

MM54C89/MM74C89

64-Bit TRI-STATE Random Access Read/Write Memory

The MM54C89/MM74C89 is a 16-word by 4-bit random access read/write memory. Inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register latches the address information on the positive to negative transistion of the memory enable input. The four TRI-STATE data output lines working in conjunction with the memory enable input provide for easy memory expansion.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MM54C89/MM74C89 64-Bit TRI-STATE® Random Access Read/Write Memory

General Description

The MM54C89/MM74C89 is a 16-word by 4-bit random access read/write memory, inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register latches the address information on the positive to negative transition of the memory enable input. The four TRI-STATE data output lines working in conjunction with the memory enable input provide for easy memory expansion.

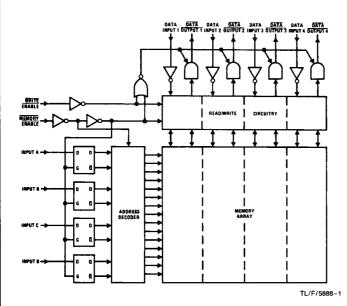
Address Operation: Address inputs must be stable tSA prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than tHA after the memory is enabled (positive to negative transition of memory enable).

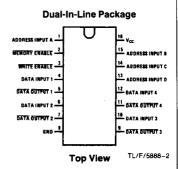
Note: The timing is different than the DM7489 in that a positive to negative transition of the memory enable must occur for the memory to be

Write Operation: Information present at the data inputs is written into the memory at the selected address by bringing write enable and memory enable low.

Read Operation: The complement of the information which was written into the memory is non-destructively read out at the four outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable high.

When the device is writing or disabled the output assumes a TRI-STATE (Hi-z) condition.


Features


■ Wide supply voltage range	3.0V to 15V
■ Guaranteed noise margin	1.0V
■ High noise immunity	0.45 V _{CC} (typ.)
■ Low power	fan out of 2
TTL compatibility	driving 74L
Low power consumption	100 nW/package (typ.)
■ Fast access time	130 ns (tvp.) at $V_{CC} = 10V$

130 ns (typ.) at $V_{CC} = 10V$

■ TRI-STATE output

Logic and Connection Diagrams

Order Number MM54C89 or MM74C89

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at any Pin -0.3V to $V_{CC} + 0.3V$

Operating Temperature Range

MM54C89 -55°C to +125°C MM74C89

-40°C to +85°C Storage Temperature Range (T_S) -65°C to +150°C

Power Dissipation (PD) Dual-In-Line

Small Outline Operating V_{CC} Range

Absolute Maximum V_{CC} Lead Temperature (T_I)

(Soldering, 10 seconds) 260°C

700 mW

500 mW

18V

3.0V to 15V

DC Electrical Characteristics Min/Max limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS			<u> </u>	1	
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V V _{CC} = 10V	3.5 8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V V _{CC} = 10V			1.5 2.0	>>
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$ $V_{CC} = 10V, I_{O} = +10 \mu A$		-	0.5 1.0	V
l _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		-0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μA
loz	Output Current in High Impedance State	V _{CC} = 15V, V = 15V V _{CC} = 15V, V _O = 0V	-1.0	0.005 -0.005	1.0	μΑ μΑ
lcc	Supply Current	V _{CC} = 15V		0.05	300	μΑ
CMOS/LP	TTL INTERFACE			·		
V _{IN(1)}	Logical "1" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V	V _{CC} - 1.5 V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_{O} = -360 \mu A$ 74C, $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4 2.4			V V
V _{OUT(0)}	Logical "0" Output Voltage	54C, V _{CC} = 4.5V, I _O = +360 μA 74C, V _{CC} = 4.75V, I _O = +360 μA			0.4 0.4	V
OUTPUT D	RIVE (See 54C/74C Family Ch	aracteristics Data Sheet) (Short Circu	it Current)		I	
SOURCE	Output Source Current (P-Channel)	V _{CC} = 5.0V, V _{OUT} = 0V T _A = 25°C -1.75		-3.3	-	mA
SOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$ -8.0 -1		-15		mA
^I SINK	Output Sink Current (N-Channel)	V _{CC} = 5.0V, V _{OUT} = V _{CC} T _A = 25°C	1.75	3.6		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 10V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

AC Electrical Characteristics* T_A = 25°C, C_L = 50 pF, unless otherwise noted

Symbol	bol Parameter Conditions Min		Min	Тур	Max	Units ns ns	
t _{pd} Propagation Delay from Memory Enable		V _{CC} = 5V V _{CC} = 10V		270 100	500 220		
†ACC	Access Time from Address Input	V _{CC} = 5V V _{CC} = 10V		350 130	650 280	ns ns	
tsa	Address Setup Time	V _{CC} = 5V V _{CC} = 10V	150 60			ns ns	
tha	Address Hold Time	V _{CC} = 5V V _{CC} = 10V	60 40		-	ns ns	
t _{ME}	Memory Enable Pulse Width	V _{CC} = 5V V _{CC} = 10V	400 150	250 90		ns ns	

