

SN5430, SN54H30, SN54L30, SN54LS30, SN54S30 SN7430, SN74H30, SN74L30, SN74S30

8-Input Positive-NAND Gates

The SN5430, SN54H30, SN54L30, SN54LS30, and SN54S30 are characterized for operation over the full military range of -55°C to 125°C while the SN7430, SN74H30, SN74LS30, and SN74S30 are characterized for operation from 0°C to 70°C. These devices contain a single 8-input NAND gate.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

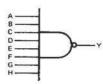
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

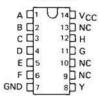
description

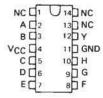

These devices contain a single 8-input NAND gate.

The SN5430, SN54H30, SN54L30, SN54LS30, and SN54S30 are characterized for operation over the full military range of -55°C to 125°C. The SN7430, SN74H30, SN74LS30, and SN74S30 are characterized for operation from 0°C to 70°C.

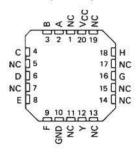
FUNCTION TABLE

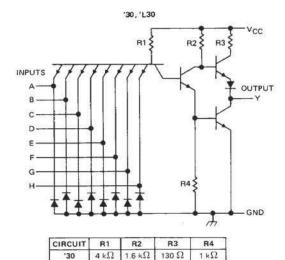
INPUTS A THRU H	OUTPUT
All inputs H	L
One or more inputs L	н

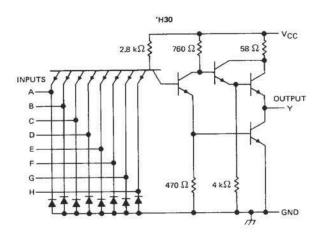

logic diagram


positive logic

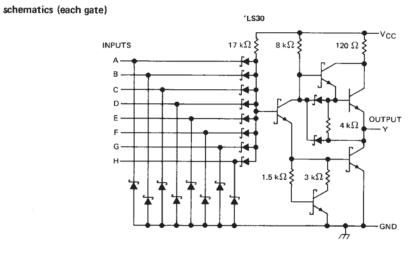
$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} \quad \text{or} \quad Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

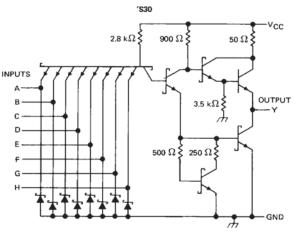

SN5430, SN54H30, SN54L30 ... J PACKAGE SN54LS30, SN54S30 ... J OR W PACKAGE SN7430, SN74H30 ... J OR N PACKAGE SN74LS30, SN74S30 ... D, J OR N PACKAGE (TOP VIEW)


SN5430, SN54H30 . . . W PACKAGE (TOP VIEW)


SN54LS30, SN54S30 ... FK PACKAGE SN74LS30, SN74S30 ... FN PACKAGE (TOP VIEW)

NC - No internal connection


'L30 40 k Ω 20 k Ω 500 Ω 12 k Ω Input clamp diodes not on SN54L30 circuit.



Resistor values shown are nominal.

TEXAS INSTRUMENTS
POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

3-140

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	Supply voltage, VCC (see Note 1): '30, 'H30, 'LS30, 'S30
	′L308 V
	Input voltage: '30, 'H30, 'L30, 'S30
	'LS30
	Operating free-air temperature: SN54'
	SN74'
	Storage temperature range65°C to 150°C
O.T.	A. Malana union con vida conserva and conservation and conservations.

TYPES SN5430, SN7430 8-INPUT POSITIVE-NAND GATES

recommended operating conditions

			SN5430			SN7430		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage	Say - conc		0.8			8.0	V
юн	High-level output current			- 0.4			- 0.4	mA
loL	Low-level output current		7.60	16			16	mA
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

040445750) C	TEST CONDITIONS T		SN5430	r.		80	UNIT	
PARAMETER		TEST CONDITIONS I	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = - 12 mA			- 1.5			- 1.5	٧
Vон	V _{CC} = MIN,	V_{1L} = 0.8 V, I_{OH} = $-$ 0.4 mA	2.4	3.4		2.4	3.4		V
VOL	V _{CC} = MIN,	V _{1H} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
11	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA
ЧН	V _{CC} = MAX,	V ₁ = 2.4 V			40			40	μА
IIL	V _{CC} = MAX,	V1 = 0.4 V			- 1.6			- 1.6	mA
los§	V _{CC} = MAX		- 20		- 55	- 18		- 55	mA
Іссн	V _{CC} = MAX,	V ₁ = 0 V	1100000	1	2		1	2	mA
ICCL	VCC = MAX,	V ₁ = 4.5 V		3	6		3	6	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
tPLH				13 22	ns
tPHL .	Any	Y	$R_L = 400 \Omega$, $C_L = 15 pF$	8 15	ns

TYPES SN54H30, SN74H30 8-INPUT POSITIVE-NAND GATES

recommended operating conditions

SN54H30			SN74H30			דומט
MIN N	MOM	MAX	MIN	NOM	MAX	UNIT
4.5	5	5.5	4.75	5	5.25	v
2			2		15	ν
		0.8	110		8.0	V
		- 0.5			- 0.5	mA
		20			20	mA
- 55		125	0	-	70	°c
	MIN 4.5 2	MIN NOM 4.5 5 2	MIN NOM MAX 4.5 5 5.5 2	MIN NOM MAX MIN 4.5 5 5.5 4.75 2 2 0.8 -0.5 20	MIN NOM MAX MIN NOM 4.5 5 5.5 4.75 5 2 2 0.8 -0.5 20	MIN NOM MAX MIN NOM MAX 4.5 5 5.5 4.75 5 5.25 2 2 2 2 0.8 0.8 0.8 -0.5

