

MM54HC139, MM74HC139

Dual 2-To-4 Line Decoder

This decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses the high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM54HC139/MM74HC139 contain two independent one-of-four decoders each with a single active low enable input (G1, or G2). Data on the select inputs (A1, and B1 or A2, and B2) cause one of the four normally high outputs to go low.

Rochester Electronics Manufactured Components Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.	 Quality Overview ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor

MM54HC139/MM74HC139 Dual 2-To-4 Line Decoder

General Description

This decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses the high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM54HC139/MM74HC139 contain two independent one-of-four decoders each with a single active low enable input (G1, or G2). Data on the select inputs (A1, and B1 or A2, and B2) cause one of the four normally high outputs to go low.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally as well as pin equiva-

lent to the 54LS139/74LS139. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delays Select to outputs (4 delays): 18 ns Select to output (5 delays): 28 ns Enable to output; 20 ns
- Low power: 40 µW quiescent supply power
- Fanout of 10 LS-TTL devices
- Input current maximum 1 µA, typical 10 pA

Truth Table

'HC139

Inp						
Enable	Se	lect	ect			
G	B	A	YO	¥1	¥2	¥3
Н	х	Х	н	Н	н	н
L	L	L	L	Н	н	Н
L ·	L	Н	Н	L	Н	н
L	н	L	н	H	L	н
L	Н	- H	Н	Н	н	L

H=high level, L=low level, X=don't care

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (IOUT)	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	65°C to +150°C
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temp. (TL) (Soldering 10 seconds)	260°C

Operating Conditions

Supply Voltage (V _{CC})		Min 2	Max 6	Units V	
DC Input (V _{IN} , V	or Output Voltage ОUT)	0	Vcc	v	
Operating	g Temp, Range (T _A)				
MM74	-IC	-40	+ 85	°C	
MM54	HC	- 55	+ 125	°C	
Input Rise	e or Fall Times				
(t _r , t _f)	V _{CC} =2.0V		1000	пs	
	$V_{CC} = 4.5V$		500	ns	
	V _{CC} =6.0V		400	ns	

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Typ Guaranteed Limits			
ViH	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
VIL	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	v v v
V _{OH}	Minimum High Level Output Voltage	V _{IN} ≕V _{IH} or V _{IL} I _{OUT} ≤20 μA	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
	•	V _{IN} =V _{IH} or V _{IL} I _{OUT} ≤4.0 mA I _{OUT} ≤5.2 mA	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	v v
V _{OL}	Maximum Low Level Output Voltage	V _{IN} ≕V _{IH} or V _{IL} [I _{OUT} ≤20 μA	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		V _{IN} = V _{IH} or V _{IL} I _{OUT} ≤ 4.0 mA I _{OUT} ≤ 5.2 mA	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	v
IIN	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
lcc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μA

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: $-12 \text{ mW/}^{\circ}\text{C}$ from 65°C to 85°C; ceramic "J" package: $-12 \text{ mW/}^{\circ}\text{C}$ from 100°C to 125°C. Note 4: For a power supply of 5V ± 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_H and V_{IL} occur at V_{CC}= 5.5V and 4.5V respectively. (The V_H value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{O2}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

**VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
tpHL, tpLH	Maximum Propagation Delay, Binary Select to any Output 4 levels of delay		18	30	ns
tpHL, tpLH	Maximum Propagation Delay, Binary Select to any Output 5 levels of delay		28	- 38	រាន
tphl, tolh	Maximum Propagation Delay, Enable to any Output		19	30	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =25°C		74HC T _A =40 to 85°C	54HC T _A =-55 to 125°C	Units	
·····				Тур		Guaranteed Limits			
tehli telh	Maximum Propagation Delay Binary Select to	(Note 6)	2.0V 4.5V	110 22	175 35	219 44	254 51	ns ns	
	any Output 4 levels of delay	· · · · · · · · · · · · · · · · · · ·	6.0V	18	30	38	44	ns	
t _{PHL} , t _{PLH}	Maximum Propagation Delay Binary Select to any Output 5 levels of delay	(Note 7)	2.0V 4.5V 6.0V	165 33 28	220 44 38	275 55 47	320 64 54	ns ns ns	
tphl, tplH	Maximum Propagation Delay Enable to any Output		2.0V 4.5V 6.0V	115 23 19	175 35 30	219 44 38	254 51 44	ris ns ns	
t _{TLH} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns	
C _{IN}	Maximum Input Capacitance			3	10	10	10	pF	
C _{PD}	Power Dissipation Capacitance (Note 5)	(Note 5)		75				рF	

Note 5: CPD determines the no load dynamic power consumption, PD = CPD VCC² 1 + ICC VCC, and the no load dynamic current consumption, IS = CPD VCC 1 + ICC. Note 6: 4 levels of delay are A to Y1, Y3 and B to Y2, Y3.

Note 7: 5 levels of delay are A to Y0, Y2 and B to Y0, Y1.