

SN5413, SN54LS13, SN7413, SN74LS13

Dual 4-Input Positive-Nand Schmitt Triggers

Each circuit functions as a 4-input NAND gate, but because of the Schmitt action, it has different input threshold levels for positive (V_{T+}) and for negative going (V_{T-}) signals. These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clean, jigger-free output signals.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

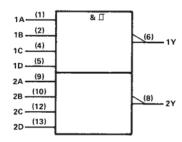
Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- Improved Line-Receiving Characteristics
- **High Noise Immunity**

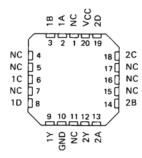

description

Each circuit functions as a 4-input NAND gate, but because of the Schmitt action, it has different input threshold levels for positive (V_{T+}) and for negative going (V_T_) signals.

These circuits are temperature-compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

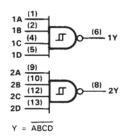
The SN5413 and SN54LS13 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN7413 and SN74LS13 are characterized for operation from 0°C to 70°C.

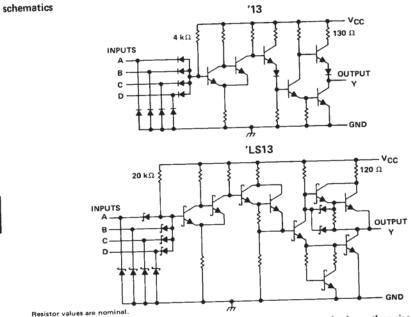
logic symbol†


 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-13.

Pin numbers shown are for D, J, N, and W packages.

SN5413, SN54LS13 . . . J OR W PACKAGE SN7413 . . . N PACKAGE SN74LS13 . . . D OR N PACKAGE (TOP VIEW)


1A	4	U140	Vcc
IA	4'		
1B	□2	13	2D
NC	Дз	12	2C
1C	□4	11	NC
1D	₫5	10	2B
1Y	□6	9 🗖	2A
GND	Q٧	8	2Y


SN54LS13 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

•	nate meaning	7 V
	Supply voltage, VCC (see Note 1)	5.5 V
	Input voltage: '13'LS13	- 55°C to 125°C
	'LS13 Operating free-air temperature: SN54'	0°C to 70°C
	SN74'	- 65°C to 150°C
	Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

SN5413, SN7413

recommended operating conditions

		SN5413			SN7413		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
IOH High-level output current		-	- 0.8			- 0.8	mA
IOL Low-level output current			16			16	mA
TA Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TI	EST CONDITIONS [†]	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V			1.5	1.7	2	V
V _T -	V _{CC} = 5 V			0.6	0.9	1,1	V
Hysteresis (V _{T+} -V _{T-})	V _{CC} = 5 V			0.4	0.8		v
VIK	VCC = MIN.	I ₁ = - 12 mA	Alexander - Salahikan Barata			1.5	V
VOH	V _{CC} = MIN,	V _I = 0.6 V,	IOH = - 0.8 mA	2.4	3.4		V
VOL	V _{CC} = MIN,	V ₁ = 2 V,	IOL = 16 mA		0.2	0.4	V
IT+	V _{CC} = 5 V.	VI = VT+			- 0.65	2,346.10	mA
IT	V _{CC} = 5 V,	V1 = VT-			- 0.85	_	mA
T _I	V _{CC} = MAX,	V1 = 5.5 V				1	mA
11H	VCC = MAX,	V _{IH} = 2.4 V				40	μА
JIL.	VCC = MAX,	V _{1L} = 0.4 V			- 1	- 1.6	mA
10S \$	VCC = MAX,			- 18	510	- 55	mA
Іссн	V _{CC} = MAX				14	23	mA
'CCL	V _{CC} = MAX				20	32	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at $V_{CC} = 5$ V, $T_{A} = 25^{\circ}$ C. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
tPLH Any Y		V .	D 400 O	0 15-5	18	27	ns
^t PHL	7,		nL - 400 12,	$R_L = 400 \Omega$, $C_L = 15 pF$	15	22	ns

