

LM759, LM77000

Power Operational Amplifiers

The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA. Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

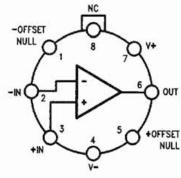
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

LM759/LM77000 **Power Operational Amplifiers**

General Description

The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA. Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

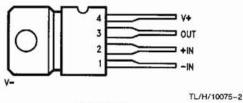

Features

- Output current
 - LM759-325 mA minimum LM77000-250 mA minimum
- Internal short circuit current limiting
- Internal thermal overload protection
- Internal output transistors safe-area protection
- Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

Connection Diagrams and Ordering Information



TL/H/10075-1

Lead 4 connected to case.

Top View

Order Number LM759MH, LM759CH or LM759H/883 See NS Package Number H08C

Top View

Order Number LM759CP or LM77000CP See NS Package Number P04A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

Metal Can

-65°C to +175°C

Plastic Package

-65°C to +150°C

Operating Junction Temperature Range Military (LM759M)

-55°C to +150°C

Commercial (LM759C, LM77000C)

0°C to + 125°C

Lead Temperature

Metal Can (soldering, 60 sec)
Plastic Package (soldering, 10 sec)

300°C 265°C Internal Power Dissipation (Note 1)

Supply Voltage

Differential Input Voltage Input Voltage (note 2) Internally Limited

±18V

30V ±15V

LM759

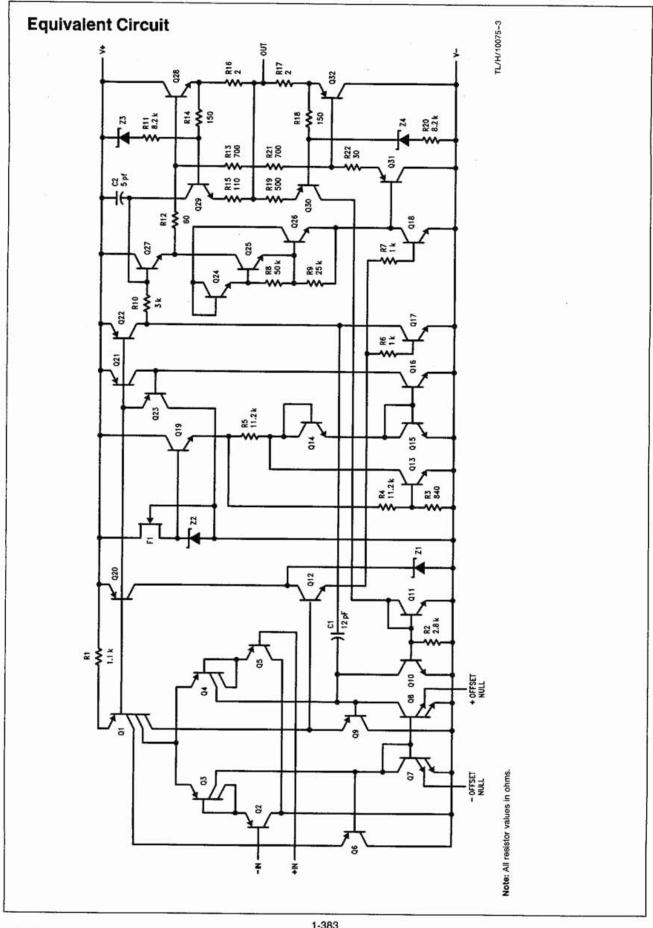
Electrical Characteristics $T_J = 25^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		$R_S \le 10 \text{ k}\Omega$		1.0	3.0	mV
Io	Input Offset Current				5.0	30	nA
I _{IB}	Input Bias Current				50	150	nA
Z ₁	Input Impedance			0.25	1.5		МΩ
Icc	Supply Current				12	18	mA
VIR	Input Voltage Range			V+ - 2V to V-	V+ - 2V to V-		٧
los	Output Short Circuit C	urrent	$ V_{CC} - V_O = 30V$		±200		mA
IO PEAK	Peak Output Current		$3.0V \le V_{CC} - V_{O} \le 10V$	±325	±500		mA
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	50	200		V/mV
TR	Transient Response	Rise Time	$R_L = 50\Omega$, $A_V = 1.0$		300		ns
		Overshoot		1	5.0		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.6		V/µs
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follo	wing specifications appl	y for −.55°C ≤	T _J ≤ +150°C				
V _{IO}	Input Offset Voltage	-224	$R_S \le 10 \text{ k}\Omega$			4.5	mV
lio	Input Offset Current					60	nA
I _{IB}	Input Bias Current					300	nA
CMRR	Common Mode Rejection Ratio		R _S ≤ 10 kΩ	80	100		dB
PSRR	Power Supply Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	80	100		dB
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	25	200		V/mV
VOP	Output Voltage Swing		$R_L = 50\Omega$	±10	± 12.5		٧

