

MM88C29, MM88C30

Quad Single-Ended Line Driver, Dual Differential Line Driver

The MM88C30 is a dual differential line driver that also performs the dual four-input AND function. The absence of a clamp diode to VCC in the input protection circuitry of the MM88C30 allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a VCC voltage greater than the VCC voltage of the MM88C30 line driver. The differential output of the MM88C30 eliminates ground-loop errors.

The MM88C29 is a non-inverting single-wire transmission line driver. Since the output ON resistance is a low 20Ω typ., the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

October 1987 Revised June 2001

MM88C29 • MM88C30 **Quad Single-Ended Line Driver • Dual Differential Line Driver**

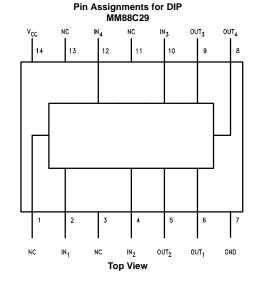
General Description

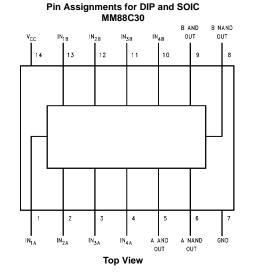
The MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to $V_{\mbox{\footnotesize CC}}$ in the input protection circuitry of the MM88C30 allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a V_{CC} voltage greater than the $V_{\mbox{\footnotesize CC}}$ voltage of the MM88C30 line driver. The differential output of the MM88C30 eliminates ground-loop errors.

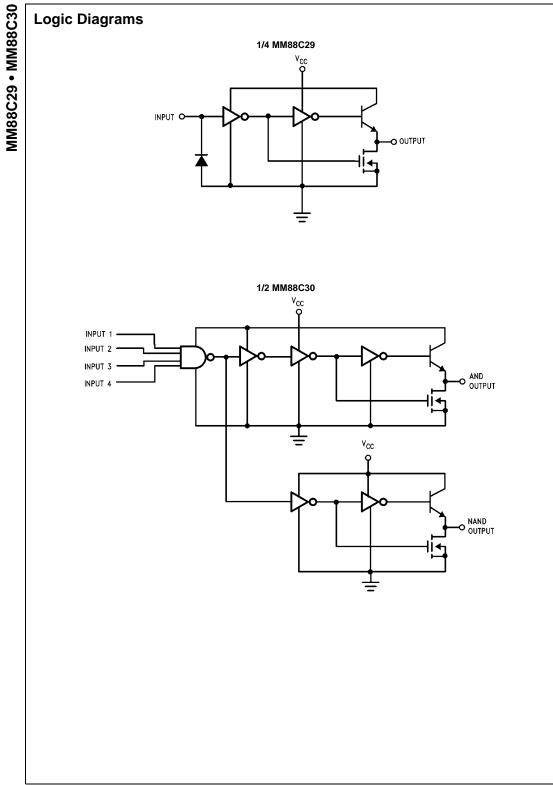
The MM88C29 is a non-inverting single-wire transmission line driver. Since the output ON resistance is a low 20Ω typ., the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.

Features

■ Wide supply voltage range: 3V to 15V ■ High noise immunity: 0.45 V_{CC} (typ.)


■ Low output ON resistance: 20Ω (typ.)


Ordering Code:


Order Number	Package Number	Package Description			
MM88C29N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
MM88C30M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM88C30N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code

Connection Diagrams

50 mA

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Voltage at Any Pin (Note 2)} & -0.3 \mbox{V to V}_{\mbox{CC}} + 16 \mbox{V} \\ \mbox{Operating Temperature Range} & -40 \mbox{°C to } + 85 \mbox{°C} \\ \mbox{Storage Temperature} & -65 \mbox{°C to } + 150 \mbox{°C} \\ \end{array}$

Power Dissipation (P_D)

