HA-5137A

Rochester Electronics®

63MHz, Ultra-Low Noise Precision Operational Amplifier

The HA-5137 operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Intersil Dielectric Isolation technology and advanced processing techniques, this unique design unites low noise ($3nV/\sqrt{Hz}$) precision instrumentation performance with high speed ($20V/\mu s$) wideband capability.

Using the HA-5137 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than five.

Rochester Electronics	
Manufactured Components	

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

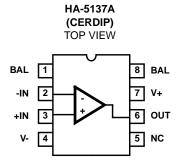
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

April 2000 File Number 2908.5

63MHz, Ultra-Low Noise Precision Operational Amplifier

intercil

The HA-5137 operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Intersil Dielectric Isolation technology and advanced processing techniques, this unique design unites low noise $(3nV/\sqrt{Hz})$ precision instrumentation performance with high speed (20V/µs) wideband capability.


This amplifier's impressive list of features include low V_{OS} (10 μ V), wide gain bandwidth (63MHz), high open loop gain (1800V/mV), and high CMRR (126dB). Additionally, this flexible device operates over a wide supply range (±5V to ±20V) while consuming only 140mW of power.

Using the HA-5137 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than five.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5137's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.

This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37 where gains are greater than five. For the military grade product, refer to the HA-5137/883 data sheet.

Pinout

Features

• Slew Rate
+ Wide Gain Bandwidth (A_V \geq 5) $\ldots \ldots \ldots \ldots$ 63MHz
+ Low Noise
+ Low $V_{\mbox{OS}}.$
• High CMRR 126dB
• High Gain

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers
- For Further Design Ideas See Application Note AN553

Ordering Information

PART NUMBER	TEMP. RANGE (^o C)	PACKAGE	PKG. NO.
HA7-5137A-5	0 to 75	8 Ld CERDIP	F8.3A

1

Absolute Maximum Ratings T_A = 25°C

Voltage Between V+ and V- Terminals 44V	
Differential Input Voltage (Note 1) 0.7V	
Output Current	

Operating Conditions

Temperature Range

HA-5137A-5	0°C to 75°C

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)	θ _{JC} (^o C/W)
CERDIP Package	115	28
Maximum Junction Temperature (Hermetic		
Maximum Storage Temperature Range		^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300 ⁰ C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. For differential input voltages greater than 0.7V, the input current must be limited to 25mA to protect the back-to-back input diodes.
- 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

PARAMETER	TEST CONDITIONS	TEMP. (^o C)	MIN	ТҮР	МАХ	UNITS
INPUT CHARACTERISTICS		. ,				
Offset Voltage		25	-	10	25	μV
-		Full	-	30	60	μV
Average Offset Voltage Drift		Full	-	0.2	0.6	μV/ ^o C
Bias Current		25	-	10	40	nA
		Full	-	20	60	nA
Offset Current		25	-	7	35	nA
		Full	-	15	50	nA
Common Mode Range		Full	±10.3	±11.5	-	V
Differential Input Resistance (Note 3)		25	1.5	6	-	MΩ
Input Noise Voltage (Note 4)	0.1Hz to 10Hz	25	-	0.08	0.18	μνρ-ρ
Input Noise Voltage Density	f = 10Hz	25	-	3.5	8.0	nV/√Hz
(Note 5)	f = 100Hz	25	-	3.1	4.5	nV/√Hz
	f = 1000Hz	25	-	3.0	3.8	nV/√Hz
Input Noise Current Density	f = 10Hz	25	-	1.7	4.0	pA/√Hz
(Note 5)	f = 100Hz	25	-	1.0	2.3	pA/√Hz
	f = 1000Hz	25	-	0.4	0.6	pA/√Hz
TRANSFER CHARACTERISTICS			I			1 I · V
Large Signal Voltage Gain	$R_L = 2k\Omega$,	25	1000	1800	-	V/mV
	$V_{OUT} = \pm 10V$	Full	600	1200	-	V/mV
Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	Full	114	126	-	dB
Minimum Stable Gain		25	5	-	-	V/V
Gain-Bandwidth-Product	f = 10kHz	25	60	80	-	MHz
	f = 1MHz	25	-	63	-	MHz
OUTPUT CHARACTERISTICS			I			I
Output Voltage Swing	$R_L = 600\Omega$	25	±10.0	±11.5	-	V
	$R_L = 2k\Omega$	Full	±11.7	±13.8	-	V
Full Power Bandwidth (Note 6)		25	220	320	-	kHz
Output Resistance	Open Loop	25	-	70	-	Ω
Output Current		25	16.5	25	-	mA
TRANSIENT RESPONSE (Note 7)			I			1
Rise Time		25	-	-	100	ns
Slew Rate	$V_{OUT} = \pm 3V$	25	14	20	-	V/µs
Settling Time	Note 8	25	-	1.0	-	μs
Overshoot		25	-	20	40	%
POWER SUPPLY CHARACTERISTICS		1			1	1
Supply Current		25	-	3.5	-	mA
		Full	-	-	4.0	mA