ı			
	ľ	1	

LM759C Electrical Characteristics $T_J = 25^{\circ}\text{C}$, $V_{CC} = \pm 15\text{V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		$R_S \le 10 k\Omega$		1.0	6.0	mV
I _{IO}	Input Offset Current			30.00	5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
Z _I	Input Impedance			0.25	1.5		МΩ
loc	Supply Current	77			12	18	mA
VIR	Input Voltage Range			V+ - 2V to V-	V+ - 2V to V-	-	V
los	Output Short Circuit C	urrent	V _{CC} -V _O = 30V		±200		mA
O PEAK	Peak Output Current		3.0V ≤ V _{CC} -V _O ≤ 10V	±325	±500		mA
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	25	200		V/mV
TR	Transient Response	Rise Time	$R_L = 50\Omega$, $A_V = 1.0$		300		ns
		Overshoot		1.6	10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V/µs
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follo	wing specifications appl	y for 0° ≤ T _J ≤	+125°C	77			
V _{IO}	Input Offset Voltage		$R_S \le 10 k\Omega$		-	7.5	mV
lio	Input Offset Current			1025		100	nA
l _{IB}	Input Bias Current			2.00		400	nA
CMRR	Common Mode Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	80	100		dB
A _{VS}	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	25	200		V/mV
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		٧.


LM77000 Electrical Characteristics $T_J = 25^{\circ}\text{C}, V_{CC} = \pm 15\text{V}, \text{ unless otherwise specified}$

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{IO}	input Offset Voltage		$R_S \le 10 \text{ k}\Omega$		1.0	8.0	mV
lio	Input Offset Current				5.0	50	nA
l _{IB}	Input Bias Current				50	250	nA
Z _I	Input Impedance			0.25	1.5		МΩ
loc	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			+ 13 to V-	+ 13 to V-		٧
los	Output Short Circuit Ci	urrent	$ V_{CC} - V_O = 30V$		±200		mA
O PEAK	Peak Output Current		3.0V ≤ V _{CC} -V _O ≤ 10V	±250	± 400		mA
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	25	200		V/m\
TR	Transient Response	Rise Time	$R_L = 50\Omega, A_V = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V/µ8
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follow	ving specifications apply t	for 0° ≤ T _{.1} ≤ +	125°C				
V _{IO}	Input Offset Voltage		$R_S \le 10 k\Omega$			10	mV
lio	Input Offset Current		77			100	nA
I _{IB}	Input Bias Current				Carlo	400	nA
CMR	Common Mode Rejection		$R_S \le 10 \text{ k}\Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio		$R_S \le 10 k\Omega$	80	100		dB
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega$, $V_O = \pm 10V$	25	200		V/m\
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	± 12.5	0	V

Note 1: Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Equivalent Circuit Schematic.

Note 2: For a supply voltage less than 30V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage.

Note 3: For military electrical specifications RETS759X are available for LM759H.

Package	Typ θJC °C/W	Max ^θ JC °C/W	Typ θJA °C/W	Max θJA °C/W
Plastic Package (P)	8.0	12	75	80
Metal Can (H)	30	40	120	150

$$\begin{split} \mathsf{P}_{\mathsf{D}\;\mathsf{Max}} &= \frac{\mathsf{T}_{\mathsf{J}\;\mathsf{Max}} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JC}} + \theta_{\mathsf{CA}}} \, \mathsf{or} \\ &= \frac{\mathsf{T}_{\mathsf{J}\;\mathsf{Max}} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{JA}}} \, \mathsf{(without\; a\; heat\; sink)} \\ \theta_{\mathsf{CA}} &= \theta_{\mathsf{CS}} + \theta_{\mathsf{SA}} \end{split}$$

Solving Tj:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$$
 or
= $T_A + P_D \theta_{JA}$ (without a heat sink)

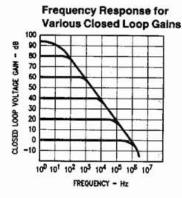
Where:

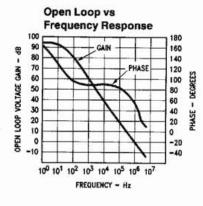
T_J = Junction Temperature
 T_A = Ambient Temperature
 P_D = Power Dissipation

