

AM29821, AM29823, AM29825

High Performance Bus Interface Registers

The AM29821/823/825 bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The AM29821 is a buffered, 10-bit wide version of the popular '374/'534 functions. The AM29823 is a 9-bit wide buffered register with Clock Enable ($\overline{\text{EN}}$) and Clear ($\overline{\text{CLR}}$) - ideal for parity bus interfacing in high performance microprogrammed systems. The AM29825 is an 8-bit buffered register with all the '823 controls plus multiple enables ($\overline{\text{OE}_1}$, $\overline{\text{OE}_2}$, $\overline{\text{OE}_3}$) to allow multiuser control of the interface, e.g., $\overline{\text{CS}}$, DMA, and $\overline{\text{RD/WR}}$. It is ideal for use as an output port requiring high $I_{\text{OL}}/I_{\text{OH}}$.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Advanced Micro Devices

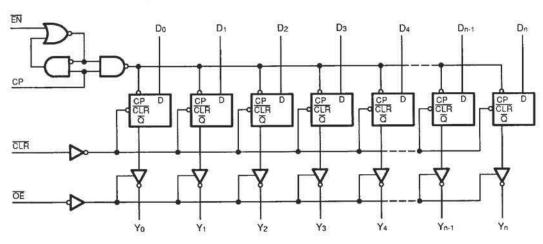
Am29821/823/825

High Performance Bus Interface Registers

DISTINCTIVE CHARACTERISTICS

- High-speed parallel registers with positive edge-triggered D-type flip-flops
 - Noninverting CP-Y tpD = 7.5 ns typ
 - Inverting CP-Y tpb = 7.5 ns typ
- Buffered common Clock Enable (EN)
- Buffered common asynchronous Clear input (CLR)
- Three-state outputs glitch free during power-up and down
- Outputs have Schottky clamp to ground

- 48 mA Commercial lou
- Low input/output capacitance
 - 6 pF inputs (typical)
 - 8 pF outputs (typical)
- Metastable "Hardened" Registers
- lon specified at 2.0 V and 2.4 V
- 24-pin 0.3" space saving package
- IMOXTM high performance <u>IM</u>planted <u>OX</u>ide isolated process


GENERAL DESCRIPTION

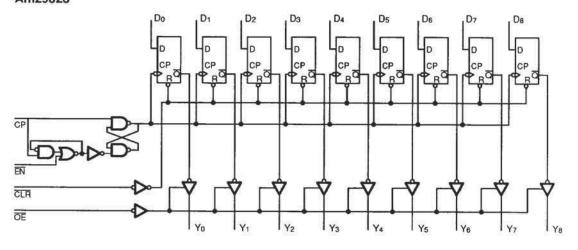
The Am29821/823/825 bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/data paths or buses carrying parity. The Am29821 is a buffered, 10-bit wide version of the popular '374/'534 functions. The Am29823 is a 9-bit wide buffered register with Clock Enable ($\overline{\text{EN}}$) and Clear ($\overline{\text{CLR}}$) – ideal for parity bus interfacing in high performance microprogrammed systems. The Am29825 is an 8-bit buffered register with all the '823 controls plus mul-

tiple enables (\overline{OE}_1 , \overline{OE}_2 , \overline{OE}_3) to allow multiuser control of the interface, e.g., \overline{CS} , DMA, and RD/ \overline{WR} . It is ideal for use as an output port requiring high lot/loh.

All of the Am29800 high performance interface family are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottly diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.

