

SN54F353, SN74F353

Dual 1-of-4 Data Selectors/Multiplexers with 3-State Outputs

т

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs (\overline{G}) are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Each output has its own strobe (\overline{G}). The output is disabled when its strobe is high.

Rochester Electronics	Quality Overview
Manufactured Components Rochester branded components are manufactured using either die/wafers burchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with he approval of the OCM.	 ISO-9001 AS9120 certification Qualified Manufacturers List (QML) MIL-PRF-38535 Class Q Military Class V Space Level Qualified Suppliers List of Distributors (QSLD) Rochester is a critical supplier to DLA and meets all industry and DLA standards.
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.	Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

D2932, MARCH 1987-REVISED JANUARY 1989

- Inverting Versions of SN54F253 and SN74F253
- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

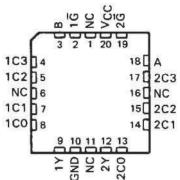
description

Each of these data selectors/multiplexers contains inverters and drivers to supply full binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs (\overline{G}) are provided for each of the two four-line sections.

The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state), the low-impedance of the single enabled output will drive the bus line to a high or low logic level. Each output has its own strobe (\overline{G}). The output is disabled when its strobe is high.

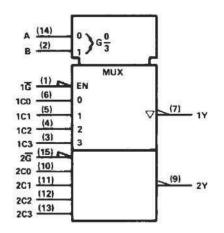
The SN54F353 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74F353 is characterized for operation from 0°C to 70°C.

SELECT		DATA		INPUT	s	STROBE	OUTPUT
В	A	CO	C1	C2	C3		3.
х	x	х	×	х	×	н	Z
L	L	L L	x	x	х	L	н
L	L	H	х	x	×	L	L
L	н	x	L	x	×	L	н
L	н	X	н	x	×	L	L
н	L	X	x	L	x	L	н
н	L	X	×	н	×	L	L
н	н	X	х	х	L	L	н
н	н	x	х	Х	н	L	L


FUNCTION TABLE

Select inputs A and B are common to both sections.

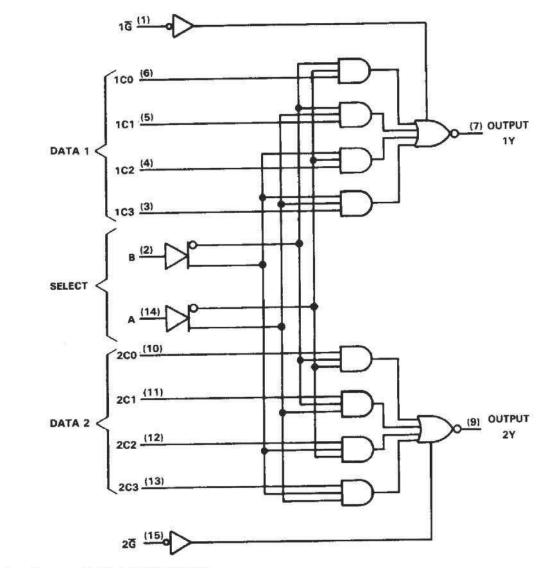
SN54F353 J PACKAGE
SN74F353 D OR N PACKAGE
(TOP VIEW)


1000	-	1 1 1	
1Ĝ[1	U16	Vcc
в[2	15	2G
1C3[3	14	A
1C2[4	13	2C3
1C1	5	12	2C2
100	6	11	2C1
1Y [7	10	200
GND [8	9] 2Y

SN54F353 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication data. Products conform to specifications per the torms of Texas instruments standard warranty. Production processing does not necessarily include texting of all parameters.

logic diagram (positive logic)

Pin numbers shown are for D, J, and N packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	
Input voltage	
Input current	
Voltage applied to any output in the disabled or power	er-off state
Voltage applied to any output in the high state	-0.5 V to VCC
Current into any output in the low state: SN54F353	
SN74F353	
Operating free-air temperature range: SN54F353	-55°C to 125°C
SN74F353	
Storage temperature range	