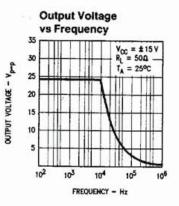
 $\theta_{
m JA}$ = Junction to ambient thermal resistance $\theta_{
m JC}$ = Junction to case thermal resistance

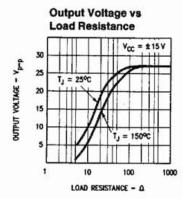
 θ_{CA} = Case to ambient thermal resistance θ_{CS} = Case to heat sink thermal resistance θ_{SA} = Heat sink to ambient thermal resistance

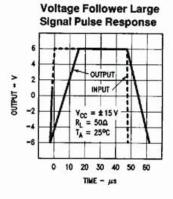
Mounting Hints

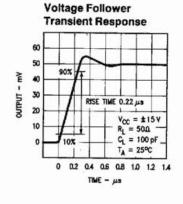

Metal Can Package (LM759CH/LM759MH)

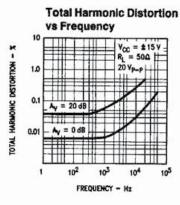

The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With $\pm\,15\text{V}$ power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a 100°C rise in chip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal.

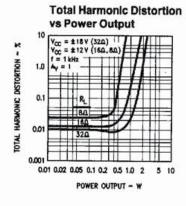

Plastic Package (LM759CP/LM77000CP)

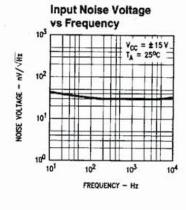

The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125°C under worst case load and ambient temperature conditions.

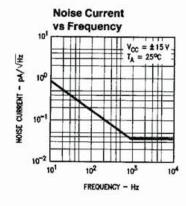

Typical Performance Characteristics

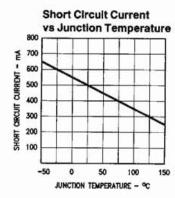


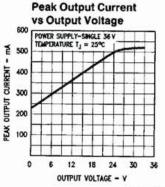


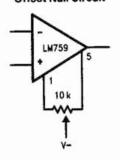






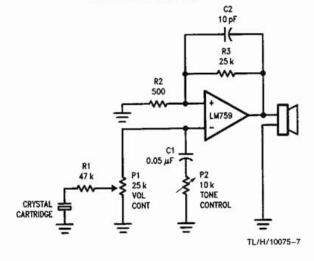


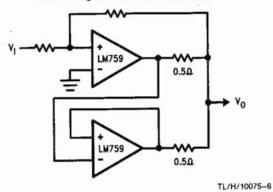




TL/H/10075-4

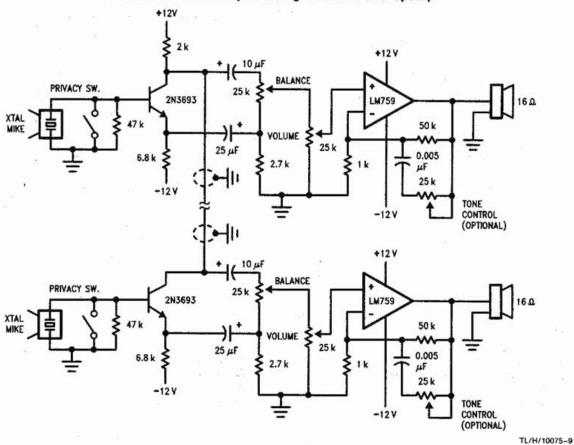
Applications


Offset Null Circuit


TL/H/10075-5

Audio Applications

Low Cost Phono Amplifier


Paralleling LM759 Power Op Amps

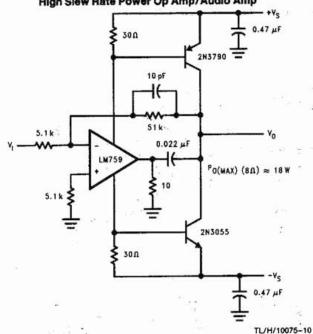
Speaker Impedance (Ohms)	Output Power (Watts)	Min Supply (Volts)	V _{OP-P} (Volts)
4	0.18	9	2.4
8	0.36	12	4.8
16	0.72	15	9.6
32	1.44	25	19.2

Applications (Continued)

Bi-Directional Intercom System Using the LM759 Power Op Amp

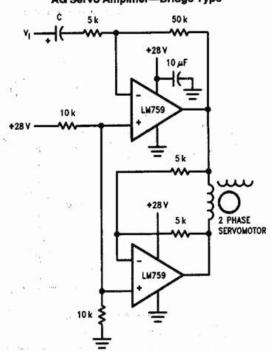
Features:

Circuit Simplicity


1 Watt of Audio Output

Duplex operation with only one two-wire cable as interconnect.