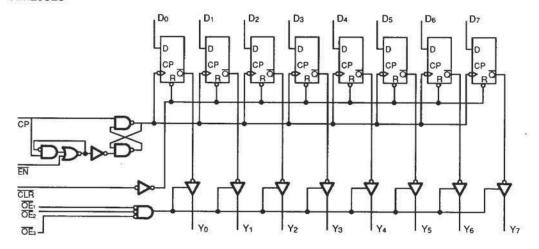
BLOCK DIAGRAMS Am29821

01420-001A

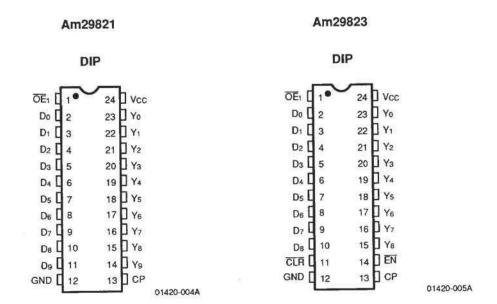

IMOX is a trademark of Advanced Micro Devices, Inc.

Publication# 01420

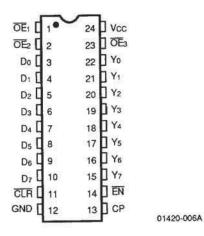
Anenumencu


Issue Date: December 1990

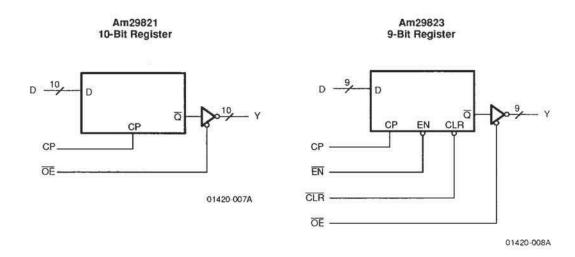
BLOCK DIAGRAMS (Continued) Am29823


01420-002A

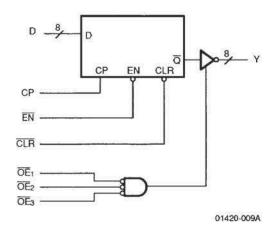
Am29825


01420-003A

CONNECTION DIAGRAMS Top View

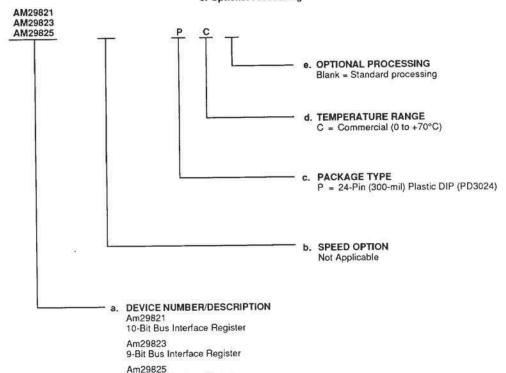


Am29825


DIP

LOGIC SYMBOLS

Am29825 8-Bit Register



ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

a. Device Number

- a. Device Number
 b. Speed Option (if applicable)
 c. Package Type
 d. Temperature Range
 e. Optional Processing

Valid Com	binations
AM29821	
AM29823	PC
AM29825	

8-Bit Bus Interface Register

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION

D

The D flip-flop data inputs.

CLR

For both inverting and noninverting register, when the clear input is LOW and \overline{OE} is LOW, the Q_i outputs are LOW. When the clear input is HIGH, data can be entered into the register.

CP

Clock Pulse for the Register; enters data into the register on the LOW-to-HIGH transition.

Y

The register three-state outputs.

Note:

The Am29823 and Am29825 registers achieve short throughput delay and setup time and reduced power consumption by
means of a clock gating and latching circuit. This circuit is sensitive to very short (<3 ns) HIGH-to-LOW-to-HIGH going spikes
on EN while CP is HIGH. The designer should be aware of this and avoid the use of decoders or other potentially glitching
devices in the EN logic.

