

AM3448A

IEEE-488 Quad Bidirectional Transceiver

The AM3448A is a quad bidirectional transceiver meeting the requirement of IEEE-488 standard digital interface for programmable instrumentation for the driver, receiver, and composite device load. One pull-up enable input is provided for each pair of transceivers which controls the operating mode of the driver outputs as either an open collector or active pull-up configuration.

The receivers feature input hysteresis for improved noise immunity in system applications. The device bus (receiver input) changes from standard bus loading to a high impedance load when power is removed. In addition no spurious noise is generated on the bus during power-up or power-down.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

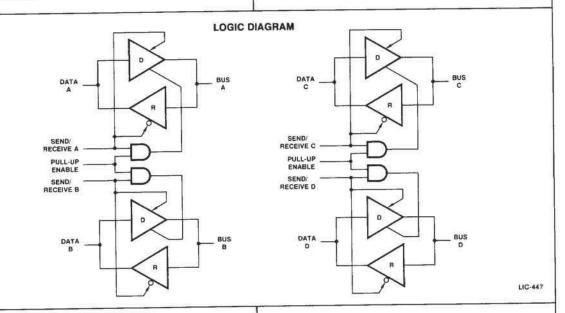
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Am3448A

IEEE-488 Quad Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

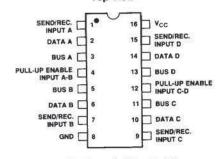
- Four independent driver/receiver pairs
- Three-state outputs
- High impedance inputs
- Receiver hysteresis 600mV (Typ.)
- Fast Propagation Times 15-20ns (Typ.)
- TTL compatible receiver outputs
- Single +5 volt supply


LIC-446

- Open collector driver output option with internal passive pull up
- Power up/power down protection (No invalid information transmitted to bus)
- No bus loading when power is removed from device
- Required termination characteristics provided
- · Advanced Schottky processing
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am3448A is a quad bidirectional transceiver meeting the requirement of IEEE-488 standard digital interface for programmable instrumentation for the driver, receiver, and composite device load. One pull-up enable input is provided for each pair of transceivers which controls the operating mode of the driver outputs as either an open collector or active pull-up configuration.


The receivers feature input hysteresis for improved noise immunity in system applications. The device bus (receiver input) changes from standard bus loading to a high impedance load when power is removed. In addition no spurious noise is generated on the bus during power-up or power-down.

ORDERING INFORMATION

Package Type	Temperature Range	Order Number		
Hermetic DIP	0°C to +70°C	MC3448AL		
Molded DIP	0°C to +70°C	MC3448AP		
Dice	0°C to +70°C	AM3448AX		

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-448

Am3448A

ABSOLUTE MAXIMUM RATINGS above which the useful life may be impaired

Storage Temperature	-65°C to +150°C
Supply Voltage	7.0V
Input Voltage	5.5V
Driver Output Current	150mA

ELECTRICAL CHARACTERISTICS

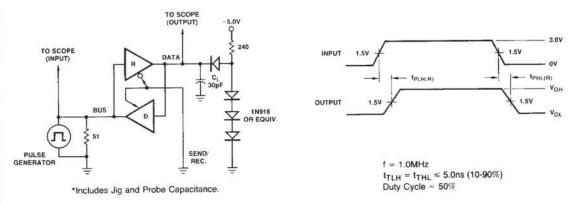
The following conditions apply unless otherwise noted:

 $T_A = 0$ °C to 70°C V_{CC} MIN. = 4.75V V_{CC} MAX. = 5.25V

DC ELECTRICAL CHARACTERISTICS over operating temperature range

arameter	s Description	Test Co	enditions	Min.	Typ. (Note 1)	Max.	Unit	
Bus Cha	racteristics				-00000			
V(BUS)	- Bus Voltage	Bus Pin Open, V _{I(S/R)} = 0.8V		2.75		3.7		
V _{IC(BUS)}	Bus voltage	I _(BUS) = -12mA		-1.5	Volts			
	200.000	(203)	0.7	7	2.5			
I(BUS) Bus Current	Bus Current		2. 2002 - 300	-1.3		-3.2	mA	
		V _{CC} = 0V, 0V ≤ V _(BUS)	$V_{CC} = 0V, 0V \le V_{(BUS)} \le 2.75V$			0.04		
Driver Cl	haracteristics							
VIC(D)	Driver Input Clamp Voltage	$V_{I(S/R)} = 2.0V, I_{IC(D)} =$	-18mA		2001	-1.5	Volt	
V _{OH(D)}	Driver Output Voltage - High Logic State	$V_{I(S/R)} = 2.0V, V_{IH(D)} = V_{IH(E)} = 2.0V, I_{OH} = -5.$		2.5			Volt	
V _{OL(D)}	Driver Output Voltage - Low Logic State	V _{I(S/R)} = 2.0V, I _{OL(D)} =	48mA			0.5	Volt	
I _{OS(D)}	Output Short Circuit Current	$V_{I(S/R)} = 2.0V, V_{IH(D)} = V_{IH(E)} = 2.0V$	2.0V	-30		-120	mA	
V _{IH(D)}	Driver Input Voltage - High Logic State	V _{I(S/R)} = 2.0V		2.0		_	Volt	
V _{IL(D)}	Driver Input Voltage - Low Logic State	V _{I(S/R)} = 2.0V				0.8	Volt	
I _{I(D)}	Driver Input Current - Data Pins	V V 00V	0.5 ≤ V _{I(D)} ≤ 2.7V	-200		40		
I _{IB(D)}	Driver input Current - Data Pins	$V_{I(S/R)} = V_{I(E)} = 2.0V$	V _{I(D)} = 5.5V			200	μА	
Receiver	Characteristics							
V _{HYS(R)}	Receiver Input Hysteresis	$V_{I(S/R)} = 0.8V$		400	600	100	mV	
VILH(R)	Description lead Throubald	$V_{I(S/R)} = 0.8V$, Low to Hi	gh		1.6	1.8		
VIHL(R)	Receiver Input Threshold	$V_{I(S/R)} = 0.8V$, High to Lo	ow .	0.8	1.0		Volts	
V _{OH(R)}	Receiver Output Voltage - High Logic State	$V_{I(S/R)} = 0.8V, I_{OH(R)} = V_{(BUS)} = 2.0V$	-800μA,	2.7			Volts	
V _{OL(R)}	Receiver Output Voltage - Low Logic State	$V_{I(S/R)} = 0.8V, I_{OL(R)} =$	16mA, V _(BUS) = 0.8V			0.5	Volts	
los(R)	Receiver Output Short Circuit Current	$V_{I(S/R)} = 0.8V, V_{(BUS)} =$	2.0V	-15	70.0	-75	mA	
Enable, S	Send/Receive Characteristics					/. =2	4.8	
I _{I(S/R)}	L	0.5 ≤ V _{I(S/R)} ≤ 2.7V	5 N.	-100		20		
I _{IB(S/R)}	Input Current - Send/Receive	$V_{I(S/R)} = 5.5V$				100	μΑ	
I _{I(E)}	L	0.5 ≤ V _{I(E)} ≤ 2.7V		-200		20	1 000050	
I _{fB(E)}	Input Current - Enable	ent - Enable $V_{I(E)} = 5.5V$		011-100	100	100	μА	
Power Su	upply Current		100					
ICCL	Branch Cornet	Listening Mode – All Receivers On Talking Mode – All Drivers On		63	85	25		
Іссн	Power Supply Current				106	125	mA	

Note 1. Typical limits are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading.


Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units
t _{PLH(D)}		Output Low to High	-		15	ns
tpHL(D)	Propagation Delay of Driver (Fig. 2)	Output High to Low			17	113
t _{PLH(R)}		Output Low to High	-		25	ns
tpHL(R)	Propagation Delay of Receiver (Fig. 1)	Output High to Low	-		23	113
t _{PHZ(R)}		Logic High to Third State	-		30	
t _{PZH(R)}	Propagation Delay Time - Send/Receiver to Data (Fig. 4)	Third State to Logic High	-		30	ns
t _{PLZ(R)}		Logic Low to Third State			30	113
t _{PZL(R)}	460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Third State to Logic Low			30	
t _{PHZ(D)}		Logic High to Third State	1000		30	
t _{PZH(D)}	Propagation Delay Time - Send/Receiver to Bus	Third State to Logic High	-		30	ns
t _{PLZ(D)}	(Fig. 3)	Logic Low to Third State	12		30	113
t _{PZL(D)}	1 2	Third State to Logic Low	Low		30	1
tPOFF(E)		Pull-Up Enable to Open Collector			30	ns
tporr(E)	Turn-On Time - Enable to Bus (Fig. 5)	Open Collector to Pull-Up Enable	7-		20	ns

TRUTH TABLE

Send/Rec.	Enable	Into Flow	Comments
0	X	Bus → Data	
1	1	Data →Bus	Active Pull-Up
1	0	Data → Bus	Open Collector

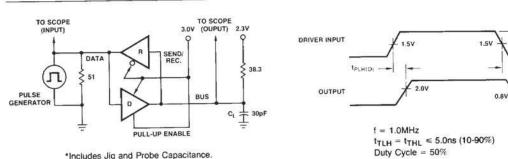
X = Don't Care

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

LIC-449

LIC-451

Figure 1. Bus Input to Data Output (Receiver).

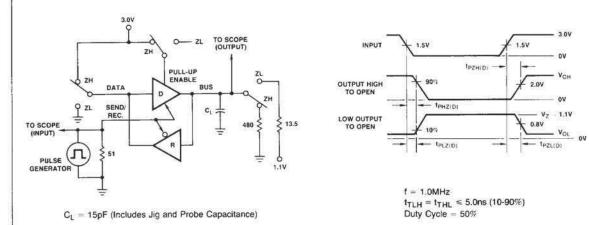

LIC-450

3.0V

OV

VOH

IPHL(D)



*Includes Jig and Probe Capacitance.

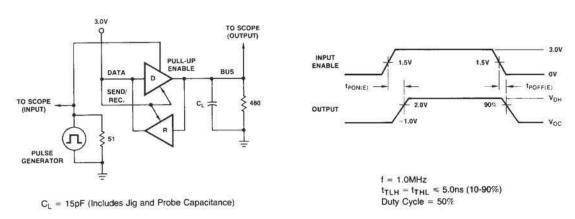
Figure 2. Data Input to Bus Output (Driver).

LIC-452


PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS (Cont.)

LIC-453

Figure 3. Send/Receive Input to Bus Output (Driver).


LIC-454

LIC-455

Figure 4. Send/Receive Input to Data Output (Receiver).

LIC-456

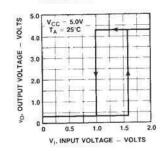
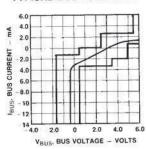
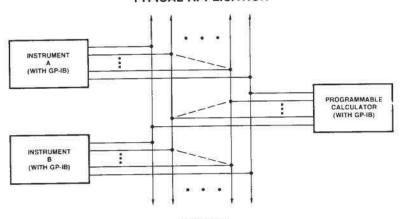

LIC-457

Figure 5. Enable Input to Bus Output (Driver).


LIC-458

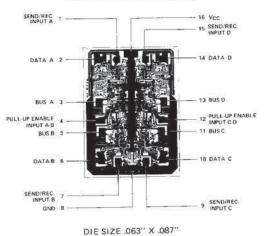
PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS (Cont.)

TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS



TYPICAL BUS LOAD LINE

LIC-459


TYPICAL APPLICATION

16 LINES TOTAL (FOUR Am3448A'S FOR EACH BUS INTERFACE) LIC-460

TYPICAL MEASUREMENT SYSTEM APPLICATION

Metallization and Pad Layout

12