

CD40116

CMOS High-Speed 8-Bit Bidirectional CMOS/TTL Interface Level Converter

CD40116 is a high-speed 8-bit integrated circuit designed to interface CMOS logic levels with TTL logic levels on the data bus of microprocessor-based systems. CMOS/TTL interface is provided by eight parallel bidirectional buffer/level converters. Buffer INPUT/OUTPUT terminals are either inputs or outputs depending on the desired direction of data flow.

A low level on the DISABLE input with the ENABLE input either high or low, permits conversion of CMOS inputs to TTL outputs. A high level on both the DISABLE and ENABLE inputs permits data flow from TTL inputs to CMOS outputs. A low level on the ENABLE input and a high level on the DISABLE input sets both inputs/outputs to the high-impedance state.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

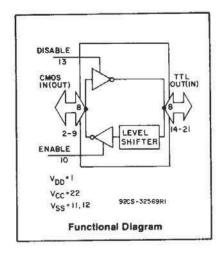
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

CMOS High-Speed 8-Bit Bidirectional CMOS/TTL Interface Level Converter

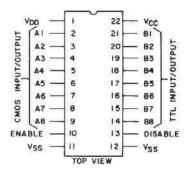
Features:


- Eight inverting channels with conversion from V_{DD} to V_{CC} or V_{CC} to V_{DD} (4 V ≤ V_{DD} ≤ 12 V and 4 V ≤ V_{CC} ≤ V_{DD})
- Three operating modes: CMOS-to-TTL level conversion TTL-to-CMOS level conversion Interface off; high-impedance on both sides
- CD40116 is a high-speed 8-bit integrated circuit designed to interface CMOS logic levels with TTL logic levels on the data bus of microprocessor-based systems. CMOS/TTL interface is provided by eight parallel bidirectional buffer/level converters. Buffer INPUT/OUTPUT terminals are either inputs or outputs depending on the desired direction of data flow.

A low level on the DISABLE input with the ENABLE input either high or low, permits conversion of CMOS inputs to TTL outputs. A high level on both the DISABLE and ENABLE inputs permits data flow from TTL inputs to CMOS outputs. A low level on the ENABLE input and a high level on the DISABLE input sets both inputs/outputs to the high-impedance state.

The TTL Input/Output terminals and the ENABLE and DISABLE control inputs are TTL-compatible without the use of external pull-up resistors. The TTL input logic 0 to logic 1 transition occurs at a level of approximately 1.5 volts. The ENABLE and DISABLE inputs may be driven to the VDD rail; therefore, either TTL or CMOS logic drivers, capable of sinking one TTL load, may be used to determine the direction of data flow. The large CMOS and TTL output buffers in this device have high output sink and source current capability and can drive the data bus capacitance with a transition time of approximately 0.25 ns/pF. This fast output transition time, together with the small propagation delay time of the device, allow high-speed operation.

Pin 12 is an additional VSS Pin which is connected directly to the TTL-to-CMOS converters to avoid oscillation in these amplifiers. Pin 12 is connected to Pin 11 through a poly resistor which isolated Pin 12 from VSS switching noise (groung noise).


The CD40116 is supplied in a 22-lead hermetic dual-in-line ceramic package (D suffix), 22-lead plastic package (E suffix), and in chip form (H suffix).

- Low propagation delay time: CMOS-to-TTL conversion - 25 ns typ. TTL-to-CMOS conversion - 30 ns typ. (VDD = 12 V, VCC = 5 V)
- High TTL sink current 11 mA typ.
- No external TTL input pull-up resistors required
- High speed drive of large data bus capacitances
- Input/output and power supply terminals located for ease of PC board layout

Applications:

- Interface CMOS microprocessor with TTL memories and peripheral devices
- Interface between and within logic systems which combine CMOS and TTL devices

92CS-30245

TERMINAL ASSIGNMENT

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE (Voltage reference to VSS Terminal)	
V _{DD}	0.5 to + 12.6 V*
VCC	0.5 to Vnn
INPUT VOLTAGE RANGE:	
Data Inputs, CMOS to TTL	0.5 to Vpp + 0.5 V
Data Inputs, TTL to CMOS	0.5 to VCC + 0.5 V
Enable, Disable Inputs	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40°C to + 60°C (E)	500 mW
For T _A = +60°C to +85°C (E)	Derate linearly at 12 mW/° C to 200 mW
For T _A = -55° C to + 100° C (D)	500 mW
For T _A = + 100 to + 125°C (D)	Derate linearly at 12 mW/° C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
For TA = Full Package-Temperature Range	
OPERATING TEMPERATURE RANGE (TA)	
Package Type D	55 to + 125° C
Package Type E	40 to + 85° C
STORAGE TEMPERATURE RANGE (Tstg)	65 to + 150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance of $1/16 \pm 1/32$ inch $(1.59 \pm 0.79 \text{ mm})$	
from case for 10 s max	+ 265°C

*At 125°C VDD should not exceed +12 V.