 $\begin{array}{cc} \text{Dual-In-Line} & 700 \text{ mW} \\ \text{Small Outline} & 500 \text{ mW} \\ \text{Operating V}_{\text{CC}} \text{ Range} & 3V \text{ to 15V} \\ \text{Absolute Maximum V}_{\text{CC}} & 18V \\ \end{array}$

Average Current at Output MM88C30

 $\begin{array}{ll} \mbox{MM88C29} & \mbox{25 mA} \\ \mbox{Maximum Junction Temperature, T}_{\mbox{\scriptsize i}} & \mbox{150°C} \end{array}$

Lead Temperature

(Soldering, 10 seconds) 260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

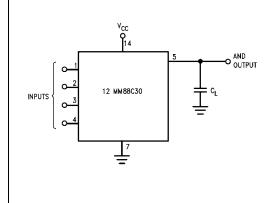
Note 2: AC Parameters are guaranteed by DC correlated testing.

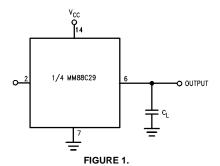
DC Electrical Characteristics

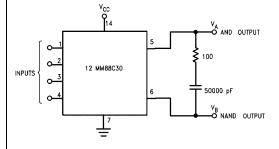
Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS	'	l .	ļ		
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V	3.5			V
. ,		V _{CC} = 10V	8			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V			1.5	V
		V _{CC} = 10V			2	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1	μА
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1	-0.005		μΑ
I _{CC}	Supply Current	V _{CC} = 5V		0.05	100	mA
OUTPUT I	DRIVE			I		
I _{SOURCE}	Output Source Current	$V_{OUT} = V_{CC} - 1.6V$				
		$V_{CC} \ge 4.75V, T_i = 25^{\circ}C$	-47	-80		mA
		T _i = 85°C	-32	-60		mA
	MM88C29	$V_{OUT} = V_{CC} - 0.8V$	-2	-20		mA
	MM88C30	V _{CC} ≥ 4.5V				
I _{SINK}	Output Sink Current	V _{OUT} = 0.4V, V _{CC} = 4.75V,				
		T _i = 25°C	9.5	22		mA
		T _i = 85°C	8	18		mA
		$V_{OUT} = 0.4V, V_{CC} = 10V,$				
		T _i = 25°C	19	40		mA
		T _i = 125°C	15.5	33		mA
I _{SOURCE}	Output Source Resistance	$V_{OUT} = V_{CC} - 1.6V$				
		$V_{CC} \ge 4.75V$, $T_j = 25^{\circ}C$		20	34	Ω
		$T_j = 85^{\circ}C$		27	50	Ω
I _{SINK}	Output Sink Resistance	$V_{OUT} = 0.4V, V_{CC} = 4.75V,$				
		$T_j = 25^{\circ}C$		18	41	Ω
		$T_j = 85^{\circ}C$		22	50	Ω
		V _{OUT} = 0.4V, V _{CC} = 10V,				
		$T_j = 25^{\circ}C$		10	21	Ω
		T _j = 85°C		12	26	Ω
	Output Resistance					
	Temperature Coefficient					
	Source			0.55		%/°C
	Sink			0.40		%/°C
θ_{JA}	Thermal Resistance			150		°C/W
	(N-Package)					

AC Electrical Characteristics (Note 2)


 $T_A=25^{\circ}C,\ C_L=50\ pF$


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to					
	Logical "1" or "0"	(See Figure 1)				
	MM88C29	$V_{CC} = 5V$		80	200	ns
		V _{CC} = 10V		35	100	ns
	MM88C30	V _{CC} = 5V		110	350	ns
		$V_{CC} = 10V$		50	150	ns
t _{pd}	Differential Propagation Delay	$R_L = 100\Omega, C_L = 5000 pF$				
	Time to Logical "1" or "0"	(See Figure 2)				
	MM88C30	$V_{CC} = 5V$			400	ns
		V _{CC} = 10V			150	ns
C _{IN}	Input Capacitance					
	MM88C29	(Note 3)		5.0		pF
	MM88C30	(Note 3)		5.0		pF
C _{PD}	Power Dissipation Capacitance					
	MM88C29	(Note 3)		150		pF
	MM88C30	(Note 3)		200		pF


Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90 (CMOS Logic Databook).