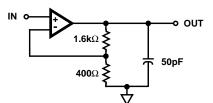
$\label{eq:super-state-$

PARAMETER	TEST CONDITIONS	TEMP. (^o C)	MIN	ТҮР	MAX	UNITS
Power Supply Rejection Ratio	$V_{S} = \pm 4V$ to $\pm 18V$	Full	-	2	4	μV/V

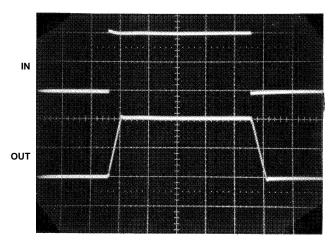
NOTES:

3. This parameter value is based upon design calculations.

4. Refer to Typical Performance section of the data sheet.

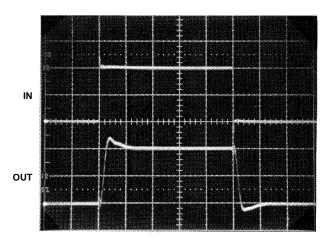

5. The limits for this parameter are based on lab characterization, and reflect lot-to-lot variation.

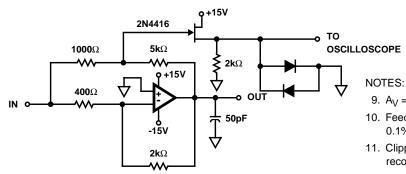
6. Full power bandwidth guaranteed based on slew rate measurement using: FPBW = $\frac{\text{Slew Rate}}{2\pi \text{V}\text{PEAK}}$


7. Refer to Test Circuits section of the data sheet.

8. Settling time is specified to 0.1% of final value for a 10V output step and $A_V = -5$.

Test Circuits and Waveforms

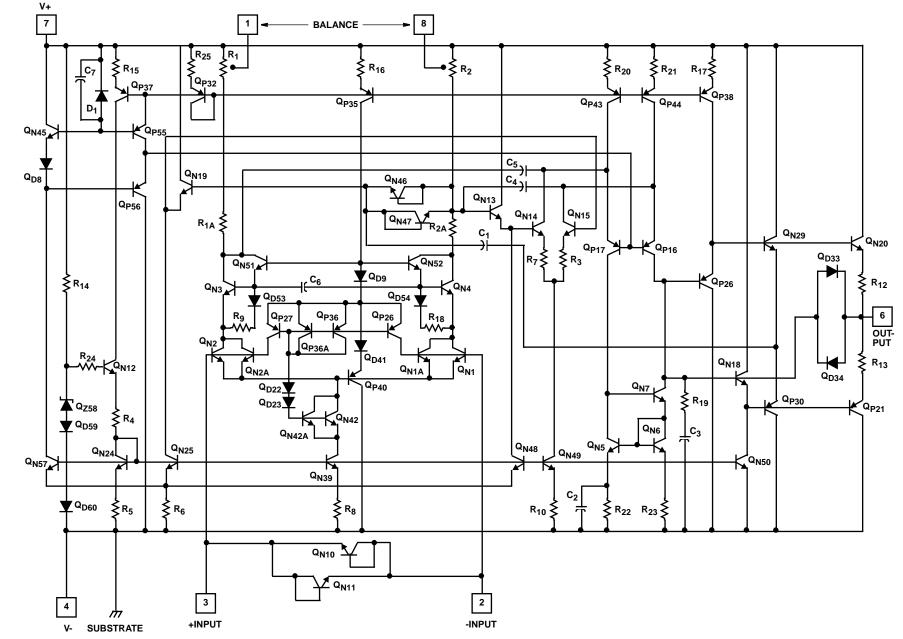



Vertical Scale: Input = 1V/Div. Output = 5V/Div. Horizontal Scale: 1µs/Div.

LARGE SIGNAL RESPONSE

Vertical Scale: Input = 20mV/Div. Output = 100mV/Div. Horizontal Scale: 100ns/Div.