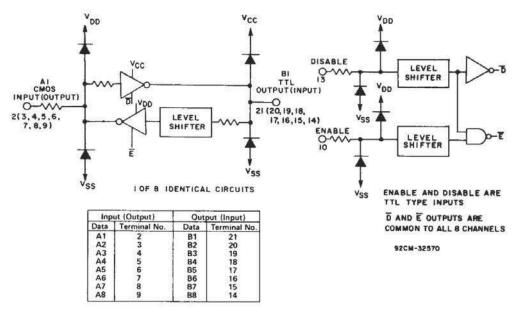
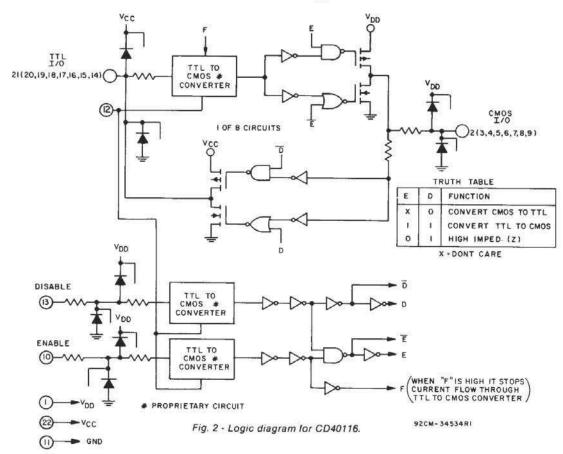


Fig. 1 - Functional block diagram.

TRUTH TABLE

ENABLE	DISABLE	FUNCTION
x	0	Convert CMOS Level to TTL Level
1	1	Convert TTL Level to CMOS Level
0	1	High Impedance (Z)


0 = Low Level

1 = High Level

X = Don't Care

Z = High Impedance on both CMOS and TTL sides.

See Operating and Handling Considerations — Bypassing and Unused Inputs.

STATIC CHARACTERISTICS VDD = 12 V, VCC = 5 V

CHARACTERISTIC		TEST	Limits at Indicated Temperatures (° C) Values at -55, +25, +125 for D, H Packages Values at -40, +25, +85 for E Packages							UNITS
		CONDITIONS								
			-55 -40			T T	+25			
				+85	+125	MIN.	TYP.	MAX.		
Quiescent Device Cu	rrent.	ENABLE = 1	5	5	5	5	-	1	5	mA
From VDD Supply,	IDD MAX	ENABLE = 0	5	5	5	5	-	0.2	5	
From VCC Supply,			100	100	200	200	_	5	100	μΑ
Data Flow - CMOS In		utputs	1156							
Input Current,	I _{IN} MAX	V _{tN} = 0, 12 V; Any CMOS input	±60	±60	±60	±60	-	±5	±60	μΑ
	IOH MIN	V _{OH} = 3 V, V _{IL} = 2 V	-7.5	-7	-4.9	-4.2	-6	-12	-	mA
	OL MIN	V _{OL} = 0.4 V. V _{IH} = 10 V	7.5	7	4.9	4.2	6	11	=	Serve 1
TTL 3-State Output Leakage		ENABLE = 1	-500	-500	-500	-500	1000000	-250	-500	μΑ
Current	IOUT MAX	ENABLE = 0	±100	±100	±100	±100	-0	±5	±100	μΑ
Data Flow - TTL Inpu										
Input Current,	III MAX	$V_{1L} = 0$ to 0.7 V:	-500	-500	-500	-500	-	-250	-500	1
A.	IIH MAX	V _{IH} = 2.3 V;	-450	-350	-350	-350	_	-175	-350	μΑ
	IH MAX	V _{IH} = 5 V; Any TTL input	+100	+100	+100	+100	-	+50	+100	
700	IOH MIN	V _{OH} = 11.5 V. V _{IL} = 0.7 V	-4.3	-4.2	-2.9	-2.5	-3.5	-6.5	-	mA
	IOL MIN	V _{OL} = 0.5 V, V _{IH} = 2.3 V	4.3	4.2	2.9	2.5	3.5	6.5	8	
CMOS 3-State Output Leakage Current	IOUT MAX	V _O = 0, 12 V, V _{IN} = 0, 5 V	±60	±60	±60	±60	-	±5	±60	μΑ
Enable and Disable In			-61							
	IL MAX	V _{1L} = 0 to 0.7 V	-500	-500	-500	-500		-250	-500	
Input Current,	IH MAX	VIH = 2.3 (TTL)	-450	-350	-350	-350	-	-175	-350	μΑ
orrando de la companya del companya della companya	IH MAX	V _{IH} = 12 V (CMOS)	60	60	60	60	-	5	60	