SN54LS13, SN74LS13 **DUAL 4-INPUT** POSITIVE-NAND SCHMITT TRIGGERS

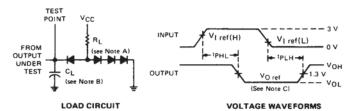
recommended operating conditions

		S	SN54LS13			SN74LS13		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
		4.5	5	5.5	4.75	5	5.25	٧
VCC Supply voltage				0.4			- 0.4	mA
OH High-level output curr	ent			4	-		8	mA
IOL Low-level output curr	ent			125	0		70	°C
To Operating free-air tem	perature	- 55		123		7		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					5	N54LS1	13		SN74LS	13	UNIT
PARAMETER		TEST CONDITIONST			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
	V 5 V				1.4	1.6	1.9	1.4	1.6	1.9	V
V _{T+}	V _{CC} = 5 V		0.5	0.8	1	0.5	8.0	1	V		
V _T _ Hysteresis	V _{CC} = 5 V				0.4	0.8		0.4	0.8		٧
(VT+ -VT-)	V _{CC} = MIN,	I ₁ = - 18 mA					- 1.5			- 1.5	V
VIK	VCC = MIN,	V ₁ = 0.5 V,	I _{OH} = - 0.4 m/	· -	2.5	3.4		2.7	3.4		V
VOH	VCC - WITH,	V1 - 0.5 V,	-OH	IOL = 4 mA		0.25	0.4		0.25	0.4	
VOL	V _{CC} = MIN,	V ₁ = 1.9 V		IOL = 8 mA					0.35	0.5 V	
1=	V _{CC} = 5 V,	V _I = V _{T+}				- 0.14			- 0.14		mA
3T+	V _{CC} = 5 V,	V1 = VT_				- 0.18			- 0.18		mA
<u> </u>	VCC = MAX,	10001 100 000 000					0.1			0.1	mA
1		V _{1H} = 2.7 V					20			20	μА
ин	V _{CC} = MAX,						- 0.4			- 0.4	mA
կլ	V _{CC} = MAX,	V _{IL} = 0.4 V			- 20		- 100	- 20	- 100	- 100	mA
los§	V _{CC} = MAX				- 20			1	2.9		mA
¹ CCH	V _{CC} = MAX				-	2.9		-			mA
ICCL	V _{CC} = MAX		_			4.1	7		4.1		mA

- T For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- All typical values are at V_{CC} = 5 V, T_A = 25°C.

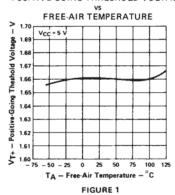

 Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V , TA = 25°C

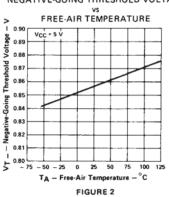
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN TYP	MAX	UNIT
	(introt)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			15	22	ns
†PLH	Any	Y	$R_L = 2 k\Omega$,	CL = 15 pF	18	27	ns
†PHL		on the same of	_2220		~.	1	

SN5413, SN54LS13, SN7413, SN74LS13 **DUAL 4-INPUT POSITIVE-NAND SCHMITT TRIGGERS**

PARAMETER MEASUREMENT INFORMATION

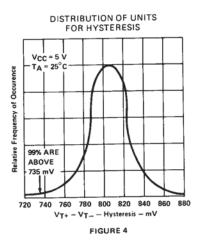

NOTES: A. All diodes are 1N3064 or equivalent.