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		200	TEST CONDITIONS T	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I ₁ = -8 mA				- 1.5	V
Voн	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = - 0.5 mA	2.4	3.5		٧
VOL	V _{CC} = MIN.	V _{IH} = 2 V,	I _{OL} = 20 mA		0.2	0.4	V
II	V _{CC} = MAX,	V ₁ = 5.5 V				1	mA
ин	VCC = MAX,	V ₁ = 2.4 V				`50	μА
lit.	V _{CC} = MAX,	V1 = 0.4 V			- 536	- 2	mA
IOS §	VCC = MAX	-UE2 - 10	.1.	- 40		- 100	mA
Гссн	VCC = MAX,	V1 = 0 V		× 1 20	2.5	4.2	mA
ICCL	VCC = MAX,	V ₁ = 4.5 V			6.5	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP MAX	UNIT
†PLH	Any		R _L = 280 Ω, C _L = 25 pF	6.8 10	ns
1PHL		,	Y $R_L = 280 \Omega$, $C_L = 25 pF$	8.9 12	ns

¹ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

TYPE SN54L30 8-INPUT POSITIVE-NAND GATES

recommended operating conditions

		i	SN54L	30	
		MIN	NOM	MAX	UNIT
vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			٧
VIL	Low-level input voltage			0.7	V
Іон	High-level output current		-	- 0.1	mA
loL	Low-level autput current			2	mA
TA	Operating free-air temperature	- 55		125	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS †		SN54L30				
PARAMETER	TEST CONDITIONS I	MIN	TYP‡	MAX	UNIT		
Voн	V _{CC} = MIN, V _{IL} = 0.7 V, I _{OH} = -0.1 mA	2.4	3.3		٧		
VOL	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 2 mA		0.15	0.3	٧		
l ₁	V _{CC} = MAX, V _I = 5.5 V			0.1	mA		
пн	V _{CC} = MAX, V _I = 2.4 V			10	μΑ		
IIL	V _{CC} = MAX, V _I = 0.3 V			-0.18	mA		
los§	V _{CC} = MAX	-3		-15	mA		
¹ ССН	V _{CC} = MAX, V ₁ = 0 V		0.11	0.33	mA		
'CCL	V _{CC} = MAX, V _I = 4.5 V		0.29	0.51	mA		

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH .	Any		$R_L = 4 k\Omega$, $C_L = 50 pF$		35	60	ns
tPHL .	- Cally	,	11 - 4 1885, CE - 50 PF		70	100	ns

recommended operating conditions

			SN54LS30			SN74LS30		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC} 8	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH F	High-level input voltage	2			2		-7: -15: -3	٧
VIL I	Low-level input voltage			0.7		524	8.0	V
ton t	High-level output current			- 0.4			- 0.4	mA
IOL I	Low-level output current			4			8	mA
TA (Operating free-air temperature	- 55		125	0	,	70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †		SN54LS30							
			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	VCC = MIN.	1 ₁ = - 18 mA				- 1.5			- 1.5	V
Voн	VCC = MIN,	VIL = MAX,	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		٧
VOL	VCC = MIN,	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4	-CHILDYO		0.4	v
	VCC = MIN,	V _{IH} = 2 V,	IOL = 8 mA		(+1			0.25	0.5	١,٠
1	VCC = MAX,	V ₁ = 7 V				0.1			0.1	mA
liH.	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μА
IIL	VCC = MAX,	V ₁ = 0.4 V	30.00			- 0.4			- 0.4	mA
los§	V _{CC} = MAX		3-W-1/	- 20	Ï	- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V1 = 0 V	8.0		0.35	0.5		0.35	0.5	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			0.6	1.1		0.6	1.1	mA

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN TY	MAX	UNIT
[†] PLH	Amy	v	R _L = 2 kΩ, C _L = 15 pF	C 15 of		3 15	ns
^t PHL	Any			- 2 K12, GL - 15 PF	1	3 20	ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

TYPES SN54S30, SN74S30 8-INPUT POSITIVE-NAND GATES

recommended operating conditions

			SN54S3	90	SN74S30			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			٧
VIL	Low-level input voltage			8.0			0.8	V
Іон	High-level output current			 1			- 1	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †			SN54S30			SN74S30			
	TEST CONDITIONS I			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	I _I = -18 mA	,			-1.2			-1.2	v
V _{OH}	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	V _{CC} = MIN,	V _{1H} = 2 V,	I _{OL} = 20 mA			0.5			0.5	v
II	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
I _{IH}	V _{CC} = MAX,	V ₁ = 2.7 V				50			50	μА
lir	V _{CC} = MAX,	V ₁ = 0.5 V				-2			2	mA
IOS\$	V _{CC} = MAX			-40		-100	-40		-100	mA
Іссн	V _{CC} = MAX,	V = 0 V			3	5		3	5	mA
1CCL	V _{CC} = MAX,	V _I = 4.5 V			5.5	10		5.5	10	mA

- 1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 ‡ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.

 § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, VCC = 5 V, TA = 25°C (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST COND	MIN	ТҮР	MAX	UNIT	
[†] PLH		Υ	R _L = 280 Ω,	C _L = 15 pF		4	6	ns
tPHL .	Any			OL 1951		4.5	7	ns
^t PLH			R _L = 280 Ω, C _L = 50 pF	C. = 50.0F		5.5		ns
^t PHL					6.5		ns	