

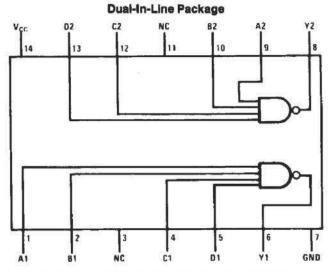
DM54S40, DM74S40

Dual 4-Input NAND Buffers

This device contains two independent gates each of which performs the logic NAND function.

Rochester Electronics Manufactured Components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.	 Quality Overview ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.


National Semiconductor

DM54S40/DM74S40 Dual 4-Input NAND Buffers

General Description

This device contains two independent gates each of which performs the logic NAND function.

Connection Diagram

Order Number DM54S40J, DM54S40W or DM74S40N See NS Package Number J14A, N14A or W16B

 $Y = \overline{ABCD}$

TL/F/6453-1

Function Table

~	Inp	Output		
A	В	С	D	Y
х	х	X	L	н
X X	x	L	X	н
x	L	X	X	н
L	X	X	x	н
H	н	н	н	L

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM54S	-55°C to +125°C
DM74S	0°C to + 70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S40			DM74S40			Inde
		Min	Nom	Max	Min	Nom	Max	Units
Vcc	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High Level Input Voltage	2			2			v
VIL	Low Level Input Voltage			0.8			0.8	v
I _{OH}	High Level Output Current			-3		177	-3	mA
IOL	Low Level Output Current			60			60	mA
TA	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Unite
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 mA$				- 1.2	v
VOH	High Level Output	$V_{CC} = Min, I_{OH} = Max$ DM54		2.5	3.4		v
	Voltage	V _{IL} = Max	DM74	2.7	3.4		V
VOL	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min$				0.5	v
łį.	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 5.5V$			632. ¥¥L	1	mA
Ін	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				100	μA
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$				-4	mA
los	Short Circuit Output Current	V _{CC} = Max	DM54	-50		-225	mA
		(Note 2)	DM74	-50		-225	mA
Іссн	Supply Current with Outputs High	V _{CC} = Max			10	18	mA
ICCL	Supply Current with Outputs Low	V _{CC} = Max			25	44	mA

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol		R _L = 93Ω				
	Parameter	C _L = 50 pF		C _L = 150 pF		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	2	6.5	3	9	ns
tehl.	Propagation Delay Time High to Low Level Output	2	6.5	3	9	ns

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.