

LM710

Voltage Comparator

The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

LM710 Voltage Comparator

General Description

The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.

The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710 series are useful as pulse height discriminators, voltage comparators in high-speed A/D converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests them for applications replacing relatively simple discrete component circuitry.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Positive Supply Voltage	+ 14V
Negative Supply Voltage	-7V
Peak Output Current	10 mA
Output Short Circuit Duration	10 seconds
Differential Input Voltage	±5V
Input Voltage	±7V

Power Dissipation	
TO-99 (Note 1)	700 mW
Plastic Dual-In-Line Package (Note 2)	950 mW
Operating Temperature Range	
LM710	-55°C to +125°C
LM710C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	260°C

Electrical Characteristics (Note 3)

	Conditions	LM710			LM710C			Unite
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Unito
Input Offset Voltage	$R_{S} \leq 200\Omega, V_{CM} = 0V, T_{A} = 25^{\circ}C$		0.6	2.0		1.6	5.0	mV
Input Offset Current	$V_{OUT} = 1.4V, T_A = 25^{\circ}C$		0.75	3.0		1.8	5.0	μΑ
Input Bias Current	T _A = 25°C		13	20		16	25	μΑ
Voltage Gain	$T_A = 25^{\circ}C$	1250	1700		1000	1500		
Output Resistance	T _A = 25°C		200			200		Ω
Output Sink Current	$\begin{split} V_{OUT} &= 0, \ T_A = 25^\circ C \\ \Delta V_{IN} &\geq 5 \ mV \\ \Delta V_{IN} &\geq 10 \ mV \end{split}$	2.0	2.5		1.6	2.5		mA mA
Response Time	$T_A = 25^{\circ}C$ (Note 4)		40			40		ns
Input Offset Voltage	$R_S \le 200\Omega, V_{CM} = 0V$			3.0			6.5	mV
Average Temperature Coefficient of Input Offset Voltage	$T_{MIN} \le T_A \le T_{MAX}$ $R_S \le 50\Omega$		3.0	10		5.0	20	μV/ºC
Input Offset Current	$T_{A} = T_{A MAX}$ $T_{A} = T_{A MIN}$		0.25 1.8	3.0 7.0			7.5 7.5	μΑ μΑ
Average Temperature Coefficient of Input Offset Current	$25^{\circ}C \le T_A \le T_{MAX}$ $T_{MIN} \le T_A \le 25^{\circ}C$		5.0 15	25 75		15 24	50 100	nA/°C nA/°C
Input Bias Current	$T_A = T_{MIN}$		27	45		25	40	μΑ
Input Voltage Range	V ⁻ = -7V	±5.0			±5.0			V
Common-Mode Rejection Ratio	$R_S \le 200\Omega$	80	100		70	98		dB
Differential Input Voltage Range		±5.0			±5.0		- P	V
Voltage Gain		1000			800			V/V
Positive Output Level	$-5 \text{ mA} \le I_{OUT} \le 0$ $V_{IN} \ge 5 \text{ mV}$ $V_{IN} \ge 10 \text{ mV}$	2.5	3.2	4.0	2.5	3.2	4.0	v v
Negative Output Level	$V_{IN} \ge 5 \text{ mV}$ $V_{IN} \ge 10 \text{ mV}$	-1.0	-0.5	0	-1.0	-0.5	o	v v
Output Sink Current	$V_{IN} \ge 5 \text{ mV}, V_{OUT} = 0$ $T_A = 125^{\circ}C$ $T_A = -55^{\circ}C$	0.5 1.0	1.7 2.3					mA mA
	$V_{IN} \ge 10 \text{ mV}, V_{OUT} = 0$ $0^{\circ}C \le T_A \le +70^{\circ}C$				0.5			mA

Parameter	Conditions	LM710				Units		
		Min	Тур	Max	Min	Тур	Max	
Positive Supply Current	$V_{IN} \ge 5 \text{ mV}$ $V_{IN} \ge 10 \text{ mV}$		5.2	9.0		5.2	9.0	mA mA
Negative Supply Current	$V_{IN} \ge 5 \text{ mV}$ $V_{IN} \ge 10 \text{ mV}$		4.6	7.0		4.6	7.0	mA mA
Power Consumption	$I_{OUT} = 0$ $V_{IN} \ge 5 \text{ mV}$ $V_{IN} \ge 10 \text{ mV}$		90	150			150	mW mW

Note 1: Rating applies for ambient temperatures of 25°C; derate linearly at 5.6 mW/°C for ambient temperatures above 25°C.

Note 2: Derate linearly at 9.5 mW/°C for ambient temperatures above 25°C.

Note 3: These specifications appy for V⁺ = 12V, V⁻ = -6V, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for LM710 and $0^{\circ}C \le T_A \le +70^{\circ}C$ for LM710C unless otherwise specified: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8V at -55^{\circ}C, 1.4V at 25^{\circ}C, and 1V at 25^{\circ}C = 0.4 125°C for LM710 and 1.5V at 0°C, 1.4V at 25°C, and 1.2V at 70°C for LM710C.

Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive (LM710) or a 10 mV overdrive (LM710C).

Typical Applications

Line Receive with Increased **Output Sink Current**

TL/H/10410-5

Pulse Width Modulator

TL/H/10410-6

TL/H/10410-7

3

Typical Performance Characteristics