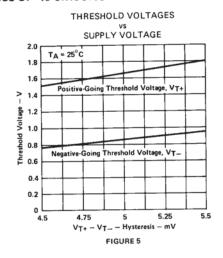
- C. L. includes probe and jig capacitance.
 Generator characteristics and reference voltages are:


	G	enerator C	haracteris	tics	Reference Voltages			
	Zout	PRR	t _r	tf	VI ref(H)	VI ref(L)	V _{O ref}	
SN54'/SN74'	50 Ω	1 MHz	10 ns	10 ns	1.7 V	0.9 V	1.5 V	
SN54LS'/SN74LS'	50 Ω	1 MHz	15 ns	6 ns	1.6 V	0.8 V	1.3 V	

TYPICAL CHARACTERISTICS OF '13 CIRCUITS

POSITIVE-GOING THRESHOLD VOLTAGE


NEGATIVE-GOING THRESHOLD VOLTAGE



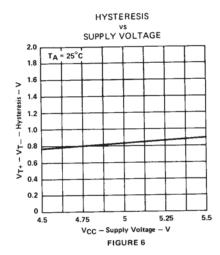
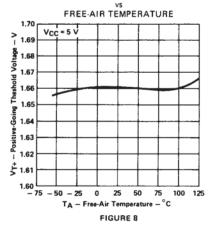
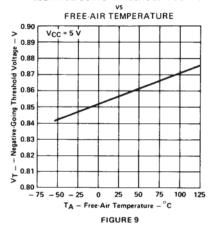

HYSTERESIS vs FREE-AIR TEMPERATURE VCC = 5 V 840 ٦ -830 Hysteresis 810 820 790 780 770 -50 - 25 25 50 75 TA - Free-Air Temperature - °C

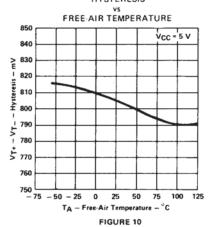
FIGURE 3 Data for temperatures below 0°C and 70°C and supply voltages below 4.75 V and above 5.25 V are applicable for SN5413 only.

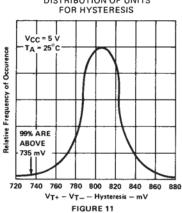
> TEXAS INSTRUMENTS

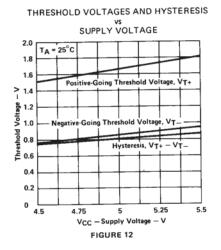


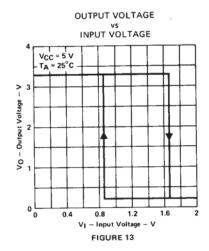

Data for temperatures below 0° C and 70° C and supply voltages below 4.75 V and above 5.25 V are applicable for SN5413 only.

TYPICAL CHARACTERISTICS OF 'LS13 CIRCUITS

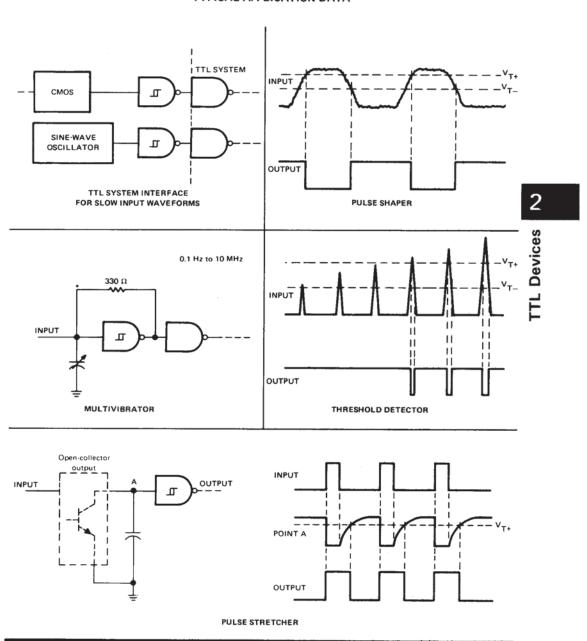



NEGATIVE-GOING THRESHOLD VOLTAGE


HYSTERESIS



DISTRIBUTION OF UNITS


Data for temperatures below 0° C and above 70° C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS13 only.

Data for temperatures below 0° C and above 70° C and supply voltages below 4.75 V and above 5.25 V are applicable for SN54LS13 only.

TYPICAL APPLICATION DATA