FUNCTION TABLE

Inputs			Internal	Outputs	1			
ŌĒ	CLR	ĒN	Di	СР	Qi	Yi	Function	
H	Х	L	L	1		7	1 4.101.01	
Н	X	L	н	î	н	Z	Hi-Z	
Н	L	Х	Х	Х	L	Z		
L	L	Х	×	X	L	L	Clear	
Н	Н	Н	X	Х	NC	Z		
L	Н	Н	X	X	NC	NC	Hold	
Н	н	L	L	1	L	Z		
Н	н	L	н	↑	н	7	Load	
L	н	L	L	1	L	Ē.		
L	н	L	н	1	н	н		

H = HIGH

L = LOW

X = Don't Care

NC = No Change

1 = LOW-to-HIGH Transition

Z = High Impedance

EN

Clock Enable. When the clock enable is LOW, data on the Di input is transferred to the Qi output on the LOW-to-HIGH clock transition. When the clock enable is HIGH, the Qi outputs do not change state, regardless of the data or clock input transitions. (Note 1.)

OE

Output Control. When the \overline{OE} input is HIGH, the Y_i outputs are in the high impedance state. When the \overline{OE} input is LOW, the TRUE register data is present at the Y outputs.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with

-55°C to +125°C Power Applied

Supply Voltage to Ground

DC Input Current

-0.5 V to +7.0 V Potential Continuous

DC Voltage Applied to Outputs

-0.5 V to +5.5 V for High Output State -0.5 V to +5.5 V DC Input Voltage

100 mA DC Output Current, Into Outputs

Stresses above those listed under Absolute Maximum Rat-

ings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

0°C to +70°C Ambient Temperature, (TA) 5.0 V ± 10% Supply Voltage, (Vcc) 4.5 V to 5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

-30 mA to +5.0 mA

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 4.5 V	Iон = −15 mA	2.4		
		VIN = VIH OF VIL	I _{OH} = −24 mA	2.0		V
Vol	Output LOW Voltage	Vcc = 4.5 V Vin = ViH or ViL	IoL = 48 mA		0.5	V
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0		٧
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			0.8	V
Vı	Input Clamp Voltage	Vcc = 4.5 V, lin = -18 mA			-1.2	V
IIL Input LOW	Input LOW Current	Vcc = 5.5 V, ViN = 0.4 V	Data, CLR		-1.0	m/
	December 1 September 1		OE, EN, CP		-2.0	111/
lін	Input HIGH Current	Vcc = 5.5 V, Vin = 2.7 V			50	μА
li	Input HIGH Current	Vcc = 5.5 V, Vin = 5.5 V			1.0	mA
loz	Output Off-State (Hi-Z)	100 - 0.0 1	Vo = 0.4 V		-50 50	μА
9550	Output Current		Vo = 2.4 V			μ,
Isc	Output Short Circuit Current (Note 1)	V _{CC} = 5.5 V		-75	-250	mA
lcc Supply Current (Note 2)	Supply Current	Vcc = 5.5 V	Over Temperature Range		140	mA
	(Note 2)	Outputs Open EN = LOW	+70°C		130	mA

Notes:

- 1. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- 2. Clock input, CP, is HIGH after clocking in data to produce outputs = LOW.

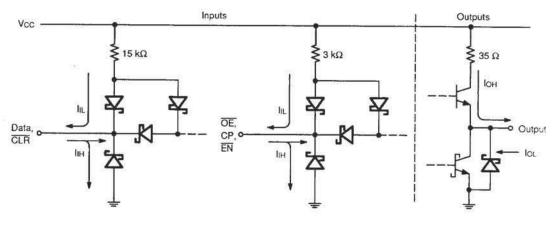
AMD 🎵

SWITCHING CHARACTERISTICS (TA = 25°C, Vcc = 5.0 V)