SMALL SIGNAL RESPONSE

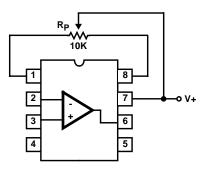


9. A_V = -5.

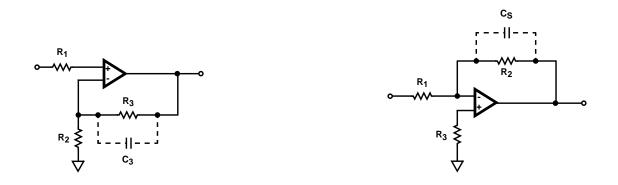
- 10. Feedback and summing resistors should be 0.1% matched.
- 11. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Schematic Diagram

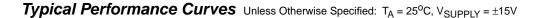


HA-5137A


intersil

4

Application Information



NOTE: Tested Offset Adjustment Range is $|V_{OS} + 1mV|$ minimum referred to output. Typical range is $\pm 4mV$ with $R_P = 10k\Omega$. FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

NOTE: Low resistances are preferred for low noise applications as a 1kΩ resistor has 4nV//Hz of thermal noise. Total resistances of greater than 10kΩ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

FIGURE 4. SUGGESTED STABILITY CIRCUITS

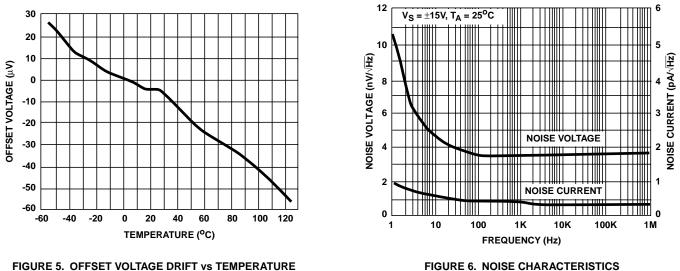
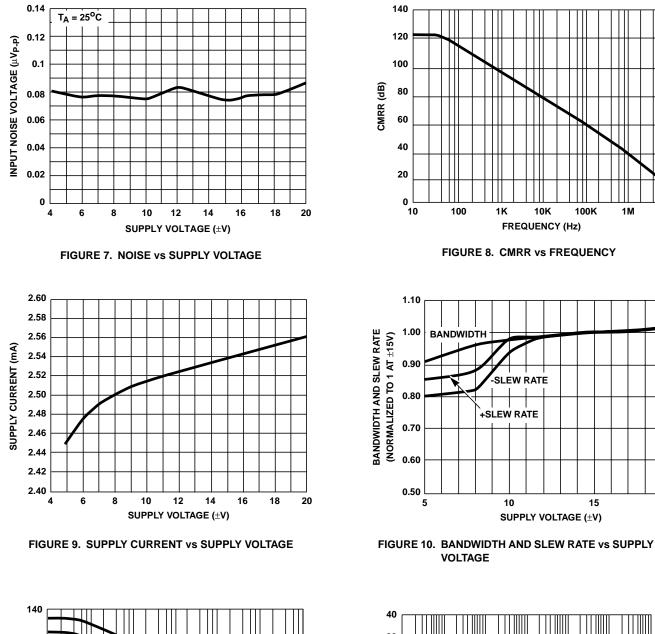
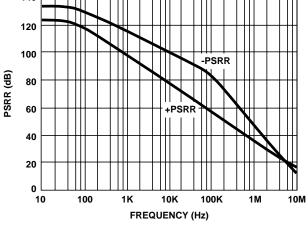




FIGURE 5. OFFSET VOLTAGE DRIFT vs TEMPERATURE

Typical Performance Curves Unless Otherwise Specified: $T_A = 25^{\circ}C$, $V_{SUPPLY} = \pm 15V$ (Continued)

6

10M

20

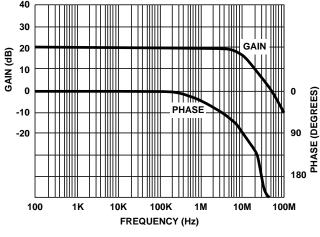


FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

Typical Performance Curves Unless Otherwise Specified: $T_A = 25^{\circ}C$, $V_{SUPPLY} = \pm 15V$ (Continued)