AC Electrical Characteristics*	$T_A = 25$ °C, $C_L = 50$ pF, unless otherwise noted (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units ns ns
tsR	Write Enable Setup Time for a Read	V _{CC} = 5V V _{CC} = 10V	0			
tws	Write Enable Setup Time for a Write	V _{CC} = 5V V _{CC} = 10V			t _{ME}	ns ns
t _{WE}	Write Enable Pulse Width	V _{CC} = 5V, t _{WS} = 0 V _{CC} = 10V, t _{WS} = 0	300 100	160 60	_	ns ns
t _{HD}	Data Input Hold Time	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns
t _{SD}	Data Input Setup	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns
t _{1Н} , t _{0Н}	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Memory Enable	V _{CC} = 5V, C _L = 5 pF, R _L = 10k V _{CC} = 10V, C _L = 5 pF, R _L = 10k		180 -85	300 120	ns ns
t ₁ н, t ₀ н	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Write Enable	$V_{CC} = 50V, C_L = 5 pF, R_L = 10k$ $V_{CC} = 10V, C_L = 5 pF, R_L = 10k$		180 85	300 120	ns ns
C _{IN}	Input Capacity	Any Input (Note 2)		5		pF
C _{OUT}	Output Capacity	Any Output (Note 2) 6.5				pF
C _{PD}	Power Dissipation Capacity	(Note 3) 230				pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 3: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

AC Electrical Characteristics* Guaranteed across the specified temperature range, $C_L = 50 \text{ pF}$

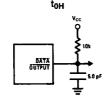
Parameter	Conditions	MM54C89 $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$		MM7 T _A = -40°	Units	
		Min	Max	Min	Max	
t _{PD}	V _{CC} = 5V		700		600	ns
	V _{CC} = 10V		310		265	ns
	V _{CC} = 15V		250		210	ns
tACC	$V_{CC} = 5V$		910		780	ns
	V _{CC} = 10V		400		345	ns
	V _{CC} = 15V		320		270	ns
t _{SA}	V _{CC} = 5V	210		180		ns
	V _{CC} = 10V	90		80	İ	ns
	V _{CC} = 15V	70		60		ns
t _{HA}	V _{CC} = 5V	80		70		ns
	V _{CC} = 10V	55		50	!	ns
	V _{CC} = 15V	45		40		ns
t _{ME}	V _{CC} = 5V	560		480		ns
	V _{CC} = 10V	210		180		ns
	V _{CC} = 15V	170		150		ns
twe	$V_{CC} = 5V$	420		360		ns
	V _{CC} = 10V	140		120		ns
	V _{CC} = 15V	110		100		ns
t _{HD}	V _{CC} = 5V	70		60		ns
	V _{CC} = 10V	35		30		ns
	V _{CC} = 15V	30	1	25		ns

^{*}AC Parameters are guaranteed by DC correlated testing.

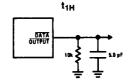
Note 2: Capacitance is guaranteed by periodic testing.

AC Electrical Characteristics*

Guaranteed across the specified temperature range, $C_L = 50 \text{ pF}$ (Continued)

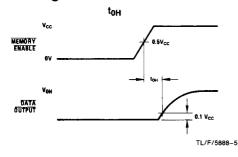

Parameter	Conditions	MM54C89 T _A = -55°C to + 125°C		MM74C89 T _A = -40°C to +85°C		Units
		Min	Max	Min	Max	1
t _{SD}	V _{CC} = 5V V _{CC} = 10V V _{CC} = 15V	70 35 30		60 30 25		ns ns ns
t _{1H} , t _{0H}	V _{CC} = 5V V _{CC} = 10V, C _L = 5 pF V _{CC} = 15V, R _L = 10 kΩ		420 170 135		360 145 115	ns ns ns

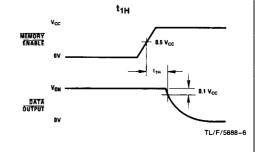
^{*}AC Parameters are guaranteed by DC correlated testing.

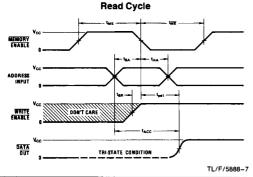

Truth Table

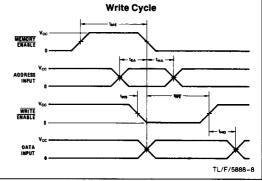
ME	WE	Operation	Condition of Outputs
L	L	Write	TRI-STATE
L	H	Read	Complement of Selected Word
H	L	Inhibit, Storage	TRI-STATE
H	н	Inhibit, Storage	TRI-STATE

AC Test Circuits

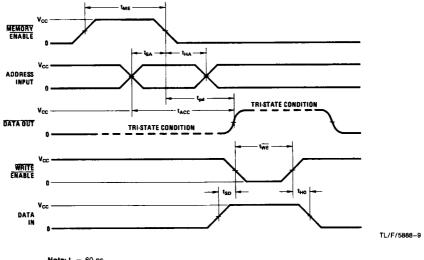



TL/F/5888-4




TL/F/5888-3

Switching Time Waveforms



Switching Time Waveforms (Continued)

Read Modify Write Cycle

Note: $t_r = 60 \text{ ns}$ $t_f = 10 \text{ ns}$