

DM9368

7-Segment Decoder/Driver/Latch

The DM9368 is a 7-segment decoder driver designed to drive a 7-segment common cathode LED displays. The DM9368 drives any common cathode LED display rated at a nominal 20 mA at 1.7V per segment without need for current limiting resistors.

This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7-segment display. It has a hexadecimal decode format which produces numeric codes "0" thru "9" and alpha codes "A" through "F" using upper and lower case fonts.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

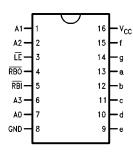
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

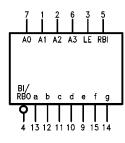
October 1988 Revised March 2000

DM9368

7-Segment Decoder/Driver/Latch with Constant Current Source Outputs


General Description

The DM9368 is a 7-segment decoder driver incorporating input latches and constant current output circuits to drive common cathode type LED displays directly.


Ordering Code:

Order Number	Package Number	Package Description					
DM9638N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					

Connection Diagram

Logic Symbol

Pin Descriptions

Pin Name	Description
A0-A3	Address (Data) Inputs
RBO	Ripple Blanking Output (Active LOW)
RBI	Ripple Blanking Input (Active LOW)
a–g	Segment Drivers-Outputs
LE	Latch Enable Input (Active LOW)

V_{CC} = Pin 16 GND = PIN 8

Truth Table

	INPUTS					OUTPUTS									
BINARY STATE	ΙĒ	RBI	A 3	A 2	A 1	Α0	а	b	С	d	е	f	g	RBO	DISPLAY
0 0 1	HLLL	* L H X	X L L	X L L	X L L	X L L	↓ ¬ ∓ ¬	L H H	— S Н Н	TABI L H L	.E — L H L	L H L	→ L L L	H L H	STABLE BLANK #
2 3 4 5	L L L	X X X		L H H	H L L	H L H	H H L	H H L	L H H	H H L	H L L	L H H	H H H	Н Н Н	of or to the
6 7 8 9 10	L L L L	X X X X	LLHHH	HLLL	H L L	L H L H L	H H H H	L H H H	H H H H	H L H L L	H H L	H H H	HHHH	H H H H	8 7 8 9 8 8 9 8
11 12 13 14 15	L L L L	X X X X	11111	L H H H	H L H H	H H L	L H L H H	L H L L	H L H L	H H H L	H H H H	H L H	HHHH	H H H H	76.05.02.05.05.05
Х	Х	Х	Х	Χ	χ	Х	L	L	L	L	L	L	L	L**	BLANK

^{*}The RBI will blank the display only if a binary zero is stored in the latches.

Functional Description

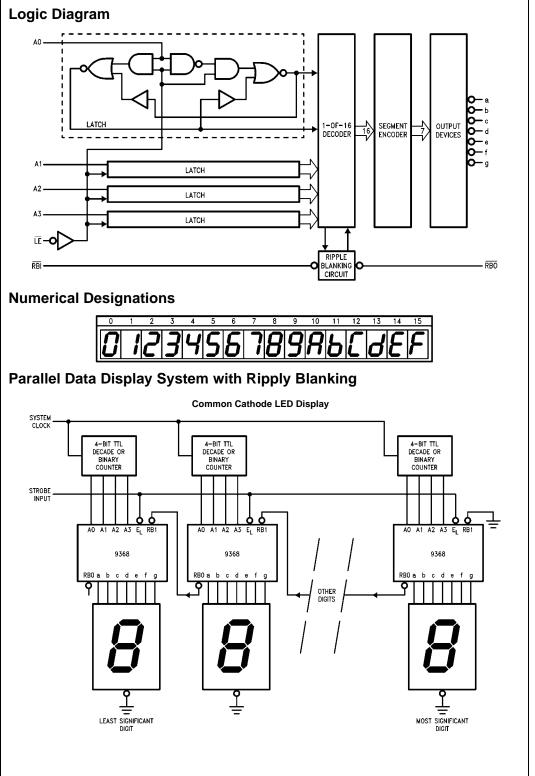
The DM9368 is a 7-segment decoder driver designed to drive 7-segment common cathode LED displays. The DM9368 drives any common cathode LED display rated at a nominal 20 mA at 1.7V per segment without need for current limiting resistors.