[†]The input voltage ratings may be exceeded provided the input current ratings are observed.

recommended operating conditions

		SN54F3	SN74F353				
		MIN NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5 5	5.5	4.5	5	5.5	v
VIH	High-level input voltage	2 ,	ST.	2			V
VIL	Low-level input voltege	at	0.8			0.8	V
liκ	Input clamp current	de la constante de	-18			- 18	mA
юн	High-level output current	000	-3			-3	mA
OL	Low-level output current	PR	20			20	mA
TA	Operating free-air temperature	- 55	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			N54F38	53	SN74F353			
r Aname i En	ical	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT	
VIK	V _{CC} = 4.5 V,	lj = -18 mA			-1.2			-1.2	V
	Vcc = 4.5 V	$I_{OH} = -1 \text{ mA}$	2.5 3.4			2.5	3.4		
VOH	н	$I_{OH} = -3 \text{ mA}$	2.4	3.3		2.4	3.3		V
	V _{CC} = 4.75 V,	$I_{OH} = -1 \text{ mA to } -3 \text{ mA}$				2.7			
VOL	V _{CC} = 4.5 V	IOL = 20 mA		0.30	0.5		11201/1 Prove 1		
VCC = 4.5 V		IOL = 24 mA			2		0.35	0.5	v
IOZH	VCC = 5.5 V,	V0 = 2.7 V		Ň	\$ 50	10.00		50	µА
OZL	Vcc = 5.5 V,	V _Q = 0.5 V		ope	- 60			- 50	μA
lj	$V_{CC} = 5.5 V_{,}$	VI = 7 V		~	0.1			0.1	mA
lin	$V_{\rm CC} = 5.5 V,$	VI = 2.7 V	- O	3	20		32004 - 44	20	μA
կլ	$V_{CC} = 5.5 V,$	VI = 0.5 V	PROD	80	-0.6	à		-0.6	mA
los [§]	Vcc = 5.5 V,	$V_0 = 0$	- 60		- 150	-60	SALAKANA	- 150	mA
CCH (see Note 1)	VCC = 5.5 V,	Condition A	9.3 14			9.3	14		
ICCL	VCC = 5.5 V,	Condition B		13.3	20		13.3	20	mA
lccz	Vcc = 5.5 V,	Condition C 15 23		23		15	23	1	

¹ For conditions shown as MIN or 5.5 V, use the appropriate value specified under Recommended Operating Conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[§]Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. NOTE 1: ICC is measured with the outputs open under the following conditions:

A. All inputs grounded.

- B. Output control grounded, other inputs at 4.5 V.
- C. Output control at 4.5 V, other inputs grounded.

switching characteristics (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL R1 R2	$V_{CC} = 5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = 25^{\circ}C$			$V_{CC} = 4.5 V \text{ to } 5.5 V,$ $C_L = 50 \text{ pF},$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = MIN \text{ to } MAX^{\dagger}$			
		1	'F353			SN54F353		SN74F353		
			MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	
touu	A or B	a 735	2.7	7.6	11	2.2	\$ 14	2.2	12.5	ns
tPLH		Any Y	2.2	6.1	8,5	1.7	# 11	1.7	9.5	
tphl	Data		1.7	4.8	7	1.2	4 9	1.2	8	
tplh		Any Y	1	2.1	3.5	1	Q 5	1	4	ns
tPHL	(Any C)		2.2	5.1	8	2.2	- 10.5	2.2	9	
^t PZH		Any Y		0.000.00			10.5	2.2	9	ns
tPZL			2.7	5.6	8	2.2		<u> </u>	6	
^t PLZ	ទ	Any Y	1.2	3.3	5	1.2 0	7			ns
tPHZ			1.2	4	6	18	8		/	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions. NOTE 2: Load circuits and waveforms are shown in Section 1.

