HA-2542

70MHz, High Slew Rate, High Output Current Operational Amplifier

The HA-2542 is a wideband, high slew rate, monolithic operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability.

Utilizing the advantages of the Harris D.I. technology this amplifier offers $350 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 70 MHz gain bandwidth, and $\pm 100 \mathrm{~mA}$ output current. Application of this device is further enhanced through stable operation down to closed loop gains of 2.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
- Class Q Military
- Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. ‘Typical’ values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

70MHz, High Slew Rate, High Output Current Operational Amplifier

Features

- Stable at Gains of 2 or Greater
- Gain Bandwidth

70 MHz

- High Slew Rate. $300 \mathrm{~V} / \mu \mathrm{s}$ (Min)
- High Output Current 100 mA (Min)
- Power Bandwidth. 5.5MHz (Typ)
- Output Voltage Swing $\pm 10 \mathrm{~V}$ (Min)
- Monolithic Bipolar Dielectric Isolation Construction

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- Coaxial Cable Drivers
- Fast Sample-Hold Circuits
- High Frequency Signal Conditioning Circuits

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-2542-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-2542-5	0 to 75	14 Ld CERDIP	F14.3
HA2-2542-2	-55 to 125	12 Pin Metal Can	T12.C
HA2-2542-5	0 to 75	12 Pin Metal Can	T12.C
HA3-2542-5	0 to 75	14 Ld PDIP	E14.3

Pinouts

Description

The HA-2542 is a wideband, high slew rate, monolithic operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability.

Utilizing the advantages of the Harris D.I. technology this amplifier offers $350 \mathrm{~V} / \mu$ s slew rate, 70 MHz gain bandwidth, and $\pm 100 \mathrm{~mA}$ output current. Application of this device is further enhanced through stable operation down to closed loop gains of 2 .

For additional flexibility, offset null and frequency compensation controls are included in the HA-2542 pinout.

The capabilities of the HA-2542 are ideally suited for high speed coaxial cable driver circuits where low gain and high output drive requirements are necessary. With 5.5 MHz full power bandwidth, this amplifier is most suitable for high frequency signal conditioning circuits and pulse video amplifiers. Other applications utilizing the HA-2542 advantages include wideband amplifiers and fast samplehold circuits.

For more information on the HA-2542, please refer to Application Note AN552 (Using the HA-2542), or Application Note AN556 (Thermal Safe-Operating-Areas for High Current Op Amps).

For a lower power version of this product, please see the HA-2842 data sheet.

HA-2542
(METAL CAN)
TOP VIEW

Absolute Maximum Ratings
Supply Voltage (Between $V+$ and V - Terminals) .
Differential Input Voltage. 50 mA Continuous, 125mAPEAK

Operating Conditions

Temperature Range
HA-2542-2
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2542-5.
. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for ceramic and can packages, and below $150^{\circ} \mathrm{C}$ for plastic packages. By using Application Note AN556 on Safe Operating Area equations, along with the thermal resistances, proper load conditions can be determined. Heatsinking will be required in many applications. See the "Application Information" section to determine if heat sinking is required for your application.
2. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA-2542-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2542-5 } \\ 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	5	10	-	5	10	mV
		Full	-	8	20	-	8	20	mV
Average Offset Voltage Drift		Full	-	14	-	-	14	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	15	35	-	15	35	$\mu \mathrm{A}$
		Full	-	26	50	-	26	50	$\mu \mathrm{A}$
Average Bias Current Drift		Full	-	66	-	-	45	-	$n A /{ }^{\circ} \mathrm{C}$
Offset Current		25	-	1	7	-	1	7	$\mu \mathrm{A}$
		Full	-	-	9	-	-	9	$\mu \mathrm{A}$
Input Resistance		25	-	100	-	-	100	-	$k \Omega$
Input Capacitance		25	-	1	-	-	1	-	pF
Common Mode Range		Full	± 10	-	-	± 10	-	-	V
Input Noise Voltage	0.1 Hz to 100 Hz	25	-	2.2	-	-	2.2	-	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Density	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	3	-	-	3	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	10	30	-	10	30	-	kV/V
		Full	5	15	-	5	20	-	kV/N
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	70	100	-	70	100	-	dB
Minimum Stable Gain		25	2	-	-	2	-	-	V/V
Gain Bandwidth Product	$A_{V}=100$	25	-	70	-	-	70	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing		Full	± 10	± 11	-	± 10	± 11	-	V
Output Current (Note 3)		25	100	-	-	100	-	-	mA
Output Resistance		25	-	5	-	-	5	-	Ω

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA-2542-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-2542-5 } \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Full Power Bandwidth (Note 4)	$V_{\text {PEAK }}=10 \mathrm{~V}$	25	4.7	5.5	-	4.7	5.5	-	MHz
Differential Gain (Note 5)		25	-	0.1	-	-	0.1	-	\%
Differential Phase (Note 5)		25	-	0.2	-	-	0.2	-	Degree
Harmonic Distortion (Note 7)		25	-	<0.04	-	-	<0.04	-	\%

