

MM54HC390, MM74HC390 / MM54HC393, MM74HC393

Dual 4-Bit Decade Counter / Dual 4-Bit Binary Counter

These counter circuits contain independent ripple carry counters and utilize advanced silicongate CMOS technology. The MM54HC390/MM74HC390 incorporate dual decade counters, each composed of a divide-by-two and a divide-by-five counter. The divide-by-two and divide-by-five counters can be cascaded to form dual decade, dual bi-quinary, or various combinations up to a single divide-by-100 counter. The MM54HC393/MM74HC393 contain two 4-bit ripple carry binary counters, which can be cascaded to create a single divide-by-256 counter.

Each of the two 4-bit counters is incremented on the high to low transition (negative edge) of the clock input, and each has an independent clear input. When clear is set high all four bits of each counter are set to a low level. This enables count truncation and allows the implementation of divide-by-N counter configurations.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

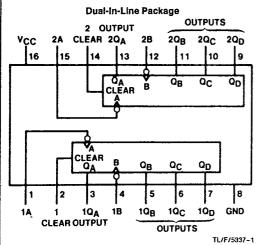
T-45-23-13

MM54HC390/MM74HC390 Dual 4-Bit Decade Counter MM54HC393/MM74HC393 Dual 4-Bit Binary Counter

General Description

These counter circuits contain independent ripple carry counters and utilize advanced silicon-gate CMOS technology. The MM54HC390/MM74HC390 incorporate dual decade counters, each composed of a divide-by-two and a divide-by-five counter. The divide-by-two and divide-by-five counters can be cascaded to form dual decade, dual bi-quinary, or various combinations up to a single divide-by-100 counter. The MM54HC393/MM74HC393 contain two 4-bit ripple carry binary counters, which can be cascaded to create a single divide-by-256 counter.

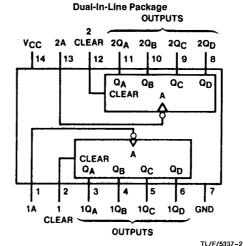
Each of the two 4-bit counters is incremented on the high to low transition (negative edge) of the clock input, and each has an independent clear input. When clear is set high all four bits of each counter are set to a low level. This enables count truncation and allows the implementation of divide-by-N counter configurations.


Each of the counters outputs can drive 10 low power Schottky TTL equivalent loads. These counters are func-

tionally as well as pin equivalent to the 54LS390/74LS390 and the 54LS393/74LS393, respectively. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

Features

- Typical operating frequency: 50 MHz
- Typical propagation delay: 13 ns (Ck to Q_A)
- Wide operating supply voltage range: 2-6V
- Low input current: <1 μA
- Low quiescent supply current: 80 μA maximum (74HC Series)
- Fanout of 10 LS-TTL loads


Connection Diagrams

Top View

Order Number MM54HC390* or MM74HC390*

*Please look into Section 8, Appendix D for availability of various package types.

Top View

Order Number MM54HC393* or MM74HC393*

*Please look into Section 8, Appendix D for availability of various package types. 3

-65°C to +150°C

600 mW

500 mW

260°C

Operating Cor	nditions		
•	Min	Max	Units
Supply Voltage (V _{CC})	2	6	٧
DC Input or Output Volta (VIN, VOUT)	age 0	Vcc	٧
Operating Temp. Range	(T _A)		
MM74HC	-40	+85	°C
MM54HC	-55	+125	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
V _{CC} = 4.5V		500	ns
V _{CC} =6.0V		400	ns

Lead Temp. (Ti) (Soldering 10 seconds)

Storage Temperature Range (T_{STG})

Power Dissipation (PD) (Note 3)

S.O. Package only

Symbol	Parameter	Conditions	V _{CC}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
VOH Minimum High Leve Output Voltage	Minimum High Level Output Voltage	V _{IN} ≕V _{IH} or V _{IL} I _{OUT} ≤20 μA	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
VoL Maximum Low Level Output Voltage	V _{IN} ≕V _{IH} or V _{IL} I _{OUT} ≤20 μA	2.0V 4.5V 6.0V	000	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	> > >	
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 4.0$ mA $ I_{OUT} \le 5.2$ mA	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0,33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
lcc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: —12 mW/*C from 65°C to 85°C; ceramic "J" package: —12 mW/*C from 100°C to 125°C.

Note 4: For a power supply of 5V ± 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case VIH and VIL occur at VCC=5.5V and 4.5V respectively. (The VIH value at 5.5V is 3.85V.) The worst case leakage current (IIIN. ICC, and loz) occur for CMOS at the higher voltage and so the 6.0V values should be used.

**VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY'89.

Minimum Pulse Width, Clear or Clock

10

T- 45-23-13

AC Electrical Characteristics MM54HC390/MM74HC390

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency, Clock A or B		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to QA Output		12	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to Q_C (Q_A Connected to Clock B)		32	50	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock B to Q_B or Q_D		15	21	ns
tpHL, tpLH	Maximum Propagation Delay, Clock B to QC		20	32	ns
t _{PHL}	Maximum Propagation Delay, Clear to any Output		15	28	ns
t _{REM}	Minimum Removal Time, Clear to Clock		-2	5	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}$, $t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V		5 27 31	4 21 24	3 18 20	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to Q _A		2.0V 4.5V 6.0V	45 15 13	120 24 21	150 30 26	180 35 31	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock A to Q _C (Q _A Connected to Clock B)		2.0V 4.5V 6.0V	100 35 30	290 58 50	360 72 62	430 87 75	ns ns ns
[†] РНЬ [†] РСН	Maximum Propagation Delay, Clock B to Q _B or Q _D		2.0V 4.5V 6.0V	50 16 13	130 26 22	160 33 28	195 39 33	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock B to Q _C		2.0V 4.5V 6.0V	60 20 17	185 37 32	230 46 40	280 55 48	ns ns ns
[†] PHL	Maximum Propagation Delay, Clear to any Q		2.0V 4.5V 6.0V	55 17 15	165 33 28	210 41 35	250 49 42	ns ns ns
t _{REM}	Minimum Removal Time Clear to Clock		2.0V 4.5V 6.0V		25 5 5	25 5 5	25 5 5	ns ns ns
t _W	Minimum Pulse Width Clear or Clock		2.0V 4.5V 6.0V	30 10 9	80 16 14	100 20 18	120 24 20	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation (Capacitance (Note 5)	per counter)		55				pF
CIN	Maximum Input Capacitance			5	10	10	10	рF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2$ f+ $I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC}$ f+ $I_{CC} \ V_{CC}$.

Maximum Operating Frequency

Minimum Removal Time

15

-2

10

fMAX

tphL, tpLH

t_{PHL}, t_{PLH}

t_{PHL}, t_{PLH}

tPHL

tREM

tw

AC Electrical Characteristics MM54HC393/MM74HC393

Parameter

Maximum Propagation Delay, Clock A to QA

Maximum Propagation Delay, Clock A to QB

 $\label{eq:maximum Propagation Delay, Clock A to QD} {\it Maximum Propagation Delay, Clock A to QD}$

Maximum Propagation Delay, Clear to any Q

Minimum Pulse Width Clear or Clock

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_f = t_f = 6$ ns

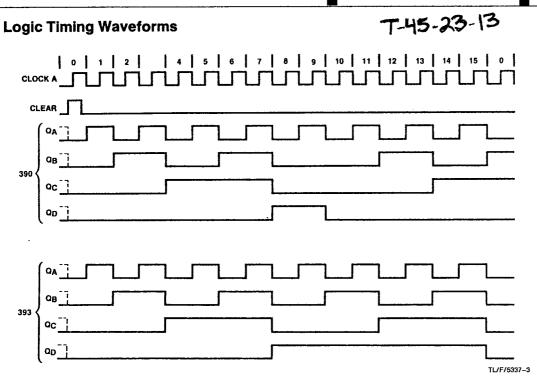
W/4110333		1 73-03-15						
Conditions	Тур	Guaranteed Limit	Units					
	50	30	MHz					
	13	20	ns					
	19	35	ns					
	23	42	ns					

28

5

16

ns


ns

ns

AC Electrical Characteristics C₁ = 50 pF t₋=t₂=6 ps (upless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
fMAX	Maximum Operating		2.0V		5	4	3	
	Frequency		4.5V	İ	27	21	18	MHz
		İ	6.0V		31	24	20	MHz
tphL, tpLH	Maximum Propagation		2.0V	45	120	150	180	ns
	Delay Clock A to QA]	4.5V	15	24	30	35	ns
		ļ	6.0V	13	21	26	31	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	68	190	240	285	ns
	Delay Clock A to QR		4.5V	23	38	47	57	ns
			6.0V	20	32	40	48	ns
tent tern	Maximum Propagation		2.0V	90	240	300	360	ns
	Delay Clock A to QC		4.5V	30	48	60	72	ns
	_		6.0V	26	41	51	61	ns
tehl, telh	Maximum Propagation Delay		2.0V	100	290	360	430	ns
	Clock to QD		4.5V	35	58	72	87	ns
	_		6.0V	30	50	62	75	ns
t _{PHL}	Maximum Propagation		2.0V	54	165	210	250	ns
	Delay Clear to any Q		4.5V	18	33	41	49	ns
			6.0V	15	28	35	42	ns
^t REM	Minimum Clear Removal		2.0V		25	25	25	ns
	Time		4.5V	ı	5	5	5	ns
			6.0V		5	5	5	ns
t _W	Minimum Pulse Width		2.0V	30	80	100	120	ns.
	Clear or Clock		4.5V	10	16	20	24	ns
			6.0V	9	14	18	20	ns
t _{THL} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	' 19	ns
t _r , t _f	Maximum Input Rise				1000	1000	1000	ns
	and Fall Time		- 1	- 1	500	500	500	ns
					400	400	400	ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per counter)		42				pF
CIN	Maximum Input Capacitance			5	10	10	10	ρF

Note 5: CPD determines the no load dynamic power consumption, PD=CPD VCC21+ICC VCC, and the no load dynamic current consumption, IS=CPD VCC1+ICC.

3-295

3