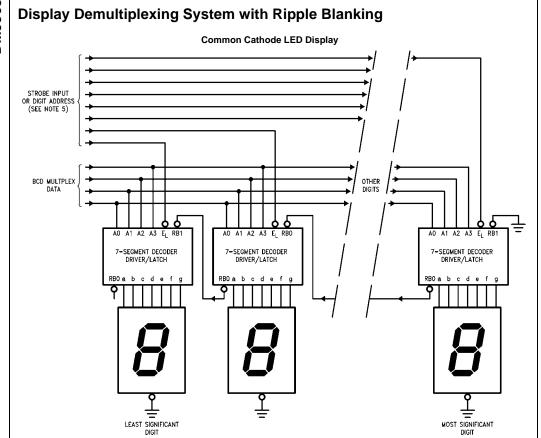
This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7-segment display. It has a hexadecimal decode format which produces numeric codes "0" thru "9" and alpha codes "A" through "F" using upper and lower case fonts.

Latches on the four data inputs are controlled by an active LOW latch enable $\overline{\text{LE}}$. When the $\overline{\text{LE}}$ is LOW, the state of the outputs is determined by the input data. When the $\overline{\text{LE}}$ goes HIGH, the last data present at the inputs is stored in the latches and the outputs remain stable. The $\overline{\text{LE}}$ pulse width necessary to accept and store data is typically 30 ns which allows data to be strobed into the DM9368 at normal TTL speeds. This feature means that data can be routed directly from high speed counters and frequency dividers into the display without slowing down the system clock or providing intermediate data storage.

Another feature of the DM9368 is that the unit loading on the data inputs is very low (–100 μ A Max) when the latch enable is HIGH. This allows DM9368s to be driven from an

MOS device in multiplex mode without the need for drivers on the data lines.


The DM9368 also has provision for automatic blanking of the leading and/or trailing edge zeros in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03. Leading edge zero suppression is obtained by connecting the Ripple Blanking Output (RBO) of a decoder to the Ripple Blanking Input (RBI) of the next lower stage device. The most significant decoder stage should have the RBI input grounded; and since suppression of the least significant integer zero in a number is not usually desired, the RBI input of this decoder stage should be left open. A similar procedure for the fractional part of a display will provide automatic suppression of trailing edge zeros. The RBO terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL or DTL gates.


^{*}The RBO used as an input overrides all other input conditions.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Note: Digit address data must be non-overlapping. Standard TTL decoders like the 9301, 9311, 7442 or 74155 must be strobed, since the address decoding glitches could cause erroneous data to be strobed into the latches.

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 5.5V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

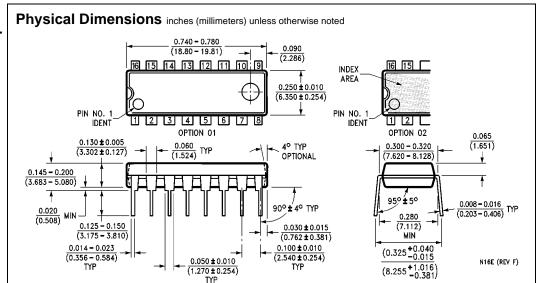
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage	2			V	
V _{IL}	LOW Level Input Voltage			0.8	V	
I _{OH}	HIGH Level Output Current		-80		μΑ	
I _{OL}	LOW Level Output Current RBO			3.2	mA	
T _A	Free Air Operating Temperature	0		70	°C	
t _S (H)	Setup Time HIGH A _n to LE	30			ns	
t _H (H)	Hold Time HIGH A _n to LE	0			ns	
t _S (L)	Setup Time LOW A _n to LE	20			ns	
t _H (L)	Hold Time LOW A _n to LE	0			ns	
t _W (L)	LE Pulse Width LOW	45			ns	
I _{OH}	Segment Output HIGH Current	-16		-22	mA	
I _{OL}	Segment Output LOW Current	-250		250	μΑ	

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max$	2.4	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min$		0.2	0.4	V
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.4V$			40	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	-18		-57	mA
I _{CC}	Supply Current	V _{CC} = Max, Outputs OPEN, Data & Latch Inputs = 0V			67	mA


Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 3: Not more than one output should be shorted at a time.

Switching Characteristics

 $V_{CC} = 5.0V, T_A = 25^{\circ}C$

Symbol	Parameter	C _L = 15 pF,	Units				
	- alamoto	Min	Max				
t _{PLH}	Propagation Delay		50	ne			
t _{PHL}	A _n to a–g		75	ns			
t _{PLH}	Propagation Delay		70	ns			
t _{PHL}	LE to a-g		90				

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com