

MM54C30, MM74C30

8-Input NAND Gate

The logical gate employs complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption and high noise immunity. Function and pin out compatibility with series 54/74 devices minimizes design time for those designers familiar with the standard 54/74 logic family. All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

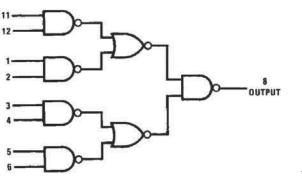
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

MM54C30/MM74C30 8-Input NAND Gate

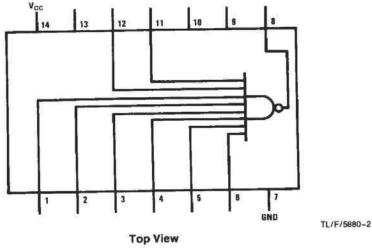
General Description

The logical gate employs complementary MOS (CMOS) to achieve wide power supply operating range, low power consumption and high noise immunity. Function and pin out compatibility with series 54/74 devices minimizes design time for those designers familiar with the standard 54/74 logic family.


All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features

- Wide supply voltage range
 Guaranteed noise margin
- Guaranteeu noise mai
 Uist seise immunity
- High noise immunityLow power
 - TTL compatibility


3.0V to 15V 1.0V 0.45 V_{CC} (typ.) Fan out of 2 driving 74L

Logic and Connection Diagrams

TL/F/5880-1

Dual-In-Line Package

Order Number MM54C30* or MM74C30*

*Please look into Section 8, Appendix D for availability of various package types.

6-20

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage at any Pin	-0.3V to V _{CC} + 0.3V
Operating Temperature Range (T _A)	
MM54C30	-55°C to +125°C
MM74C30	-40°C to +85°C

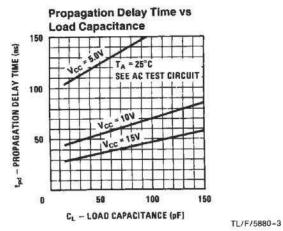
Storage Temperature Range (TS)	-65°C to +150°C
Power Dissipation (PD)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (TL) (Soldering, 10 seconds)	260°C

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

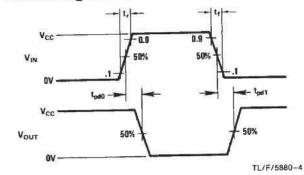
Symbol	Parameter	Conditions	Min	Тур	Max	Units
MOS TO CI	MOS					
VIN(1) Logical "1" Input Voltage	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
	$V_{CC} = 10V$	8.0			v	
VIN(0)	Logical "0" Input Voltage	$V_{\rm CC} = 5V$			1.5	v
		$V_{CC} = 10V$			2.0	v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_O = -10 \ \mu A$	4.5	- Add		v
		$V_{CC} = 10V, I_O = -10 \ \mu A$	9.0	1 2 2 4 5 1 1 2)		v
VOUT(0)	Logical "0" Output Voltage	$V_{CC} = 5V, I_O = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_O = 10 \ \mu A$			1.0	٧
IIN(1)	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
IIN(0)	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
Icc	Supply Current	$V_{CC} = 15V$		0.01	15	μΑ
MOS/LPTT	L INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	54C, $V_{CC} = 4.5V$	V _{CC} - 1.5			٧
		74C, $V_{CC} = 4.75V$	V _{CC} - 1.5			v
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V			0.8	v
		74C, $V_{CC} = 4.75V$	7.53-25.448	5 6.5 M	0.8	v
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = -360 \mu A$	2.4			v
		74C, $V_{CC} = 4.75V$, $I_0 = -360 \mu A$	2.4			v
Vout(0)	Logical "0" Output Voltage	$54C, V_{CC} = 4.5V, I_O = 360\mu A$	2008/01		0.4	v
		74C, $V_{CC} = 4.75V$, $I_O = 360\mu A$			0.4	v
UTPUT DR	IVE (See 54C/74C Family Char	acteristics Data Sheet) (short circuit o	current)			
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-1.75	-3.3		mA
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	- 15	0.0000000000	mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

I

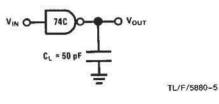

Symbol	Parameter	Conditions	Min	Тур	Max	Units
tpd Propagation Delay Time to Logical "1" or "0"	Propagation Delay Time to	$V_{CC} = 5V$		125	180	ns
	$V_{\rm CC} = 10V$		55	90	ns	
CIN	Input Capacitance	(Note 2)		4.0		pF
CPD	Power Dissipation Capacitance	(Note 3) Per Gate		26		pF

*AC Parameters are guaranteed by DC correlated testing.


Note 2: Capacitance is guaranteed by periodic testing.

Note 3: GPD determines the no load ac power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics, application note-AN-90.

Typical Performance Characteristics



Switching Time Waveforms

Note: Delays Measured with Input $t_{\rm r},\,t_{\rm f}\,=\,20$ ns.

AC Test Circuit

6-22

1