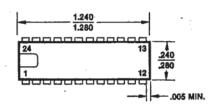
Parameter Symbol	Parameter Description		Test Conditions (Note 1)	Min.	Тур.	Max.	Unit
TPLH			W	3.5		8.5	ns
TPHL	Propagation Delay Clock to Y ₁ (OE = LOW)	C _L = 50 pF	3.5		10.5	ns	
t PLH		C _L = 300 pF			14	ns	
TPHL					18	ns	
ts	Data to CP Setup Time			2.0	0		ns
tн	Data to CP Hold Time			2.0	0.5	- "	ns
ts	Enable (EN) to CP Se	etup Time		3.0	1.5		ns
ts	Enable (EN _) to CP Se	ble (EN 1) to CP Setup Time		3.0	1.5		ns
tн	Enable (EN) Hold Time			0	-1.5	9	ns
TPHL	Propagation Delay, Clear	to Yi			12.9	15.0	ns
ts	Clear Recovery (CLR_F)	Time		5.0	1.1		ns
tpwn	Clock Pulse Width HIGH		5.0	3.5		ns	
tpwL	Clock Fulse Width	LOW	$C_L = 50 pF$	5.0	3.0		ns
tpwL	Clear (CLR = LOW) Pulse	Width	SARAH BASKATA	5.0	4.0	2.1	ns
tzн			0 000-5			17	ns
tzL	Output Enable Time OE _ to Yi		C _L = 300 pF			21	ns
tzн					11.5	12	ns
tzı			C _L = 50 pF		11.0	12	ns
tHZ	Output Disable Time OE _ 10 Yi		CL = 50 pF			9	ns
tız						9	ns
tHZ			790 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.2	8	ns
tız			$C_L = 5 pF$		5.5	8	ns

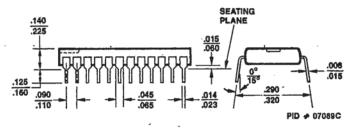
Note:

^{1.} See test circuit and waveforms (Chapter 2).

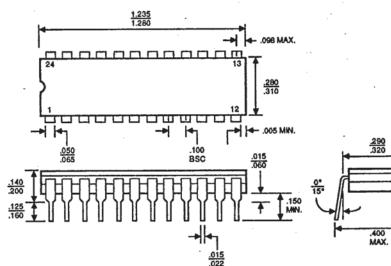

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description		Test Conditions (Note 1)	Min.	Max.	Unit
t PLH	Propagation Delay Clock to Yi (OE = LOW) Data to CP Setup Time Data to CP Hold Time		C _L = 50 pF	3.5	10	ns
t _{PHL}				3.5	12	ns
t _{PLH}			C _L = 300 pF		16	ns
t _{PHL}					20	ns
ts				4		ns
tн				2		ns
ts	Enable (EN 1) to CP Se	tup Time	0. 50 25	4		ns
ts	Enable (EN _) to CP Set	tup Time		4		ns
tн	Enable (EN) Hold Time			2		ns
t _{PHL}	Propagation Delay, Clear to Yi Clear Recovery (CLR _ T) Time		C _L = 50 pF		20	ns
ts				7		ns
tpwh	Clock Pulse Width	HIGH		7		ns
t _{PWL}		LOW		7		ns
tpwL	Clear (CLR = LOW) Pulse Width			7		ns
tzн	Output Enable Time \overline{OE} to Y _i		C _L = 300 pF		20	ns
tzL					23	ns
tzн			C _L = 50 pF		14	ns
tzL					14	ns
tHZ	Output Disable Time OE _ to Yi		C _L = 50 pF		16	ns
tız					12	ns
tHZ			C _L = 5 pF		9	ns
tLZ					9	ns

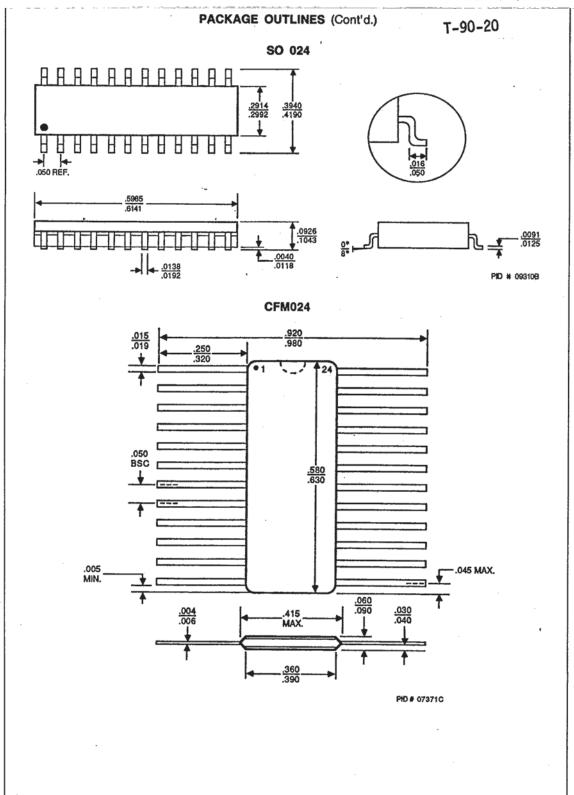

Note:


^{1.} See test circuit and waveforms (Chapter 2).

INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

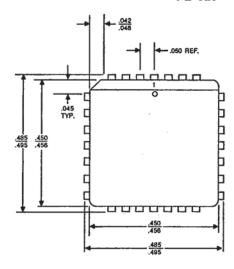


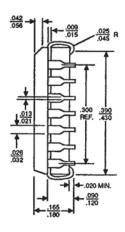
PD3024



CD3024

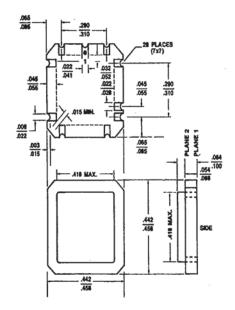
*For reference only.


1954 6 - 03


112

PACKAGE OUTLINES (Cont'd.)

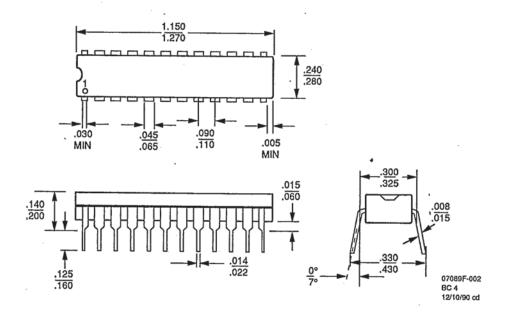
T-90-20


PL 028

PID # 06751E

CL 028

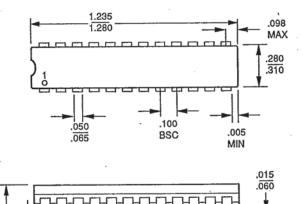
PHD # 06595D

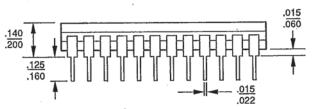

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

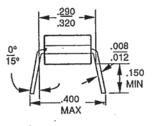
ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA TEL: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450

© 1988 Advanced Micro Devices, Inc. Printed in U.S.A. AIS-WCP-20M-01/88-0

Bus Interface Products

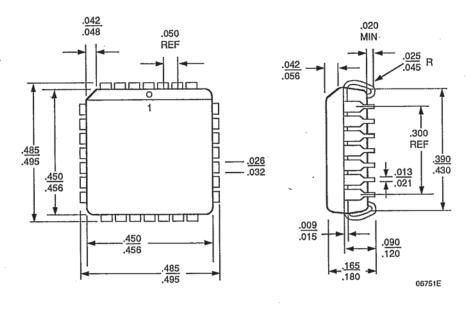

PD3024 24-Pin 300-mil Plastic SKINNYDIP



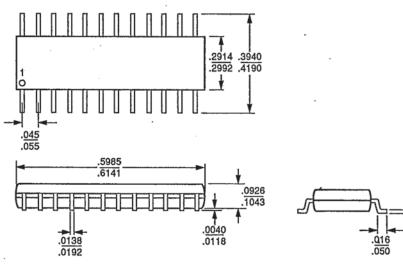

Note:
For reference only. All dimensions measured in inches. BSC is an ANSI standard for Basic Space Centering.

T-90-20

CD3024 24-Pin 300-mil Ceramic SKINNYDIP



06850C


PL 028 28-Pin Plastic Leaded Chip Carrier

Bus Interface Products

SO 024 24-Pin Plastic Small Outline Package

T-90-20

6–5