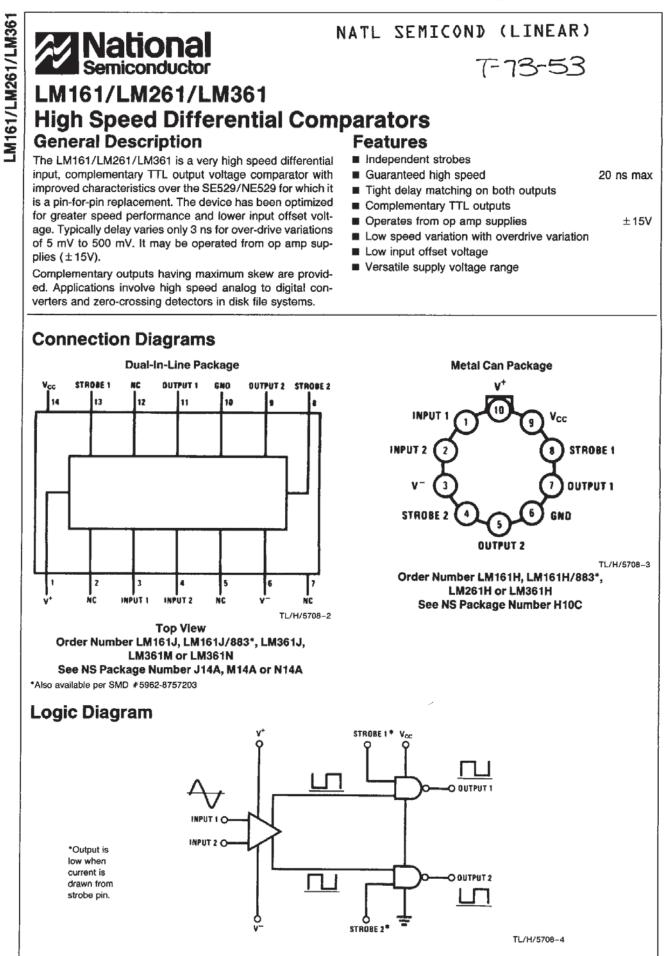


LM161, LM261, LM361

High Speed Differential Comparators


The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV. It may be operated from op amp supplies (±15V).

Complementary outputs having maximum skew are provided. Applications involve high speed analog to digital converters and zero-crossing detectors in disk file systems.

.

Rochester Electronics Manufactured Components Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.	 Quality Overview ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

+ 16V
-16V
+7V
+7V
±5V
±6V
600 mW
-65°C to +150°C
TMIN TMAX -55°C to +125°C -25°C to +85°C 0°C to +70°C
260°C
0.3V

Operating Conditions							
	Min	Тур	Max				
Supply Voltage V+							
LM161/LM261	5V		15V				
LM361	5V		15V				
Supply Voltage V-							
LM161/LM261	-6V		-15V				
LM361	-6V		-15V				
Supply Voltage VCC							
LM161/LM261	4.5V	5V	5.5V				
LM361	4.75V	5V	5.25V				
ESD Tolerance (Note 5)	1		1600V				
Soldering Information							
Dual-In-Line Package	1						
Soldering (10 second	260°C						
Small Outline Package							
Vapor Phase (60 se	215°C						
Infrared (15 second	220°C						

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

	Conditions	Limits						
Parameter		LM161/LM261			LM361			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage			1	3		1	5	mV
Input Bias Current	T _A =25°C		5	20		10	30	μΑ μΑ
Input Offset Current	T _A =25°C		2	3		2	5	μΑ μΑ
Voltage Gain	T _A =25°C		3			3		V/mV
Input Resistance	T _A =25°C, f=1 kHz		20			20		kΩ
Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{SOURCE} = -0.5 \text{ mA}$	2.4	3.3		2.4	3.3		v
Logical "0" Output Voltage	V _{CC} =4.75V, I _{SINK} =6.4 mA			0.4			0.4	v
Strobe Input "1" Current (Output Enabled)	V _{CC} =5.25V, V _{STROBE} =2.4V			200			200	μΑ
Strobe Input "0" Current (Output Disabled)	$V_{CC} = 5.25V,$ $V_{STROBE} = 0.4V$			-1.6			1.6	mA
Strobe Input "0" Voltage	V _{CC} =4.75V			0.8			0.8	V
Strobe Input "1" Voltage	V _{CC} =4.75V	2			2			V
Output Short Circuit Current	V _{CC} =5.25V, V _{OUT} =0V	- 18		-55	-18		- 55	mA

Electrical Characteristics (V⁺ = +10V, V_{CC} = +5V, V⁻ = -10V, T_{MIN} \leq T_A \leq T_{MAX}, unless noted)

58E D 🖿 6501124 0076007 542 MINSC2

LM161/LM261/LM361

Electrical Characteristics (Continued)

NATL SEMICOND (LINEAR)