AC Test Circuits

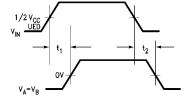
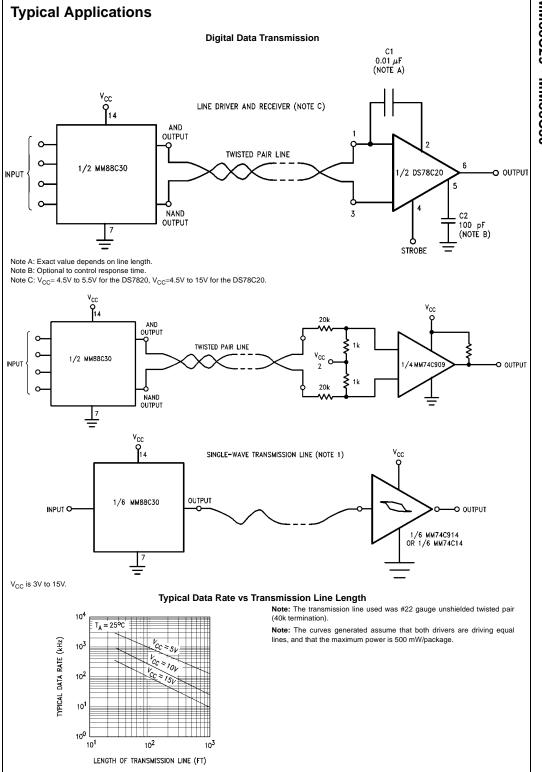
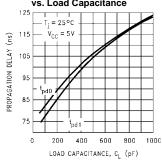
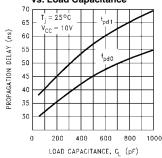
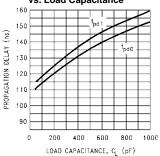
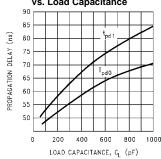




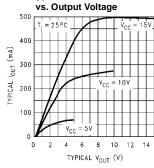
FIGURE 2.

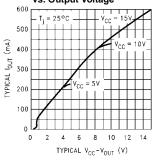


Typical Performance Characteristics

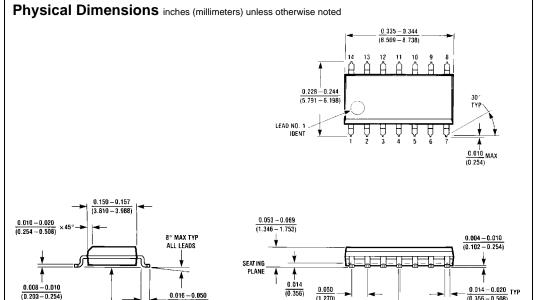

MM88C29 Typical Propagation Delay vs. Load Capacitance


MM88C29
Typical Propagation Delay vs. Load Capacitance


MM88C30 Typical Propagation Delay vs. Load Capacitance


MM88C30 Typical Propagation Delay vs. Load Capacitance

Typical Sink Current



Typical Source Current vs. Output Voltage

 $-\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$

→ 0.008 (0.203) TYP

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS

0.050 (1.270) TYP

0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS

0.004 (0.102) ALL LEAD TIPS

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.630 - 8.128}{(7.620 - 8.128)}$ 0.060 0.145 - 0.2004° TYP Optional (1.651) (3.683 - 5.080) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP 0.325 ^{+0.040} -0.015 8.255 + 1.016

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

N14A (REV F)