TRANSIENT RESPONSE (Note 6)

Rise Time		25	-	4	-	-	4	-	
Overshoot		25	-	25	-	-	25	-	$\%$
Slew Rate		25	300	350	-	300	350	-	
Settling Time	$\mathrm{V} / \mu \mathrm{s}$								

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	30	-	-	30	-	mA
		Full	-	31	34.5	-	31	40	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	Full	70	79	-	70	79	-	dB

NOTES:
3. $R_{L}=50 \Omega, V_{O}= \pm 5 \mathrm{~V}$, Output duty cycle must be reduced for $\mathrm{I}_{\mathrm{OUT}}>50 \mathrm{~mA}$ (e.g. $\leq 50 \%$ duty cycle for 100 mA).
4. Full Power Bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
5. Differential gain and phase are measured at 5 MHz with a 1 V differential input voltage.
6. Refer to Test Circuits section of this data sheet.
7. $V_{I N}=1 V_{\text {RMS }} ; f=10 \mathrm{kHz} ; A_{V}=10$.

Test Circuits and Waveforms

NOTES:
8. $V_{S}= \pm 15 \mathrm{~V}$.
9. $A V=+2$.
10. $C_{L} \leq 10 p F$.

TEST CIRCUIT

Vertical Scale: $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\mathrm{OUT}}=5.0 \mathrm{~V} /$ Div. Horizontal Scale: 200ns/Div.

LARGE SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

Vertical Scale: $100 \mathrm{mV} / \mathrm{Div}$. Horizontal Scale: 50ns/Div.

SMALL SIGNAL RESPONSE

SETTLING TIME TEST CIRCUIT (See Notes 11-15.)

Vertical Scale: $100 \mathrm{mV} /$ Div.
Horizontal Scale: $10 n s / D i v$.
$V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$. Propagation delay variance is negligible over full temperature range.

PROPAGATION DELAY

NOTES:
11. $A_{V}=-2$.
12. Feedback and summing resistors must be matched (0.1%).
13. HP5082-2810 clipping diodes recommended.
14. Tektronix P6201 FET probe used at settling point.
15. For 0.01% settling time, heat sinking is suggested to reduce thermal effects and an analog ground plane with supply decoupling is suggested to minimize ground loop errors.

Schematic Diagram

Application Information (Refer to Application Note AN552 for Further Information)

The Harris HA-2542 is a state of the art monolithic device which also approaches the "ALL-IN-ONE" amplifier concept. This device features an outstanding set of AC parameters augmented by excellent output drive capability providing for suitable application in both high speed and high output drive circuits.

Primarily intended to be used in balanced 50Ω and 75Ω coaxial cable systems as a driver, the HA-2542 could also be used as a power booster in audio systems as well as a power amp in power supply circuits. This device would also be suitable as a small DC motor driver.
The applications shown in Figures 2 through Figure 4 demonstrate the HA-2542 at gains of +100 and +2 and as a video cable driver for small signals.

Power Dissipation Considerations

At high output currents, especially with the PDIP package, care must be taken to ensure that the Maximum Junction Temperature (T_{J}, see "Absolute Maximum Ratings" table) is not exceeded. As an example consider the HA-2542 in the PDIP package, with a required output current of 20 mA at $V_{\text {OUT }}=5 \mathrm{~V}$. The power dissipation is the quiescent power $(1.2 \mathrm{~W}=30 \mathrm{~V} \times 40 \mathrm{~mA})$ plus the power dissipated in the output stage (POUT $=200 \mathrm{~mW}=20 \mathrm{~mA} \times(15 \mathrm{~V}-5 \mathrm{~V})$), or a total of 1.4 W . The thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the PDIP package is $100^{\circ} \mathrm{C} / \mathrm{W}$, which increases the junction temperature by $140^{\circ} \mathrm{C}$ over the ambient temperature (T_{A}). Remaining below $\mathrm{T}_{\mathrm{JMAX}}$ requires that T_{A} be restricted to $\leq 10^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{C}-140^{\circ} \mathrm{C}\right)$. Heatsinking would be required for operation at ambient temperatures greater than $10^{\circ} \mathrm{C}$.
Note that the problem isn't as severe with either the CERDIP or Can packages due to their lower thermal resistances, and higher TJMAX. Nevertheless, it is recommended that Figure 1 be used to ensure that heat sinking is not required.

FIGURE 1. MAXIMUM OPERATING TEMPERATURE vs OUTPUT CURRENT

Allowable output power can be increased by decreasing the quiescent dissipation via lower supply voltages.
For more information please refer to Application Note AN556, "Thermal Safe Operating Areas for High Current Op Amps".

Prototyping Guidelines

For best overall performance in any application, it is recommended that high frequency layout techniques be used. This should include: 1) mounting the device through a ground plane: 2) connecting unused pins (NC) to the ground: 3) mounting feedback components on Teflon standoffs and or locating these components as close to the device as possible: 4) placing power supply decoupling capacitors from device supply pins to ground.