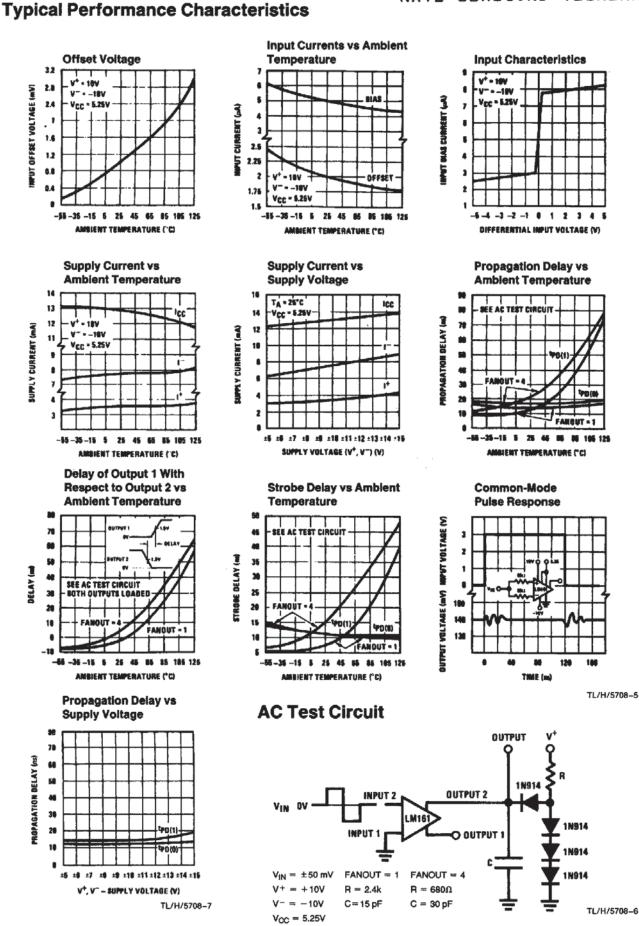
(V^+ = +10V, V_{CC} = +5V, V^- = -10V, T_{MIN} \leq T_A \leq T_{MAX} unless noted)

	Conditions	Limits						
Parameter		LM161/LM261			LM361			Units
		Min	Тур	Max	Min	Тур	Max	1
Supply Current I+	$V^+ = 10V, V^- = -10V, V_{CC} = 5.25V, -55^{\circ}C \le T_A \le 125^{\circ}C$			4.5				mA
Supply Current I+	$V^+ = 10V, V^- = -10V, V_{CC} = 5.25V, 0^{\circ}C \le T_A \le 70^{\circ}C$						5	mA
Supply Current I-	$V^+ = 10V, V^- = -10V,$ $V_{CC} = 5.25V,$ $-55^{\circ}C \le T_A \le 125^{\circ}C$			10				mA
Supply Current I	$V^+ = 10V, V^- = -10V,$ $V_{CC} = 5.25V,$ $0^{\circ}C \le T_A \le 70^{\circ}C$						10	mA
Supply Current I _{CC}	$V^+ = 10V, V^- = -10V,$ $V_{CC} = 5.25V,$ $-55^{\circ}C \le T_A \le 125^{\circ}C$			18				mA
Supply Current I _{CC}	$V^+ = 10V, V^- = -10V, V_{CC} = 5.25V, 0^{\circ}C \le T_A \le 70^{\circ}C$						20	mA
Transient Response	$V_{IN} = 50 \text{ mV}$ overdrive (Note 3)							
Propagation Delay Time (t _{pd(0)})	T _A =25°C		14	20		14	20	пз
Propagation Delay Time (t _{pd(1)}) Delay Between Output A and B	T _A =25°C T _A =25°C		14 2	20 5		14	20 5	ns
Strobe Delay Time (t _{pd(0)})	$T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$		2	5		2 8	5	ns ns
Strobe Delay Time (t _{pd(0)}) Strobe Delay Time (t _{pd(1)})	$T_A = 25^{\circ}C$		8			8		ns

Note 1: The device may be damaged by use beyond the maximum ratings.

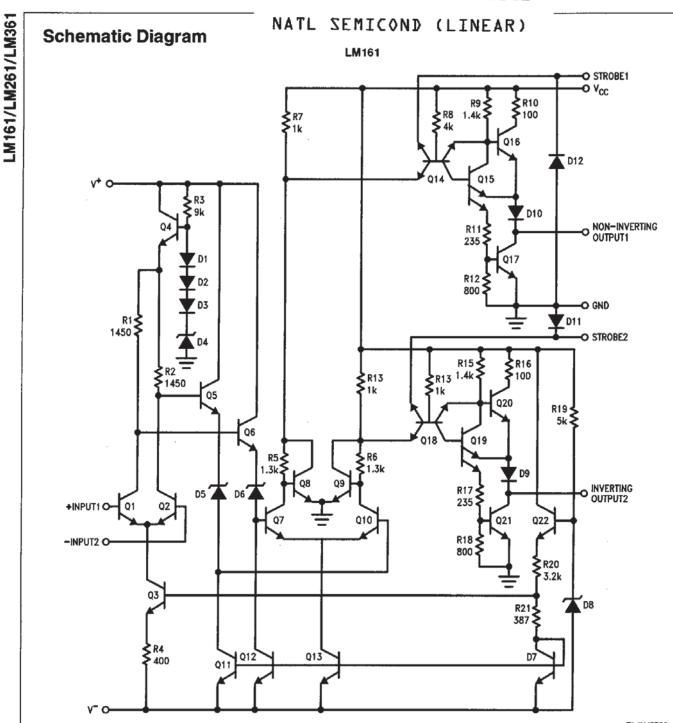
Note 2: Typical thermal impedances are as follows:

	H Package	J Package	N Package
θ _{jA}	165°C/W (Still Air) 67°C/W (400 LF/Min Air Flow)	112°C/W	105°C/W
θ_{jC}	25°C/W		


Note 3: Measurements using AC Test circuit, Fanout = 1. The devices are faster at low supply voltages.

Note 4: Refer to RETS161X for LM161H and LM161J military specifications.

Note 5: Human body model, 1.5 k Ω in series with 100 pF.


NATL SEMICOND (LINEAR)

LM161/LM261/LM361

3

R10, R16: 85 R11, R17: 205 TL/H/5708-1