

SN54H108, SN74H108

Dual J-K Negative-Edge-Triggered Flip-Flops

These dual monolithic J-K flip-flops are negative-edge-triggered. They feature individual J, K, and asynchronous preset inputs to each flip-flop as well as common clock and asynchronous clear inputs. When the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative edge of the clock pulse.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

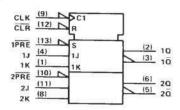
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

REVISED DECEMBER 1983

- Package Options Include Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description

These dual monolithic J-K flip-flops are negative-edgetriggered. They feature individual J, K, and asynchronous preset inputs to each flip-flop as well as common clock and asynchronous clear inputs. When the clock goes high, the inputs are enabled and data will be accepted. Logical state of J and K inputs may be allowed to change when the clock pulse is in a high state and bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative edge of the clock pulse.

The SN54H108 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74H108 is characterized for operation from 0 °C to 70 °C.

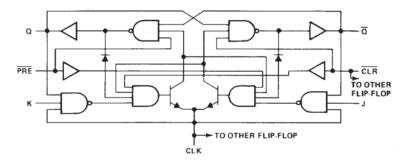
SN54H108 . . . J OR W PACKAGE SN74H108 ... J OR N PACKAGE (TOP VIEW) U14DVCC 1K 🗆 1 10 02 13 1 PRE 10 43 12 CLR 11 2J 10 2PRE 11 4 20 □ 5 20 6 9 CLK GND 7 8 2K

logic symbol

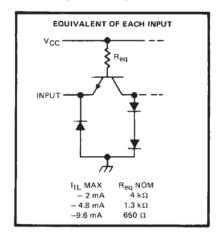
Pin numbers shown are for J and N packages.

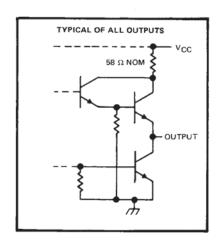
FUNCTION TABLE

INPUTS					OUT	PUTS
PRE	CLR	CLK	J	K	a	ō
L	н	×	×	×	н	L
H	L	×	×	×	L	Н
L	L	×	×	X	Ht	HT
Н	H	4	L	L	00	00
н	н	4	H	L	н	L
н	н	4	E	Н	L	н
H	н	4	н	н	TOG	GLE
H	н	н	×	×	00	\overline{a}_0


1 This configuration is nonstable, that is, it will not persist when preset and clear inputs return to their inactive (high)

TTL DEVICES


PRODUCTION DATA


This document contains information current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production pracessing does not necessarily include testing of all parameters.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Operating free-air temperature range: SN54H	r	- 55°C to 125°C
SN74H	۲	0°C to 70°C
Storage temperature range		- 65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

TYPES SN54H108, SN74H108 DUAL J-K NEGATIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET, COMMON CLEAR, AND COMMON CLOCK

recommended operating conditions

			_ :	SN54H108		SN74H108				
5			MIN	NOM	MAX	MIN	NOM	MAX	UNI	
VCC	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage				- 300170	2			v	
VIL	Low-level input voltage		-		8.0	~	_	0.8	v	
ЮН	High-level output current		_		- 0.5			- 0.5	mA	
OL	Low-level output current				20	-		20	mA	
ATTILL		CLK high	10	(P) (P)	20	10		20	mA	
tw	Pulse duration	CLK low	15			15			DC	
	*)	CLR or PRE low	16			16			ns	
t _{su} Setup t	Setup time before CLK I	High-level data	10			10	-		_	
	Low-level data		13		- 77	13			ns	
th	Hold time-data after CLK I		0			0			ns	
TA	Operating free-air temperature		- 55	2	125	0	-	70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		SN54H108		SN74H108					
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	דואט	
VIK		V _{CC} = MIN,	Am 8 - 11				- 1.5			- 1.5	V
vон		V _{CC} = MIN, I _{OH} = - 0.5 mA	V _{IH} = 2 V,	V _I L = 0.8 V,	2.4	3,4		2.4	3.4		v
VOL		V _{CC} = MIN, I _{OL} = 20 mA	V _{1H} = 2 V,	VIL ≈ 0.8 V,		0.2	0.4		0.2	0.4	v
կ		VCC = MAX,	V ₁ = 5.5 V				1		900	1	mA
	Any J or K	V _{CC} = MAX,	V ₁ = 2.4 V				50		_	50	
tors	CLR						200			200	μΑ
ΉН	PRE						100	750-5	-11-250	100	, mes
	CLK			0		1	0	==	- 1	mA	
	Any J or K	V _{CC} = MAX,	V ₁ = 0.4 V			-1	- 2	1	- 1	- 2	111111
tore:	CLR				20	- 2	-4	9-11-1	- 2	- 4	
IIL.	PRE				-	-1	- 2	-	- 1	- 2	mA
	CLK					- 6	9.6	3	-	- 9.6	
los§		VCC = MAX			- 40	_	- 100	- 40		- 100	mA
lcc	1.72	V _{CC} = MAX,	See Note 2			20	38		20	38	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 1 All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{ C}$.

 § Not more than one output should be shorted at a time, and duration of short-circuit should not exceed one second.

 NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				40	50		MHz
TPLH	PRE or CLR	QorQ			8	12	ns
8	PRE or CLR (CLK high)	Q or Q	$R_L = 280 \Omega$, $C_L = 25 pF$		15	20	113
TPHL	PRE or CLR (CLK low)				23	35	ns
TPLH	CLK	Q or Q			10	15	ns
^t PHL					16	20	

NOTE 3: See General Information Section for load circuits and voltage waveforms.

