

SN54ALS113A, SN74ALS113A

Dual J-K Negative-Edge-Triggered Flip-Flops With Preset

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset input sets the outputs regardless of the levels of the other inputs. When Preset (PRE) is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54ALS113A, SN74ALS113A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

D2261, APRIL 1982-REVISED MAY 1986

- Fully Buffered to Offer Maximum Isolation from External Disturbance
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil
- Dependable Texas Instruments Quality and Reliability

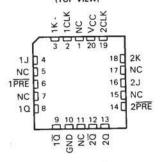
TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION PER FLIP-FLOP
'ALS113A	40 MHz (CL = 15 pF)	6 mW

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the Preset input sets the outputs regardless of the levels of the other inputs. When Preset (PRE) is inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

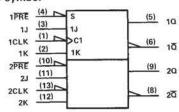
The SN54ALS113A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS113A is characterized for operation from 0°C to 70°C.

FUNCTION TABLE


	INPUT	OUT	PUTS						
PRE	CLK J		PRE CLK J K		RE CLK J K				ā
L	×	×	×	н	L				
н	1	L	L	00	\bar{a}_0				
н	1	н	L	н	L				
н	4	L	н	L	н				
H	4	H	н	TOO	GLE				
н	н	×	×	ao	\bar{a}_0				

SN54ALS113A . . . J PACKAGE SN74ALS113A . . . D OR N PACKAGE (TOP VIEW)

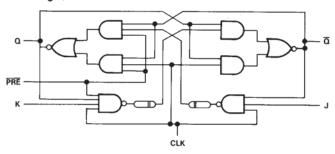
.. 18212


1CLK	1	U14	Vcc
1K 🗆	2	13	2CLK
17 [3	12	□ 2K
1PRE	4	11	2J
10	5	10	2PRE
10 [6	9	20
GND [17	8	20

SN54ALS113A . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic symbol†



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Copyright © 1982, Texas Instruments Incorporated

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC		 7 V
Input voltage		
Operating free-air temperature range:	SN54ALS113A	 55°C to 125°C
	SN74ALS113A	 0°C to 70°C
Storage temperature range		-65°C to 150°C

recommended operating conditions

			S	SN54ALS113A		SN74ALS113A			
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input volta	ge	2			2			V
VIL	Low-level input volta	ge			0.7			0.8	V
loн	High-level output cur	rent			-0.4			-0.4	mA
1OL	Low-level output curr	rent			4			8	mA
f _{clock}	Clock frequency		0		25	0		30	MHz
		PRE low	20			10			ns
tw	Pulse duration	CLK high	20			16.5			
		CLK low	20			16.5			
	Setup time	Data	25			22			
t _{su}	before CLK↓	PRE inactive	25			20			ns
th	Hold time, data after	CFK1	0			0			ns
TA	Operating free-air ten	perature	-55		125	0		70	°C

SN54ALS113A, SN74ALS113A DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER					SN54ALS113A		SN	74ALS1	13A	UNIT
		TEST CONDITIONS		MIN	TYPT	MAX	MIN	TYPT	MAX	UNIT
VIK		V _{CC} = 4.5 V,	$I_1 = -18 \text{ mA}$	- W		-1.5		ff se		V
VOH		V _{CC} = 4.5 V to 5.5 V,	IOH = 0.4 mA	Vcc-2				V _{CC} -2		V
VOL		V _{CC} = 4.5 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	_ v
		V _{CC} = 4.5 V,	IOL = 8 mA		1-354	144		0.35	0.5	
l _I	J. K, or CLK	V _{CC} = 5.5 V,	CAN CHANGE			0.1			0.1	mA
	PRE					0.2			0.2	1,415).
	J, K, or CLK		$V_{CC} = 5.5 \text{ V}, \qquad V_{1} = 2.7 \text{ V}$			20			20	0 μΑ
lн	PRE	$V_{CC} = 5.5 \text{ V},$				40			40	1000
	J, K, or CLK					-0.2			-0.2	m.A
I _{IL}	PRE	$V_{CC} = 5.5 V$,	$V_{\parallel} = 0.4 \text{ V}$		100	-0.4		1 000	-0.4	
1-+	Tric	V _{CC} = 5.5 V,	Vo = 2.25 V	- 30	- 12	- 112	-30		-112	m.A
lo‡		V _{CC} = 5.5 V,	See Note 1		2.5	4.5		2.5	4.5	m/

TAII typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$. ‡The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los. NOTE 1: I_{CC} is measured with J, K, CLK, and $\overline{\text{PRE}}$ grounded, then with J, K, CLK, and $\overline{\text{CLR}}$ grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _i	= 50 pl	Ω,	,	UNIT
	**********	39	SN54ALS	13A	SN74A	LS113A	
	i i		MIN	MAX	MIN	MAX	
f _{max}			25		30		MHz
			3 1 1	23	3	14	
tPLH	PRE	Q or Q	: 4 6.6	- 26	4	16	ns
^t PHL	SHAH HE SHE		- 3 + 5	~ 22	3	15	
tPLH	CLK	Q or Q		100-10000		19	ns
tPHL .		2000 4	+ 518.3	23	5	19	

NOTE 2: Load circuit and voltage waveforms are shown in Section 1.