

DM54126, DM74126

Quad Tri-State Buffers

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability at the high logic level to permit the driving of bus lines without external pull-up resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - · Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

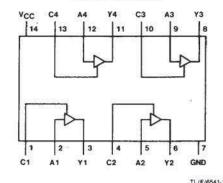
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

DM54126/DM74126 Quad TRI-STATE® Buffers

General Description

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability at the high logic level to permit the driving of bus lines without external pull-up resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.


Absolute Maximum Ratings (Note 1)

Supply Voltage 7V
Input Voltage 5.5V
Storage Temperature Range - 65 °C to 150 °C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Connection Diagram

Dual-In-Line Package

DM54126 (J) DM74126 (N)

Function Table

Y = A

In	out	Output	
Α	С	Υ	
L	н	L	
Н	н	Н	
X	L	Hi-Z	

H ≈ High Logic Level L = Low Logic Level

X = Either Low or High Logic Level Hi-Z = TRI-STATE (Outputs are disabled)

Recommended Operating Conditions

Sym	Parameter	DM54126		DM74126			Units	
		Min	Nom	Max	Min	Nom	Max	Units
Vcc	Supply Voltage	4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			8.0	8		0.8	٧
I _{OH}	High Level Output Current	±3.		- 2			- 5.2	mA
loL	Low Level Output Current			16			16	· mA
TA	Free Air Operating Temperature	- 55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Sym	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = - 12 mA				- 1.5	V
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _{OH} V _{IL} = Max, V _{IH} =		2.4	3.3		V
V _{OL}	Low Level Output Voltage	V _{CC} = Min, I _{OL} : V _{IH} = Min, V _{IL} =			0.2	0.4	V
l _l	Input Current@Max Input Voltage	V _{CC} = Max, V _I =	5.5V			1	mA
I _{IH}	High Level Input Current	V _{CC} = Max, V _I =	2.4V			40	μА
I _{IL}	Low Level Input Current	V _{CC} = Max, V _i =	0.4V			- 1.6	mA
I _{IZL}	Off-State Input Current with Low Level Input Voltage Applied	$V_{CC} = Max$ $V_1 = 0.4V$		r		-40	μΑ
охн	Off-State Output Current with High Level Output Voltage Applied	$V_{CC} = Max$, $V_{O} = 2.4V$ $V_{IH} = Min$, $V_{IL} = Max$				40	μΑ
ozu	Off-State Output Current with Low Level Output Voltage Applied	$V_{CC} = Max$, $V_{O} = 0.4V$ $V_{IH} = Min$, $V_{IL} = Max$				- 40	μА
los			DM54	- 30		- 70	mA
		(Note 2)	DM74	- 28		- 70	
СС	Supply Current	V _{CC} = Max (Note 3)			36	62	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with both the output control and data inputs grounded, and outputs open.