Note 1: All resistor values in ohms.


Applications (Continued)

High Siew Rate Power Op Amp/Audio Amp

Servo Applications

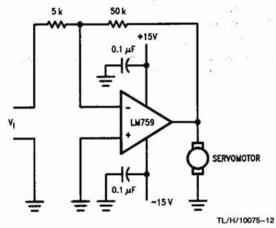
AG Servo Amplifier-Bridge Type

Features:

High Slew Rate 9 V/ μ s High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power into an 8 Ω load. Low Distortion—0.2%, 10 Vrms, 1 kHz into 8 Ω Design Consideration A_V \geq 10

Features:

Gain of 10

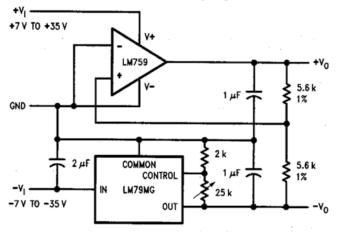

Use of LM759 Means Simple Inexpensive Circuit

Design Considerations:

325 mA Max Output Current

DC Servo Amplifier

TL/H/10075-11

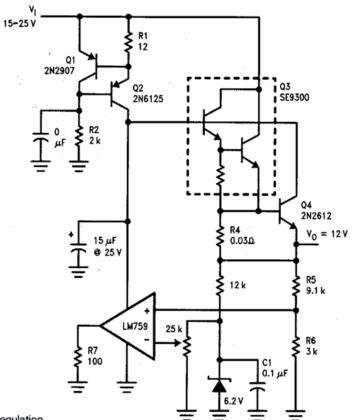


Features:

Circuit Simplicity
One Chip Means Excellent Reliability
Design Considerations $I_{\rm O} \leq 325~{\rm mA}$ Note 1: All resistor values in ohms.

Regulator Applications

Adjustable Dual Tracking Regulator

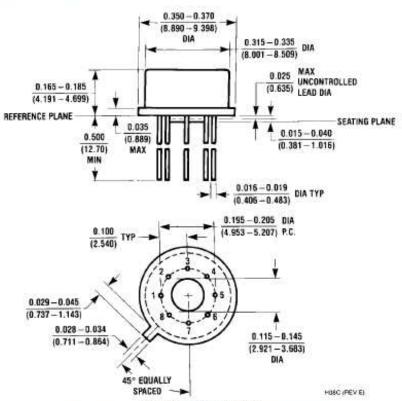


TL/H/10075-13

Features:

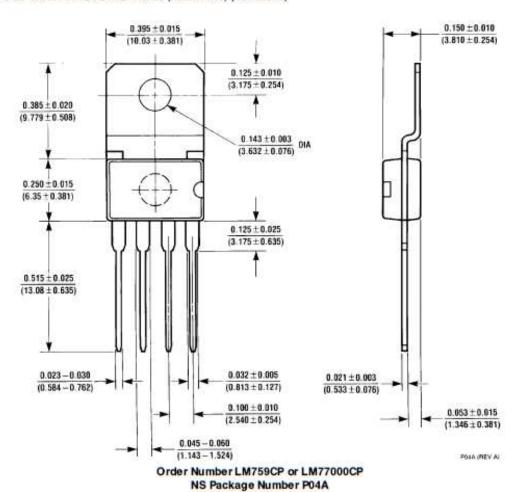
Wide Output Voltage Range ($\pm 2.2V$ to $\pm 30V$) Excellent Load Regulation $\Delta V_O < \pm 5$ mV for $\Delta I_O = \pm 0.2$ A Excellent Line Regulation $\Delta V_O < \pm 2$ mV for $\Delta V_I = 10V$ Note 1: All resistor values in ohms.

10 Amp - 12 Volt Regulator


Features:

Excellent Load and Line Regulation
Excellent Temperature Coefficient-Depends
Largely on Tempco of the Reference Zener
Note 1: All resistor values in ohms.

TL/H/10075-14


1-389

8-Lead Metal Package
Order Number LM759MH, LM759CH or LM759H/883
NS Package Number H08C

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION, As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor 1111 West Sartin Boad

Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor

Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32

Français Tel: (+ 49) 0-180-532 93 58 Italiano Tel: (+ 49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshataui, Kowloon

Hong Kong Tet (852) 2737-1600 Fac: (852) 2736-9960 National Semiconductor Japan Ltd. Tet 81-043-299-2309

Fax 81-043-299-2408