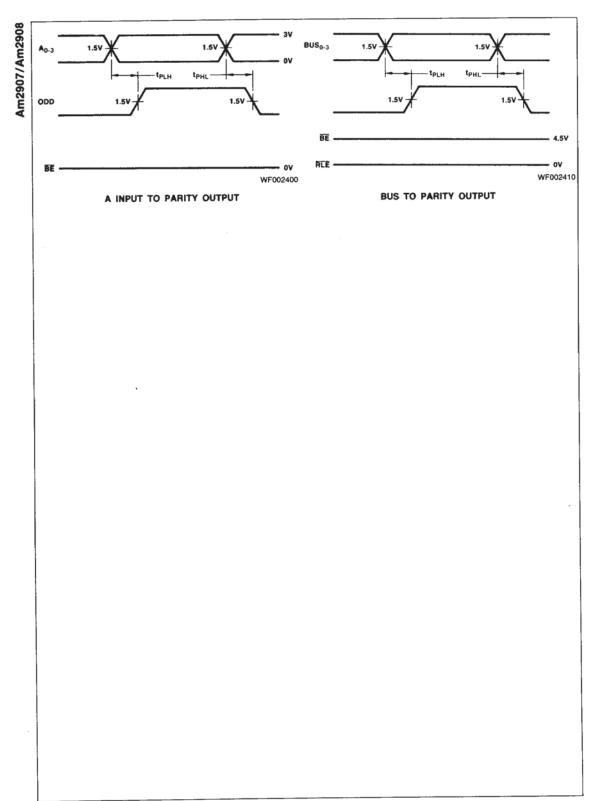
			C	OMMERCI	AL		MILITARY	,	
				Am2907		Am2907			
Parameters	Description	Test Conditions	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Units
t _{PHL}	Driver Clock (DRCP) to Bus			21	36		21	40	ns
t _{PLH}	Driver clock (DNCF) to bus	C _L (BUS) = 50 pF		21	36		21	40	
t _{PHL}	Bus Enable (PE) to Bus	R _L (BUS) = 50 Ω		13	23		13	26	ns
tpLH	Bus Enable (BE) to Bus			13	23		13	26	
ts	Data Inputs		15		<u></u>	18			ns
th	Data inputs		7.0			8.0			
tpw	Clock Pulse Width (HIGH)		25			28			ns
tpLH	Bus to Receiver Output			18	34		18	37	ns
t PHL	(Latch Enabled)			18	34		18	37	1
t _{PLH}	Lateb Eachle to Benefiter Output			21	34		21	37	ns
tpHL	Latch Enable to Receiver Output	C _L = 15 pF R _L = 2.0 kΩ		21	34	<u> </u>	21	37	<u> </u>
ts	Bus to Latch Enable (RLE)	R _L = 2.0 k32	18			21			ns
th	Bus to Later Enable (NEL)		5.0			7.0			
t _{PLH}	Data to Odd Parity Out		L_	21	36	_	21	40	ns
^t PHL	(Driver Enabled)		<u> </u>	21	36	<u> </u>	21	40	-
tpLH	Bus to Odd Parity Out		L_	21	36	<u> </u>	21	40	ns
t _{PHL}	(Driver Inhibit)		L_	21	36		21	40	
t _{PLH}	Latch Enable (RLE) to Odd		L_	21	36	<u> </u>	21	40	ns
tpHL	Parity Output			21	36	<u> </u>	21	40	ļ
†ZH	Output Control to Output		<u> </u>	14	25	ļ	14	28	ns
1 _{ZL}	Output Control to Output		<u> </u>	14	25	_	14	28	
tHZ	Output Control to Output	C _L = 5.0 pF R _L = 2.0 kΩ		14	25	<u> </u>	14	28	ns
tı z	1 Output Control to Output	R _L ≈ 2.0 kΩ	I	14	25	1	14	28	


Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.
 For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.
 Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified


- 37% - 38%			C	MMERCI	AL				
				Am2908		Am2908			
Parameters	Description	Test Conditions	Min	Typ (Note 1)	Max	Min	Typ (Note 1)	Max	Units
1PHL	Driver Clock (DRCP) to Bus			21	36		21	40	ns
1PLH	Driver Clock (DRCF) to Bus			21	36		21	40	11.5
t _{PHL}	Bus Enable (BE) to Bus			13	23		13	26	ns
t _{PLH}	Bus Enable (BE) to Bus	C _L (BUS) = 50 pF		13	23		13	26	110
t _r	Bus Output Rise Time	RL (BUS):	7	10		5	10		ns
t _f	Bus Output Fall Time	91 Ω to VCC 200 Ω to GND	4	6	- 1	3	6		
ts	Data Inputs		15		201313	18			ns
th	Data inputs	ji	7.0			8.0			
tpw	Clock Pulse Width (HIGH)		25			28			ns
t _{PLH}	Bus to Receiver Output			18	35		18	38	ns
tpHL	Bus to Receiver Output (Latch Enabled)			18	35		18	38	31.99
tpLH	Latch Enable to Receiver Output	C _L = 50 pF R _L = 2.0 kΩ		21	35		21	38	ns
tphL		$R_L = 2.0 \text{ k}\Omega$		21	35		21	38	
ts	Bus to Latch Enable (RLE)		18			21			ns
th	Bus to Later Enable (NLE)		5.0			7.0			
t _{PLH}	Data to Odd Parity Out	PARTE STREET,		21	36		21	40	ns
tpHL	(Driver Enabled)			21	36		21	40	1,9
tpLH	Bus to Odd Parity Out			21	36		21	40	ns
tpHL .	(Driver Inhibit)	C _L = 15 pF		21	36		21	40	
tpLH	Latch Enable (RLE) to Odd	$R_L = 2.0 \text{ k}\Omega$		21	36		21	40	ns
tphL .	Parity Output			21	36		21	40	1
^t zH	Output Control to Output			14	25	-	14	28	ns
tzL	Output Control to Output			14	25		14	28	100000
thz	Output Control to Output	C _L = 5.0 pF R _L = 2.0 kΩ		14	25		14	28	ns
t _{LZ}	1 Output Control to Output	$R_L = 2.0 \text{ k}\Omega$		14	25		14	28	1

Notes: 1. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.
2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type.


SWITCHING WAVEFORMS

INPUT SET-UP AND HOLD TIMES.