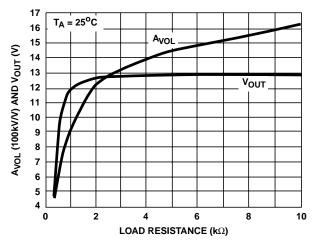


FIGURE 13. AVOL AND VOUT VS LOAD RESISTANCE

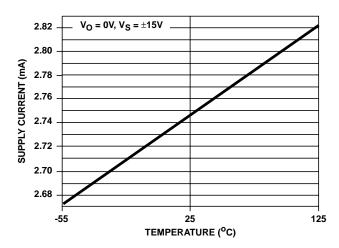


FIGURE 15. SUPPLY CURRENT vs TEMPERATURE

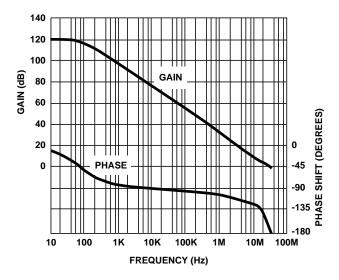


FIGURE 17. OPEN LOOP GAIN AND PHASE vs FREQUENCY

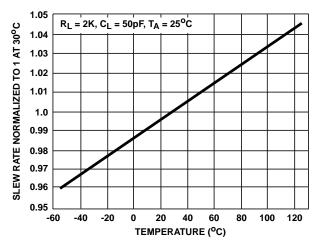


FIGURE 14. NORMALIZED SLEW RATE vs TEMPERATURE

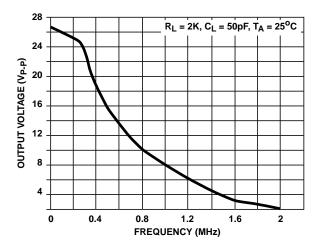
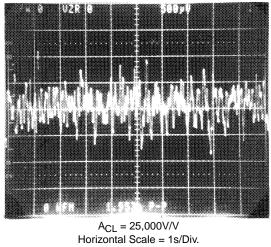



FIGURE 16. V_{OUT} MAX (UNDISTORTED SINEWAVE OUTPUT) vs FREQUENCY

Vertical Scale = 0.002μ V/Div., E_N = 0.08μ V_{P-P} RTI

FIGURE 18. PEAK-TO-PEAK NOISE VOLTAGE (0.1Hz TO 10Hz)

Die Characteristics

DIE DIMENSIONS:

104 mils x 65 mils x 19 mils 2650µm x 1650µm x 483µm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ

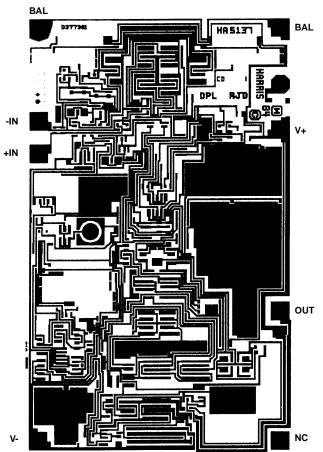
SUBSTRATE POTENTIAL (POWERED UP):

V-

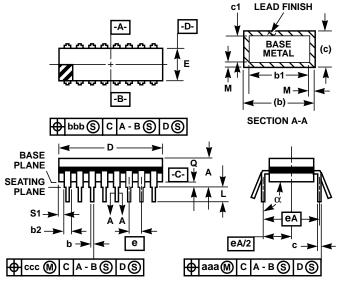
Metallization Mask Layout

PASSIVATION:

Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos.) Silox Thickness: $12k\mathring{A} \pm 2k\mathring{A}$ Nitride Thickness: $3.5k\mathring{A} \pm 1.5k\mathring{A}$


TRANSISTOR COUNT:

63


PROCESS:

Bipolar Dielectric Isolation

HA-5137A

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- 4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A)
8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INC	HES	MILLIM					
SYMBOL	MIN	MAX	MIN MAX		NOTES			
A	-	0.200	- 5.08		-			
b	0.014	0.026	0.36	0.66	2			
b1	0.014	0.023	0.36	0.58	3			
b2	0.045	0.065	1.14	1.65	-			
b3	0.023	0.045	0.58	1.14	4			
С	0.008	0.018	0.20	0.46	2			
c1	0.008	0.015	0.20	0.38	3			
D	-	0.405	-	10.29	5			
Е	0.220	0.310	5.59	7.87	5			
е	0.100 BSC		2.54 BSC		2.54 BSC		-	
eA	0.300	BSC	7.62 BSC		7.62 BSC		-	
eA/2	0.150	BSC	3.81 BSC		-			
L	0.125	0.200	3.18 5.08		-			
Q	0.015	0.060	0.38	1.52	6			
S1	0.005	-	0.13	-	7			
α	90 ⁰	105 ⁰	90 ⁰	105 ⁰	-			
aaa	-	0.015	-	0.38	-			
bbb	-	0.030	-	0.76	-			
ccc	-	0.010	-	0.25	-			
М	-	0.0015	-	0.038	2, 3			
Ν	8	3	1	8				

Rev. 0 4/94

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

9