As a result of speed and bandwidth optimization, the HA-2542 can's case potential, when powered-up, is equal to the V- potential. Therefore, contact with other circuitry or ground should be avoided.

Frequency Compensation

The HA-2542 may be externally compensated with a single capacitor to ground. This provides the user the additional flexibility in tailoring the frequency response of the amplifier. A guideline to the response is demonstrated on the typical performance curve showing the normalized AC parameters versus compensation capacitance. It is suggested that the user check and tailor the accurate compensation value for each application. As shown additional phase margin is achieved at the loss of slew rate and bandwidth.

For example, for a voltage gain of +2 (or -1) and a load of $500 \mathrm{pF} / 2 \mathrm{k} \Omega, 20 \mathrm{pF}$ is needed for compensation to give a small signal bandwidth of 30 MHz with 40° of phase margin. If a full power output voltage of $\pm 10 \mathrm{~V}$ is needed, this same configuration will provide a bandwidth of 5 MHz and a slew rate of 200V/ $\mu \mathrm{s}$.

If maximum bandwidth is desired and no compensation is needed, care must be given to minimize parasitic capacitance at the compensation pin. In some cases where minimum gain applications are desired, bending up or totally removing this pin may be the solution. In this case, care must also be given to minimize load capacitance.
For wideband positive unity gain applications, the HA-2542 can also be over-compensated with capacitance greater than 30 pF to achieve bandwidths of around 25 MHz . This over-compensation will also improve capacitive load handling or lower the noise bandwidth. This versatility along with the $\pm 100 \mathrm{~mA}$ output current makes the HA-2542 an excellent high speed driver for many power applications.

Typical Applications

Frequency $(0 \mathrm{~dB})=44.9 \mathrm{MHz}$,
Phase Margin (0dB) $=40^{\circ}$

FREQUENCY RESPONSE
FIGURE 2. NONINVERTING CIRCUIT (AVCL $=100$)

Typical Applications (Continued)

Frequency $(\mathrm{dB})=56 \mathrm{MHz}$, Phase Margin $(3 \mathrm{~dB})=40^{\circ}$
FREQUENCY RESPONSE
FIGURE 3. NONINVERTING CIRCUIT (AvcL = 2)

1V/Div.; 100ns/Div.
PULSE RESPONSE

FIGURE 4. VIDEO CABLE DRIVER (Avcl = 2)

NOTES:
16. Suggested compensation scheme $5 \mathrm{pF}-20 \mathrm{pF}$.
17. Tested Offset Adjustment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output.
18. Typical range is $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=5 \mathrm{k} \Omega$.

FIGURE 5. SUGGESTED OFFSET VOLTAGE ADJUSTMENT AND FREQUENCY COMPENSATION

Typical Performance Curves

FIGURE 6. INPUT NOISE VOLTAGE AND INPUT NOISE CURRENT vs FREQUENCY

FIGURE 8. INPUT RESISTANCE vs FREQUENCY

FIGURE 10. BIAS CURRENT vs SUPPLY VOLTAGE

FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 9. BIAS CURRENT vs TEMPERATURE

FIGURE 11. PSRR AND CMRR vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE, AT VARIOUS TEMPERATURES

FIGURE 14. SLEW RATE vs TEMPERATURE AT VARIOUS SUPPLY VOLTAGES

FIGURE 16. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE, AT VARIOUS TEMPERATURES

FIGURE 13. PSRR AND CMRR vs FREQUENCY

FIGURE 15. OPEN LOOP GAIN vs TEMPERATURE, AT VARIOUS SUPPLY VOLTAGES

FIGURE 17. NORMALIZED AC PARAMETERS vs COMPENSATION CAPACITANCE

Typical Performance Curves (Continued)

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 20. FREQUENCY RESPONSE CURVES

FIGURE 19. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 21. HA-2542 CLOSED LOOP GAIN vs TEMPERATURE

Die Characteristics

```
DIE DIMENSIONS:
    106 mils x 73 mils \times }19\mathrm{ mils
    2700\mum\times1850\mum\times483\mum
METALLIZATION:
    Type: AI, 1% Cu
    Thickness: 16kÅ }\pm2k
```


PASSIVATION

SUBSTRATE POTENTIAL (Powered Up):

V-

TRANSISTOR COUNT:

43

PROCESS:
Bipolar Dielectric Isolation

```
Type: Nitride ( }\mp@subsup{\textrm{Si}}{3}{}\mp@subsup{\textrm{N}}{4}{}\mathrm{ ) over Silox ( }\mp@subsup{\textrm{SiO}}{2}{},5% Phos.)
```

Type: Nitride (}\mp@subsup{\textrm{Si}}{3}{}\mp@subsup{\textrm{N}}{4}{}\mathrm{) over Silox (}\mp@subsup{\textrm{SiO}}{2}{},5% Phos.)
Silox Thickness: 12kA +2kA
Silox Thickness: 12kA +2kA
Nitride Thickness: 3.5k\AA }\pm1.5\textrm{k}

```
Nitride Thickness: 3.5k\AA }\pm1.5\textrm{k}
```

Metallization Mask Layout
HA-2542