DYNAMIC ELECTRICAL CHARACTERISTICS AT TA = 25°C; VDD = 12 V, VCC = 5 V

CHARACTERISTIC	TEST CO	NDITIONS		UNITS		
	CMOS TTL	OUTPUT	CL =	50 pF	C _L = 200 pF TYP 35 50	ns
			TYP	MAX		
Propagation Delay Times, Data-In to Data-Out, tPHL, tPLH		TTL CMOS	25 30	35 45		
Disable to TTL Out, †PHZ/LZ †PZH/ZL			30 35	45 45	30 35	ns
Enable to CMOS Out, †PHZ/LZ †PZH/ZL			30 30	50 50	20 45	ns
Transition Time,	CMOS TTL	TTL CMOS	20 20	30 30	55 55	ns

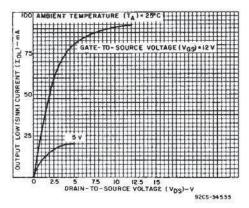


Fig. 3 - Typical N-Channel output low (sink) current characteristics - CMOS to TTL.

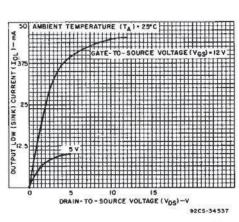


Fig. 5 - Minimum N-Channel output low (sink) current characteristics - CMOS

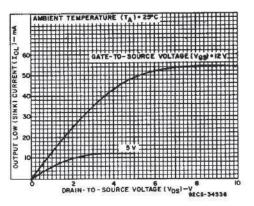


Fig. 4 - Typical output low (sink) current characteristics - TTL to CMOS.

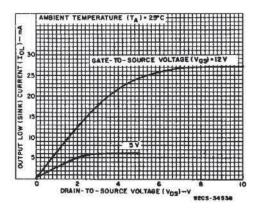


Fig. 6 - Minimum output low (sink) current characteristics - TTL tol CMOS.

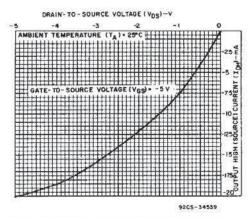


Fig. 7 - Typical P-channel output high (source) current characteristics - CMOS to TTL.

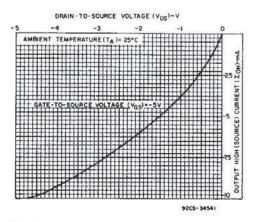


Fig. 9 - Minimum P-Channel output high (source) current characteristic - CMOS to TTL.

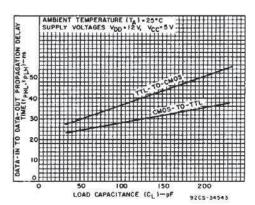


Fig. 11 - Typical DATA-IN to DATA-OUT propagation delay as a function of load capacitance.

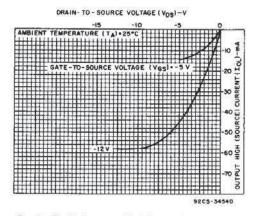


Fig. 8 - Typical output high (source) current characteristics - TTL to CMOS.

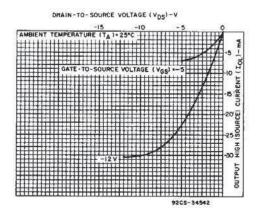


Fig. 10 - Minimum output high (source) current characteristics - TTL to CMOS.

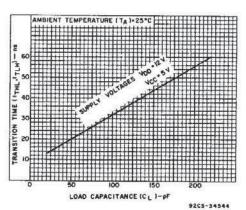


Fig. 12 - Typical transition time as a function of load capacitance CMOS-to-TTL or TTL-to-CMOS.

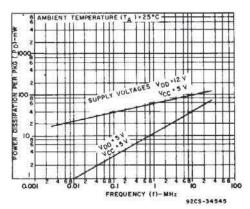


Fig. 13 - Power dissipation as a function of frequency - CMOS to TTL.

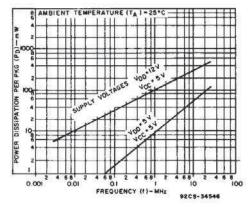
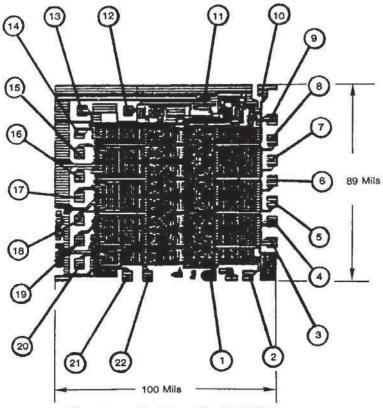



Fig. 14 - Power dissipation as a function of frequency - TTL to CMOS.

Dimensions and Pad Layout for CD40116H Chip No. is TA11951B.